JP7486045B2 - Surface-coated cutting tools - Google Patents
Surface-coated cutting tools Download PDFInfo
- Publication number
- JP7486045B2 JP7486045B2 JP2020056630A JP2020056630A JP7486045B2 JP 7486045 B2 JP7486045 B2 JP 7486045B2 JP 2020056630 A JP2020056630 A JP 2020056630A JP 2020056630 A JP2020056630 A JP 2020056630A JP 7486045 B2 JP7486045 B2 JP 7486045B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- grain boundary
- grain boundaries
- crystal grains
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims description 43
- 239000010410 layer Substances 0.000 claims description 121
- 239000013078 crystal Substances 0.000 claims description 57
- 229910052719 titanium Inorganic materials 0.000 claims description 34
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 31
- 239000011247 coating layer Substances 0.000 claims description 23
- 238000009826 distribution Methods 0.000 claims description 15
- 239000000470 constituent Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 11
- 229910052593 corundum Inorganic materials 0.000 claims description 11
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 11
- 239000010936 titanium Substances 0.000 description 46
- 238000005259 measurement Methods 0.000 description 21
- 125000004429 atom Chemical group 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000005204 segregation Methods 0.000 description 6
- 229910000851 Alloy steel Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910003074 TiCl4 Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000731 high angular annular dark-field scanning transmission electron microscopy Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- -1 titanium carbides Chemical class 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool).
切削工具の切削性能の改善を目的として、従来、炭化タングステン(以下、WCで示す)基超硬合金等の工具基体の表面に、Ti化合物等の硬質被覆層を蒸着法により被覆形成した被覆工具がある。これは、優れた耐摩耗性を発揮することが知られているが、さらなる硬質被覆層の改善についての種々の提案がなされている。 To improve the cutting performance of cutting tools, there are conventional coated tools in which a hard coating layer of a Ti compound or the like is formed by vapor deposition on the surface of a tool substrate such as a tungsten carbide (hereinafter referred to as WC)-based cemented carbide. This is known to exhibit excellent wear resistance, and various proposals have been made to further improve the hard coating layer.
例えば、特許文献1には、工具基体と、該工具基体上に形成された1以上の被膜(硬質被覆層)とを備え、前記被膜は、少なくとも酸化アルミニウム多層被膜を含み、前記酸化アルミニウム多層被膜は、添加元素を含有する酸化アルミニウムによって構成される単位層を2種以上含み、かつその2種以上の単位層を周期的に繰り返して積層させた構造を有し、前記単位層の各々は、前記添加元素の種類または組み合せが異なっており、前記添加元素は、周期律表のIVa族元素、Va族元素、VIa族元素、Y、Ca、Mg、BおよびSiからなる群から選ばれる少なくとも1種の元素である被覆工具が記載され、この被覆工具は、耐摩耗性が向上しているとされている。 For example, Patent Document 1 describes a coated tool that includes a tool substrate and one or more coatings (hard coating layers) formed on the tool substrate, the coatings including at least an aluminum oxide multilayer coating, the aluminum oxide multilayer coating including two or more unit layers made of aluminum oxide containing additive elements, and has a structure in which the two or more unit layers are periodically laminated, each of the unit layers having a different type or combination of additive elements, the additive elements being at least one element selected from the group consisting of Group IVa elements, Group Va elements, Group VIa elements, Y, Ca, Mg, B, and Si of the periodic table, and the coated tool is said to have improved wear resistance.
また、例えば、特許文献2には、チタンの炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物および炭窒酸化物から選ばれる単層、または、2層以上の複層からなるチタン系下層と、α型結晶構造をなす酸化アルミニウム層とからなる硬質被覆層を備え、硫化チタン(TixSy(x>0、y>0))部が前記チタン系下層の界面から前記酸化アルミニウム層内に突出した状態で前記酸化アルミニウム層内に分散分布する被覆工具が記載され、ねずみ鋳鉄、ダクタイル鋳鉄等の切削においても、この被覆工具は、優れた耐チッピング性、耐欠損性を有するとされている。 Furthermore, for example, Patent Document 2 describes a coated tool that includes a hard coating layer consisting of a titanium-based underlayer consisting of a single layer or a multilayer consisting of two or more layers selected from titanium carbides, nitrides, carbonitrides, carbonates, nitrides and carbonitrides, and an aluminum oxide layer having an α-type crystal structure, in which titanium sulfide (Ti x S y (x>0, y>0)) portions protrude from the interface of the titanium-based underlayer into the aluminum oxide layer and are dispersed and distributed in the aluminum oxide layer. This coated tool is said to have excellent chipping resistance and defect resistance even when cutting gray cast iron, ductile cast iron, and the like.
近年の切削加工における省力化および省エネルギー化の要求は強く、これに伴い、被覆工具の硬質被覆層には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐久性が求められている。 In recent years, there has been a strong demand for labor- and energy-saving in cutting processes, and as a result, the hard coating layer of coated tools is required to have even greater resistance to abnormal damage, such as chipping resistance, fracture resistance, and peeling resistance, as well as excellent durability over long periods of use.
しかし、前記特許文献1および2に記載された被覆工具は、それぞれの文献に記載された切削条件では耐久性を有するものの、合金鋼の高速断続切削加工においては、耐チッピング性や耐欠損性が十分とはいえず、満足する耐久性を有しているとはいえなかった。
本発明は、この状況を鑑みて、合金鋼の高速断続切削加工おいて、十分な耐久性を有する被覆工具を提供することを目的とする。
However, although the coated tools described in Patent Documents 1 and 2 have durability under the cutting conditions described in each document, they do not have sufficient chipping resistance and fracture resistance in high-speed intermittent cutting of alloy steel, and therefore cannot be said to have satisfactory durability.
In view of the above circumstances, an object of the present invention is to provide a coated tool having sufficient durability in high-speed interrupted cutting of alloy steel.
本発明者は、下部層としてTiの化合物層、上部層として酸化アルミニウム(以下、Al2O3で示すことがある)層の2層を含む硬質被覆層を有する切削工具の耐久性の向上について鋭意検討を重ねた。その結果、上部層のAl2O3層を構成する結晶粒の粒界にTiとSが共存して偏析していると、耐摩耗性を発揮しつつ、耐欠損性および耐チッピング性を備えた硬質被覆層が得られ、合金鋼の高速断続切削加工おいて耐久性が向上するという知見を得た。 The present inventors have conducted extensive research into improving the durability of cutting tools having a hard coating layer including two layers, a lower layer being a Ti compound layer and an upper layer being an aluminum oxide ( hereinafter sometimes referred to as Al2O3 ) layer. As a result, they have found that when Ti and S coexist and segregate at the grain boundaries of the crystal grains constituting the upper Al2O3 layer, a hard coating layer having wear resistance, fracture resistance and chipping resistance is obtained, and durability is improved in high-speed intermittent cutting of alloy steel.
本発明は、この知見に基づくもので以下のとおりのものである。
「(1) 工具基体と、該工具基体の表面に下部層と上部層を含む硬質被覆層を有する表面被覆切削工具であって、
前記下部層はTiの化合物層であり、
前記上部層は2.0~20.0μmの平均層厚を有し、Al2O3層を含み、該Al2O3層内において隣接する2のAl2O3結晶粒の粒界において、TiとSが共存し、TiとSの濃度の最大値に対応する位置が、前記粒界から前記粒界を挟む2の結晶粒内へ10nm以内の領域内に存在し、かつ、前記最大値が前記粒界から10nmを超えて50nmまでの前記粒界を挟む前記2の結晶粒内の領域におけるTiとSの濃度の最大値と比較してそれぞれ2.00倍以上である偏析をしている粒界の数が、全粒界の数の20%以上である
ことを特徴とする表面被覆切削工具。
(2)前記Al2O3層は、α型の結晶構造を有し、Σ3~Σ29の構成原子共有格子点分布グラフにおいてΣ3に最高ピークを有し、Σ3の全体に占める割合は60%以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記Al2O3層内にTiとSが共存しているAl2O3結晶粒界の割合がすべてのAl2O3結晶粒界数に対して30~80%であることを特徴とする(1)または(2)に記載の表面被覆切削工具。」
The present invention is based on this finding and is as follows.
"(1) A surface-coated cutting tool having a tool substrate and a hard coating layer including a lower layer and an upper layer on the surface of the tool substrate,
the lower layer is a Ti compound layer,
The upper layer has an average thickness of 2.0 to 20.0 μm and includes an Al 2 O 3 layer, in which Ti and S coexist at the grain boundaries of two adjacent Al 2 O 3 crystal grains , positions corresponding to the maximum concentrations of Ti and S are present within a region within 10 nm from the grain boundary into two crystal grains sandwiching the grain boundary, and the number of grain boundaries in which the maximum values are 2.00 times or more as compared with the maximum concentrations of Ti and S in a region within the two crystal grains sandwiching the grain boundary from more than 10 nm to 50 nm from the grain boundary is 20% or more of the total number of grain boundaries.
(2) The surface-coated cutting tool according to (1), characterized in that the Al 2 O 3 layer has an α-type crystal structure, has a highest peak at Σ3 in a constituent atom-sharing lattice point distribution graph of Σ3 to Σ29, and the proportion of Σ3 in the whole is 60% or more.
(3) The surface-coated cutting tool according to (1) or (2), characterized in that the ratio of Al 2 O 3 grain boundaries in which Ti and S coexist in the Al 2 O 3 layer is 30 to 80% of the total number of Al 2 O 3 grain boundaries.
本発明の被覆工具は、合金鋼の高速断続切削加工おいて優れた耐久性を有する。 The coated tool of the present invention has excellent durability in high-speed interrupted cutting of alloy steel.
本発明について、以下に詳細に説明する。なお、本明細書および特許請求の範囲において、数値範囲を「A~B」(A、Bはともに数値)で表現するときは、その範囲は上限値(B)および下限値(A)を含んでおり、上限値(B)と下限値(A)の単位は同じである。
また、後述するTiC層等のTi化合物層、およびAl2O3層の組成は、化学量論的組成に限定されず、従来公知のすべての原子比の組成を含むものである。
The present invention will be described in detail below. In this specification and claims, when a numerical range is expressed as "A to B" (A and B are both numerical values), the range includes an upper limit (B) and a lower limit (A), and the upper limit (B) and the lower limit (A) have the same units.
Moreover, the compositions of the Ti compound layers such as a TiC layer, which will be described later, and the Al 2 O 3 layer are not limited to stoichiometric compositions, but include all compositions with conventionally known atomic ratios.
硬質被覆層:
硬質被覆層は、TiC層等を含むTiの化合物層である下部層とAl2O3層を含む上部層を有する。以下、順にこれら層について説明する。
Hard Coating:
The hard coating layer has a lower layer which is a Ti compound layer including a TiC layer and an upper layer which includes an Al 2 O 3 layer. These layers will be described below in order.
下部層:
下部層に含まれるTi化合物層(例えば、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層の少なくとも1つ)は、工具基体とAl2O3層を含む上部層の間に存在し、単層であっても複数層であってもよく、その高い硬度によって、硬質被覆層に対して耐摩耗性を付与するものである。また、Ti化合物層は、工具基体の表面、および、Al2O3層を含む上部層のいずれとも密着性を付与する役割を有する。
Bottom layer:
The Ti compound layer (e.g., at least one of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer) contained in the lower layer is present between the tool substrate and the upper layer including the Al2O3 layer, and may be a single layer or multiple layers, and imparts wear resistance to the hard coating layer due to its high hardness. The Ti compound layer also plays a role in imparting adhesion to both the surface of the tool substrate and the upper layer including the Al2O3 layer.
下部層の平均層厚は、3.0~20.0μmがより好ましい。3.0~20.0μmにあるとき、より耐久性が向上し、長期にわたって耐チッピング性や耐欠損性、耐摩耗性を発揮することができる。平均層厚は、5.0~15.0μmがより一層好ましい。 The average thickness of the lower layer is more preferably 3.0 to 20.0 μm. When it is 3.0 to 20.0 μm, durability is improved and chipping resistance, defect resistance, and wear resistance can be exhibited for a long period of time. The average layer thickness is even more preferably 5.0 to 15.0 μm.
上部層:
<平均層厚>
上部層は、Al2O3層を含み、その平均層厚は、2.0~20.0μmであることが好ましい。その理由は、2.0μm未満であると、薄いため長期の使用にわたって耐久性を十分に確保することができず、一方、20.0μmを超えると、結晶粒が大きくなってしまいチッピングが発生しやすくなるためである。
Top layer:
<Average layer thickness>
The upper layer includes an Al 2 O 3 layer, and the average layer thickness is preferably 2.0 to 20.0 μm, because if it is less than 2.0 μm, it is too thin to ensure sufficient durability over long-term use, and if it exceeds 20.0 μm, the crystal grains become large and chipping is likely to occur.
<TiとSの偏析>
TiとSの偏析がある粒界の割合は、例えば、次のようにして確認する。
<Segregation of Ti and S>
The proportion of grain boundaries where Ti and S segregate is confirmed, for example, as follows.
(1)観察領域の決定
Al2O3層の縦断面(工具基体の表面に垂直な断面)において、工具基体の表面に平行な方向に10μm、Al2O3層の層厚方向に平均層厚以上の長さの領域の少なくとも10箇所を観察領域と決定する。
(1) Determination of Observation Area In a longitudinal section of the Al2O3 layer (a section perpendicular to the surface of the tool base), at least 10 locations in an area having a length of 10 μm in a direction parallel to the surface of the tool base and a length greater than the average layer thickness in the layer thickness direction of the Al2O3 layer are determined as observation areas.
(2)各観察領域内の粒界の決定
この各観察領域に対して、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用い、高角散乱環状暗視野走査透過顕微鏡法(HAADF-STEM:High-angle Annular Dark Field Scanning TEM)により観察を行う。図1は、この観察結果の一例を示す模式図である。本発明でいう粒界とは、結晶粒界のうち隣接する2の結晶粒に接する部分であり、この部分を1個の粒界とする。すなわち、1個の結晶粒界は複数の粒界から構成される。ちなみに、図1では、A~Hの8の結晶粒が図示されている。例えば、Bの結晶粒についてみると、A、C、EおよびFの各結晶粒と粒界を有し、その中でAおよびFの結晶粒との粒界を粒界として図示している。図1において、すべての結晶粒における粒界の総数(この観察領域における全粒界の数)は13である。
(2) Determination of grain boundaries in each observation region Each observation region is observed by high-angle annular dark field scanning transmission microscopy (HAADF-STEM) using a transmission electron microscope (TEM). FIG. 1 is a schematic diagram showing an example of the observation result. The grain boundary in the present invention is a part of a crystal grain boundary that contacts two adjacent crystal grains, and this part is considered to be one grain boundary. In other words, one crystal grain boundary is composed of multiple grain boundaries. Incidentally, eight crystal grains A to H are illustrated in FIG. 1. For example, crystal grain B has grain boundaries with each of crystal grains A, C, E, and F, and among them, the grain boundaries with crystal grains A and F are illustrated as grain boundaries. In FIG. 1, the total number of grain boundaries in all crystal grains (total number of grain boundaries in this observation area) is 13.
(3)各組成の線分析
この粒界のすべてに対して、当該粒界を中心として隣接する2の結晶粒の粒界に対して垂直な方向に、エッジオン条件にて、該粒界を中心にこの粒界を跨いで測定長100nmの領域にてTiとSにつき、エネルギー分散型X線分光法(EDS:Energy dispersive X-ray spectroscopy)による組成の線分析を実施する。
ここで、エッジオン条件とは、粒界と平行な軸を中心に試料を傾けたときに電子線入射方向と粒界の深さ方向が平行となる角度にて測定を行う条件のことをいう(例えば、特開2017-5004号公報を参照)。
(3) Linear analysis of each composition For all of the grain boundaries, a line analysis of the composition is carried out by energy dispersive X-ray spectroscopy (EDS) for Ti and S in a region having a measurement length of 100 nm centered on the grain boundary and spanning the grain boundary under edge-on conditions in a direction perpendicular to the grain boundaries of two adjacent crystal grains centered on the grain boundary.
Here, the edge-on condition refers to a condition in which the measurement is performed at an angle such that the electron beam incidence direction is parallel to the depth direction of the grain boundary when the sample is tilted around an axis parallel to the grain boundary (see, for example, JP 2017-5004 A).
(4)各観察領域におけるTiとS偏析の有無の確認
各粒界に対して組成の線分析を行った結果、TiとSの検出強度の最大値を与える(TiとSの濃度の最大値に対応する)位置が、前記粒界から前記2の結晶粒内へ10nm以内の領域内に存在し、かつ、前記最大値が粒界から10nmを超えて50nmまでの前記2の結晶粒内の領域におけるTiとSの検出強度の最大値と比較してそれぞれ2.00倍以上であることを満たしているとき(濃度の比が2.00倍以上のとき)、当該粒界はTiとS元素が共存して粒界へ偏析していると判断する。
図2は、TiとSが共存して偏析があると判断されるTiとSの検出濃度の変化の一例を模式的に示したものであり、同図では、粒界が横軸の測定長の50nmの位置となるように測定の起点を定めている。
(4) Confirmation of the presence or absence of Ti and S segregation in each observation region. When a line analysis of the composition of each grain boundary is performed and the position giving the maximum value of the detection intensity of Ti and S (corresponding to the maximum concentration of Ti and S) is within a region within 10 nm from the grain boundary into the two crystal grains, and the maximum value is 2.00 times or more compared to the maximum detection intensity of Ti and S in the region within the two crystal grains from 10 nm to 50 nm from the grain boundary (when the concentration ratio is 2.00 times or more), the grain boundary is determined to be one in which Ti and S elements coexist and are segregated to the grain boundary.
FIG. 2 is a schematic diagram showing an example of changes in the detected concentrations of Ti and S at which it is determined that Ti and S coexist and segregate. In the figure, the starting point of the measurement is set so that the grain boundary is at the 50 nm position of the measurement length on the horizontal axis.
(5)各観察領域におけるTiとSが共存して偏析している粒界の割合の算出
このTiとSの粒界への偏析があると判断される粒界の数が全粒界の数(各観察領域におけるすべての結晶粒における粒界の総数)に占める割合(個数割合)を求める。
(5) Calculation of the proportion of grain boundaries where Ti and S coexist and segregate in each observation region. The proportion (number proportion) of the number of grain boundaries where it is determined that Ti and S segregate to grain boundaries exists in the total number of grain boundaries (the total number of grain boundaries in all crystal grains in each observation region) is calculated.
(6)TiとSが共存して偏析がある粒界の割合の導出
こうして、観察領域ごとに求めた個数割合の算術平均を算出して、TiとSが共存して偏析している粒界の数が、全粒界の数に占める割合を導出する。
(6) Derivation of the ratio of grain boundaries where Ti and S coexist and segregate. The arithmetic average of the number ratios determined for each observation region is calculated to derive the ratio of the number of grain boundaries where Ti and S coexist and segregate to the total number of grain boundaries.
そして、前記割合が20%以上であるときに粒界の強度が向上し、硬質被覆層の靭性が向上する。その理由は、定かではないが、TiとS原子の偏析が適切になされ、強度を損なうことなくAl2O3層内の残留応力が緩和され、耐欠損性が向上するためと考えられる。この割合は、20%以上であれば、その上限に制約はないが、30~80%の割合であると耐欠損性を向上する効果がより確実に発揮されるため、30~80%がより好ましい。 When the ratio is 20% or more, the strength of the grain boundary is improved, and the toughness of the hard coating layer is improved. The reason is not clear, but it is thought that the segregation of Ti and S atoms is appropriately performed, and the residual stress in the Al 2 O 3 layer is relaxed without impairing the strength, and the chipping resistance is improved. There is no upper limit to this ratio as long as it is 20% or more, but a ratio of 30 to 80% is more preferable because the effect of improving the chipping resistance is more reliably exhibited when the ratio is 30 to 80%.
また、Al2O3層結晶粒は、α型の結晶構造を有し、構成原子共有格子点分布グラフにおいて、Σ3に最高ピークを有し、Σ3のΣN+1全体に占める分布割合は、60%以上であることがより好ましい。60%以上であると、さらに、粒界強度が高まり、耐摩耗性向上効果を高めることができる。この割合の上限に制約はないが、60~90%のとき、ここの耐摩耗性向上効果がより一層確実に発揮される。 Moreover, the Al 2 O 3 -layer crystal grains have an α-type crystal structure, and in the constituent atom sharing lattice point distribution graph, the highest peak is at Σ3, and the distribution ratio of Σ3 to the whole ΣN+1 is more preferably 60% or more. If it is 60% or more, the grain boundary strength is further increased, and the wear resistance improvement effect can be improved. There is no upper limit to this ratio, but when it is 60 to 90%, the wear resistance improvement effect is more reliably exhibited.
ここで、構成原子共有格子点は、以下の方法により、測定、算出される。
すなわち、前記α型の結晶構造を有するAl2O3層結晶粒について、結晶面である(0001)面および(10-10)面の法線が、観察研磨面に法線となす傾斜角を測定する。前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方晶の結晶構造を有する。測定により得られた傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)からなる対応粒界の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態からなる対応粒界をΣN+1で表した個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを求める。
Here, the constituent atom covalent lattice points are measured and calculated by the following method.
That is, for the Al2O3 - layer crystal grains having the α-type crystal structure, the inclination angle between the normal of the (0001) plane and the (10-10) plane, which are crystal planes, and the normal of the observation polished surface is measured. The crystal grains have a corundum-type hexagonal crystal structure in which constituent atoms of Al and oxygen exist at lattice points. Based on the inclination angle obtained by measurement, the distribution of corresponding grain boundaries consisting of lattice points (constituent atom sharing lattice points) where each of the constituent atoms shares one constituent atom between the crystal grains is calculated at the interface between adjacent crystal grains, and a constituent atom sharing lattice point distribution graph is obtained, which shows the distribution ratio of each ΣN+1, which is expressed as ΣN+1, to the entire ΣN+1, in which the corresponding grain boundaries consisting of the constituent atom sharing lattice point form have N lattice points that do not share constituent atoms between the constituent atom sharing lattice points (however, N is an even number of 2 or more in the corundum-type hexagonal crystal structure, but when the upper limit of N is set to 28 from the viewpoint of distribution frequency, the even numbers 4, 8, 14, 24 and 26 do not exist).
上部層における構成原子共有格子点分布グラフの作成方法:
硬質被覆層の上部層のAl2O3結晶粒について、HAADF-STEMを用いて、Al2O3結晶粒の結晶格子面のそれぞれの法線が、観察研磨面の法線となす角度を測定するとともに、その測定結果より、隣接する結晶格子相互の結晶方位関係を算出することにより、上部層のAl2O3の対応粒界分布グラフを求める。
How to create a distribution graph of constituent atom sharing lattice points in the upper layer:
For the Al 2 O 3 crystal grains in the upper layer of the hard coating layer, the angle between the normal of each of the crystal lattice planes of the Al 2 O 3 crystal grains and the normal of the observation polished surface is measured using HAADF-STEM, and the crystal orientation relationship between adjacent crystal lattices is calculated from the measurement results to obtain a corresponding grain boundary distribution graph of the Al 2 O 3 in the upper layer.
上部層の界面領域および表面領域のそれぞれの断面を研磨面(研磨面とする手段は、後述する平均層厚を測定する際に用いる手段を使用できる)とした状態で、前記被覆工具を電界放出型走査電子顕微鏡の鏡筒内にセットし、前記断面の研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記断面の研磨面の測定範囲内に存在するコランダム型六方晶結晶格子を有する結晶粒個々に電子線を照射する。より詳細には、電子線後方散乱回折装置を用い、工具基体表面に平行する方向に50μm、工具基体の表面に直交する方向にAl2O3層の層厚を上限とする領域で0.1μm/stepの間隔で電子線を照射し、電子線が照射された各測定点において前記結晶粒を構成する結晶格子の各面の法線の方位を測定する。 With each cross section of the interface region and the surface region of the upper layer as a polished surface (the means for making the polished surface can be the means used for measuring the average layer thickness described later), the coated tool is set in the lens barrel of a field emission scanning electron microscope, and the electron beam is irradiated with an accelerating voltage of 15 kV and an irradiation current of 1 nA at an incidence angle of 70 degrees on the polished surface of the cross section, to each crystal grain having a corundum-type hexagonal crystal lattice present within the measurement range of the polished surface of the cross section. More specifically, using an electron beam backscattering diffraction device, the electron beam is irradiated at intervals of 50 μm in the direction parallel to the tool base surface and at intervals of 0.1 μm/step in the region with the layer thickness of the Al 2 O 3 layer as the upper limit in the direction perpendicular to the tool base surface, and the normal orientation of each face of the crystal lattice constituting the crystal grain is measured at each measurement point irradiated with the electron beam.
この測定結果から、隣接する測定点における結晶格子相互の結晶方位関係を算出した。すなわち、隣接する相互の測定点間において、結晶方位角度差が5度以上である測定点間に結晶粒界が存在するとみなし、この結晶粒界に囲まれた測定点の集合を1つの結晶粒と特定し、全体の結晶粒を特定する。
それとともに、結晶格子界面を構成する測定点間の結晶方位関係が、対応粒界を構成する結晶粒間のなす角度の値に対して誤差Δθ=5°の範囲内となった場合に、その測定点間に対応粒界が存在するとみなし、全粒界長に対するΣN+1対応粒界の割合を求める。
From the measurement results, the crystal orientation relationship between the crystal lattices at adjacent measurement points was calculated. In other words, it was assumed that a grain boundary exists between adjacent measurement points where the difference in crystal orientation angle between the measurement points is 5 degrees or more, and the set of measurement points surrounded by this grain boundary was identified as one crystal grain, and the entire crystal grain was identified.
In addition, when the crystal orientation relationship between the measurement points constituting the crystal lattice interface falls within the range of an error Δθ=5° with respect to the value of the angle between the crystal grains constituting the correspondence grain boundary, it is considered that a correspondence grain boundary exists between the measurement points, and the ratio of the ΣN+1 correspondence grain boundary to the total grain boundary length is calculated.
その他の層:
上部層の上部に、TiC層、TiCN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上のTi化合物層からなり0.1~5.0μmの合計平均層厚を有する最外層を設けると、より一層優れた耐溶着性、耐摩耗性が発揮されて好ましい。ここで、合計平均層厚が0.1μm未満であると、最外層を設けた効果が十分に発揮されず、一方、5.0μmを超えると、チッピングが発生しやすくなる。
Other layers:
It is preferable to provide an outermost layer on the upper layer, which is made of one or more Ti compound layers selected from the group consisting of a TiC layer, a TiCN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and has a total average layer thickness of 0.1 to 5.0 μm, since this provides even better adhesion resistance and wear resistance. If the total average layer thickness is less than 0.1 μm, the effect of providing the outermost layer is not fully exhibited, while if it exceeds 5.0 μm, chipping is likely to occur.
平均層厚の測定:
ここで、硬質被覆層を構成する各層の平均層厚は、例えば、集束イオンビーム装置(FIB:Focused Ion Beam system)、クロスセクションポリッシャー装置(CP:Cross section Polisher)等を用いて、硬質被覆層を任意の位置で切断して観察用の試料を作製し、その縦断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)またはTEM、走査型透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)、あるいはSEMまたはTEM付帯のエネルギー分散型X線分析(EDX:Energy Dispersive X-ray spectrometry)装置を用いて複数箇所(例えば、5箇所)で観察して、その結果を平均することにより得ることができる。
Measurement of the average layer thickness:
Here, the average thickness of each layer constituting the hard coating layer can be measured by, for example, cutting the hard coating layer at an arbitrary position using a focused ion beam system (FIB), a cross section polisher (CP), or the like to prepare a sample for observation, and then observing the longitudinal section of the sample using a scanning electron microscope (SEM), a TEM, a scanning transmission electron microscope (STEM), or an energy dispersive X-ray analysis (EDX) attached to the SEM or TEM. The measurement value can be obtained by observing multiple points (for example, five points) using a spectrometer and averaging the results.
工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。例をあげるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(Tiの炭化物、Tiの窒化物、Tiの炭窒化物等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体であり、これらのいずれかであることが好ましい。
Tool Base:
The tool substrate may be any of the substrates known in the art as the substrate of this type, provided that they do not impede the achievement of the object of the present invention. Examples include cemented carbide (WC-based cemented carbide, WC, Co, and Ti, Ta, Nb, etc.), cermet (Ti carbide, Ti nitride, Ti carbonitride, etc.), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, and diamond sintered body, and any of these is preferable.
製造方法:
本発明の被覆工具の硬質被覆層は、(1)下部層の成膜工程、(2)上部層の成膜工程、そして、(3)上部層のエッチング工程の3工程を含む工程により作製される。
Production method:
The hard coating layer of the coated tool of the present invention is produced by a process including three steps: (1) a step of depositing a lower layer, (2) a step of depositing an upper layer, and (3) a step of etching the upper layer.
(1)下部層の成膜工程
Tiの炭窒化物層を有するTiの化合物層である下部層は、例えば、平均層厚が3.0~20.0μmとなるように、公知の成膜条件によって成膜することができる。
(1) Step of Depositing Lower Layer The lower layer, which is a Ti compound layer having a Ti carbonitride layer, can be deposited under known deposition conditions so that the average layer thickness is, for example, 3.0 to 20.0 μm.
(2)上部層の成膜工程
この工程は、Sが粒界に偏析するAl2O3層を含む上部層を、その平均層厚が2.0~20.0μmとなるように成膜する。成膜条件として、例えば、
反応ガス:AlCl3 1.0~1.8%、CO2 3.0~5.0%、
HCl 1.0~3.0%、H2S 0.75~1.50%、H2 残部
反応雰囲気温度:900~1000℃
反応雰囲気圧力:5.0~10.0kPa
をあげることができる。
(2) Upper Layer Deposition Step In this step, the upper layer including the Al 2 O 3 layer in which S is segregated at the grain boundaries is deposited so that the average layer thickness is 2.0 to 20.0 μm. The deposition conditions are, for example,
Reactive gas: AlCl 3 1.0-1.8%, CO 2 3.0-5.0%,
HCl 1.0-3.0%, H2S 0.75-1.50%, H2 remainder Reaction atmosphere temperature: 900-1000°C
Reaction atmosphere pressure: 5.0 to 10.0 kPa
can be given.
(3)上部層のエッチング工程
この工程は、上部層の成膜後、Tiを含むガスによりエッチングと熱処理を行うことにより、上部層のAl2O3層の結晶粒の粒界にTiとSを共存させて偏析させることができる。エッチング条件として、例えば、
反応ガス組成(容量%):TiCl4 1.0~2.0%、H2 残部
反応雰囲気温度:900~1000℃
反応雰囲気圧力:5.0~15.0kPa
処理時間:30~120分
をあげることができる。
(3) Upper Layer Etching Process In this process, after the upper layer is formed, etching and heat treatment are performed using a gas containing Ti, so that Ti and S can be made to coexist and segregate at the grain boundaries of the crystal grains in the Al2O3 layer of the upper layer. For example, the etching conditions are as follows:
Reaction gas composition (volume %): TiCl4 1.0-2.0%, H2 remainder Reaction atmosphere temperature: 900-1000°C
Reaction atmosphere pressure: 5.0 to 15.0 kPa
Processing time: 30 to 120 minutes.
次に、実施例について説明する。
ここでは、本発明の被覆工具の実施例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体として、前記したものを用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, an embodiment will be described.
Here, as an example of the coated tool of the present invention, we will describe an insert cutting tool using a WC-based cemented carbide as the tool base, but the same applies when the above-mentioned material is used as the tool base, and also when applied to drills and end mills.
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr3C2 powder, TiN powder, and Co powder, all of which have an average particle size of 1 to 3 μm, were prepared. These raw material powders were mixed to the composition shown in Table 1, wax was added, and the mixture was mixed in acetone with a ball mill for 24 hours. The mixture was dried under reduced pressure and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470°C for 1 hour. After sintering, tool bases A to C made of WC-based cemented carbide having an insert shape according to ISO standard CNMG120408 were produced, respectively.
ついで、これらの工具基体A~Cのそれぞれを、化学蒸着装置に装入し、以下の手順にて本発明被覆工具1~10をそれぞれ製造した。
(a)まず、表2に示される条件にて、表4に示される目標合計平均層厚の下部層(第1層、第2層、第3層の順に工具基体に近い)としてのTi化合物層を蒸着形成した。
(b)次に、表3に示される条件にて、化学蒸着にてAl2O3層を成膜後、TiCl4とガスH2ガスの混合ガスによるエッチング工程を経て、表4に示される目標平均層厚の上部層としてのAl2O3層を得た。
これら、表2および3に記載されている条件は、前述の製造方法一例として記載されたものである。
Next, each of these tool substrates A to C was placed in a chemical vapor deposition apparatus, and the coated tools 1 to 10 of the present invention were produced in the following manner.
(a) First, under the conditions shown in Table 2, a Ti compound layer was formed by vapor deposition as a lower layer (the first layer, the second layer, and the third layer are closest to the tool substrate in that order) having a target total average layer thickness shown in Table 4.
(b) Next, an Al2O3 layer was formed by chemical vapor deposition under the conditions shown in Table 3, and then an etching process was performed using a mixed gas of TiCl4 and H2 gas to obtain an Al2O3 layer as an upper layer with a target average layer thickness shown in Table 4 .
The conditions shown in Tables 2 and 3 are given as an example of the above-mentioned production method.
また、比較の目的のために、本発明で規定する事項を満足しない硬質被覆層を形成すべく、表2および3に記載された条件にて成膜を行うことにより、表5に示される比較被覆工具1~10をそれぞれ製造した。 For the purpose of comparison, comparative coated tools 1 to 10 shown in Table 5 were manufactured by depositing a hard coating layer under the conditions described in Tables 2 and 3 in order to form a hard coating layer that does not satisfy the requirements of the present invention.
また、本発明被覆工具1~10、比較被覆工具1~10の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面にて測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。測定結果を表4に示す。
また、それぞれ、前述の方法により、本発明被覆工具1~10、比較被覆工具1~10の前記Al2O3層内のAl2O3結晶粒についてTiとSの粒界への偏析の有無を確認し、TiとSの偏析のある結晶粒界数の全結晶粒の全粒界数に対して占める割合、α型Al2O3結晶粒における対応粒界分布グラフのピーク位置およびΣ3対応界面割合(%)を求めた。測定結果を表4、表5に示す。加えて、図3に本発明被覆工具5の対応粒界分布グラフ、図4に比較被覆工具3の対応粒界分布グラフを示す。
Furthermore, when the thickness of each of the constituent layers of the hard coating layers of the coated tools 1 to 10 of the present invention and the comparative coated tools 1 to 10 was measured (measured on the longitudinal section) using a scanning electron microscope, all of them showed an average layer thickness (average value of measurements at five points) that was substantially the same as the target layer thickness. The measurement results are shown in Table 4.
In addition, the presence or absence of segregation of Ti and S to the grain boundaries of the Al 2 O 3 crystal grains in the Al 2 O 3 layer of the coated tools 1 to 10 of the present invention and the comparative coated tools 1 to 10 was confirmed by the above-mentioned method, and the ratio of the number of grain boundaries with segregation of Ti and S to the total number of grain boundaries of all crystal grains, the peak position of the corresponding grain boundary distribution graph of the α-type Al 2 O 3 crystal grains, and the Σ3 corresponding interface ratio (%) were obtained. The measurement results are shown in Tables 4 and 5. In addition, the corresponding grain boundary distribution graph of the
次に、本発明被覆工具1~10、比較被覆工具1~10の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下に示す切削試験、クロムモリブデン合金鋼の湿式高速高切込切削試験(切削条件A)、および、クロムモリブデン合金鋼の湿式高速断続切削試験(切削条件B)を実施し、切刃の逃げ面摩耗幅を測定し、表6にその測定結果を示す。なお、切削試験の途中で硬質被覆層の剥離やチッピングが発生したものについては、これらが発生までの切削時間を測定した(表6の下部のチッピング発生とは硬質被覆層の剥離を含む)。 Next, the various coated tools, coated tools 1-10 of the present invention and comparative coated tools 1-10, were screwed to the tip of a tool steel bit with a fixture, and the following cutting tests were carried out: a wet high-speed, large-depth cutting test of chromium-molybdenum alloy steel (cutting condition A), and a wet high-speed intermittent cutting test of chromium-molybdenum alloy steel (cutting condition B). The flank wear width of the cutting edge was measured, and the measurement results are shown in Table 6. For tools in which peeling or chipping of the hard coating layer occurred during the cutting test, the cutting time until this occurred was measured (the occurrence of chipping at the bottom of Table 6 includes peeling of the hard coating layer).
切削条件A;
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り棒材、
切削速度:350m/min
切り込み:2.0mm
送り :0.25mm/rev
切削時間:5分
(通常の切削速度、切り込み、送りは、それぞれ、200m/min、1.5mm、0.20mm/revである。)
Cutting conditions A:
Workpiece: JIS SCM440 bar material with four longitudinal grooves spaced equally apart along the length,
Cutting speed: 350 m/min
Cut: 2.0 mm
Feed: 0.25 mm/rev
Cutting time: 5 minutes (normal cutting speed, cutting depth, and feed are 200 m/min, 1.5 mm, and 0.20 mm/rev, respectively).
切削条件B;
被削材:JIS・SCM440 4スリット材
切削速度:250m/min
切り込み:1.5mm
1回転あたりの送り:0.25mm/rev
切削時間:5分
(通常の切削速度、切り込み、送りは、それぞれ、200m/min、1.0mm、0.2mm/revである。)
Cutting condition B:
Workpiece: JIS SCM440 4-slit material Cutting speed: 250 m/min
Cut: 1.5mm
Feed per revolution: 0.25 mm/rev
Cutting time: 5 minutes (normal cutting speed, cutting depth, and feed are 200 m/min, 1.0 mm, and 0.2 mm/rev, respectively).
表6に示される結果より、本発明被覆工具1~10は、硬質被覆層が、上部層としてAl2O3層を少なくとも含み、前記Al2O3層内のAl2O3結晶粒の粒界部にTiとSを共存して偏析させることにより、剥離やチッピングを発生することなく、優れた切削性能を発揮するものである。
これに対して、比較例被覆工具1~10は、硬質被覆層の剥離発生や、チッピングの発生により、比較的短時間で使用寿命に至っている。
From the results shown in Table 6, the coated tools 1 to 10 of the present invention have a hard coating layer that includes at least an Al 2 O 3 layer as an upper layer, and Ti and S are coexisting and segregated at the grain boundaries of the Al 2 O 3 crystal grains in the Al 2 O 3 layer, thereby exhibiting excellent cutting performance without peeling or chipping.
In contrast, the coated tools 1 to 10 of the comparative examples reached the end of their service life in a relatively short period of time due to the occurrence of peeling of the hard coating layer and chipping.
前述のとおり、本発明の被覆工具は、合金鋼の高速断続切削においても、優れた耐摩耗性と耐剥離性および耐チッピング性を発揮し、長期の使用にわたって優れた切削性能を発揮するものであるから、切削装置の高性能化および切削加工の省力化、さらには、低コスト化に十分満足するものである。 As described above, the coated tool of the present invention exhibits excellent wear resistance, peeling resistance, and chipping resistance even in high-speed intermittent cutting of alloy steel, and exhibits excellent cutting performance over long periods of use, so it is fully satisfactory in terms of improving the performance of cutting equipment, reducing the labor required for cutting, and reducing costs.
Claims (3)
前記下部層はTiの化合物層であり、
前記上部層は2.0~20.0μmの平均層厚を有し、Al2O3層を含み、該Al2O3層内において隣接する2のAl2O3結晶粒の粒界において、TiとSが共存し、TiとSの濃度の最大値に対応する位置が、前記粒界から前記粒界を挟む2の結晶粒内へ10nm以内の領域内に存在し、かつ、前記最大値が前記粒界から10nmを超えて50nmまでの前記粒界を挟む前記2の結晶粒内の領域におけるTiとSの濃度の最大値と比較してそれぞれ2.00倍以上である偏析をしている粒界の数が、全粒界の数の20%以上である
ことを特徴とする表面被覆切削工具。 A surface-coated cutting tool having a tool substrate and a hard coating layer including a lower layer and an upper layer on a surface of the tool substrate,
the lower layer is a Ti compound layer,
The upper layer has an average thickness of 2.0 to 20.0 μm and includes an Al 2 O 3 layer, in which Ti and S coexist at the grain boundary between two adjacent Al 2 O 3 crystal grains , positions corresponding to the maximum concentrations of Ti and S are present within a region within 10 nm from the grain boundary into two crystal grains sandwiching the grain boundary, and the number of grain boundaries in which the maximum values are 2.00 times or more as compared with the maximum concentrations of Ti and S in a region within the two crystal grains sandwiching the grain boundary from more than 10 nm to 50 nm from the grain boundary is 20% or more of the total number of grain boundaries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020056630A JP7486045B2 (en) | 2020-03-26 | 2020-03-26 | Surface-coated cutting tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020056630A JP7486045B2 (en) | 2020-03-26 | 2020-03-26 | Surface-coated cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021154430A JP2021154430A (en) | 2021-10-07 |
JP7486045B2 true JP7486045B2 (en) | 2024-05-17 |
Family
ID=77916470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020056630A Active JP7486045B2 (en) | 2020-03-26 | 2020-03-26 | Surface-coated cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7486045B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006205301A (en) | 2005-01-27 | 2006-08-10 | Kyocera Corp | Surface-coated member and cutting tool |
JP2007237330A (en) | 2006-03-08 | 2007-09-20 | Mitsubishi Materials Corp | Surface coated cermet cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to work |
JP2011083877A (en) | 2009-10-19 | 2011-04-28 | Mitsubishi Materials Corp | Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance |
JP2016005862A (en) | 2014-05-30 | 2016-01-14 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
-
2020
- 2020-03-26 JP JP2020056630A patent/JP7486045B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006205301A (en) | 2005-01-27 | 2006-08-10 | Kyocera Corp | Surface-coated member and cutting tool |
JP2007237330A (en) | 2006-03-08 | 2007-09-20 | Mitsubishi Materials Corp | Surface coated cermet cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to work |
JP2011083877A (en) | 2009-10-19 | 2011-04-28 | Mitsubishi Materials Corp | Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance |
JP2016005862A (en) | 2014-05-30 | 2016-01-14 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JP2021154430A (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3103572B1 (en) | Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance | |
JP6478100B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6620482B2 (en) | Surface coated cutting tool with excellent chipping resistance | |
JP6417959B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
WO2014163081A1 (en) | Surface-coated cutting tool | |
EP3269478B1 (en) | Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance | |
CN108472737B (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance, and method for manufacturing same | |
US20170298505A1 (en) | Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance | |
US10307831B2 (en) | Surface coating cutting tool | |
JP6507959B2 (en) | Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer | |
CN104789938A (en) | Surface coating cutting tool hard coating layer of which gives play to excellent anti-tipping performance | |
EP3590638A1 (en) | Surface-coated cutting tool and production method therefor | |
JP6709536B2 (en) | Surface coated cutting tool with excellent hard coating layer and chipping resistance | |
JP7486045B2 (en) | Surface-coated cutting tools | |
JP2019084671A (en) | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance | |
US20180257147A1 (en) | Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance | |
WO2016190332A1 (en) | Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance | |
EP3868501A1 (en) | Cutting tool | |
JP2020151794A (en) | Surface-coated cutting tool | |
WO2023190000A1 (en) | Surface-coated cutting tool | |
JP2019063900A (en) | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance | |
JP7510107B2 (en) | Surface-coated cutting tools | |
JP7510108B2 (en) | Surface-coated cutting tools | |
JP7570599B2 (en) | Surface-coated cutting tools | |
JP2023101044A (en) | Surface coated cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7486045 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |