JP2020006487A - Surface cutting tool of which hard coating layer exhibits excellent chipping resistance - Google Patents

Surface cutting tool of which hard coating layer exhibits excellent chipping resistance Download PDF

Info

Publication number
JP2020006487A
JP2020006487A JP2018131117A JP2018131117A JP2020006487A JP 2020006487 A JP2020006487 A JP 2020006487A JP 2018131117 A JP2018131117 A JP 2018131117A JP 2018131117 A JP2018131117 A JP 2018131117A JP 2020006487 A JP2020006487 A JP 2020006487A
Authority
JP
Japan
Prior art keywords
layer
metal oxide
oxide layer
average
avg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018131117A
Other languages
Japanese (ja)
Other versions
JP7121234B2 (en
Inventor
光亮 柳澤
Mitsuaki Yanagisawa
光亮 柳澤
卓也 石垣
Takuya Ishigaki
卓也 石垣
佐藤 賢一
Kenichi Sato
佐藤  賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018131117A priority Critical patent/JP7121234B2/en
Publication of JP2020006487A publication Critical patent/JP2020006487A/en
Application granted granted Critical
Publication of JP7121234B2 publication Critical patent/JP7121234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a coated tool which exhibits excellent chipping resistance over a long-term use even when it is used for high speed intermittent cutting of cast iron.SOLUTION: A surface coated cutting tool has a coating layer, which includes a hard coating layer of which an average layer thickness is 1.0-20.0 μm and a metal oxide layer of which an average layer thickness is 0.1-5.0 μm right above the hard coating layer, on a surface of a tool base body. The hard coating layer is a composite nitride layer of Ti and Al or a composite carbonitride layer, and includes 70 area% or more of crystal grains having a face-centered cubic structure of an NaCl type. An average content ratio xof Al to a total content of Ti and Al, and an average content ratio yof C to a total content of C and N are 0.60≤x≤0.95, 0.0000≤y≤0.0050. The metal oxide layer contains 5.0 atom% or more of Al and 30.0 atom% or more of O atoms, and a ratio of an amorphous phase is 50-100 area%.SELECTED DRAWING: Figure 1

Description

本発明は、鋳鉄のように靱性が要求される被削材の切削加工において、特に切刃に対して衝撃的な負荷が作用する高速断続切削加工時に硬質被覆層が優れた耐チッピング性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、「被覆工具」ということがある)に関するものである。   The present invention provides a hard coating layer having excellent chipping resistance in cutting of a work material requiring toughness such as cast iron, particularly during high-speed interrupted cutting in which an impact load acts on a cutting edge. Accordingly, the present invention relates to a surface-coated cutting tool (hereinafter, sometimes referred to as “coated tool”) that exhibits excellent cutting performance over a long period of use.

従来、一般に、炭化タングステン(以下、「WC」で示す)基超硬合金、炭窒化チタン(以下、「TiCN」で示す)基サーメットあるいは立方晶窒化ホウ素(以下、「cBN」で示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して「工具基体」という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層をPVD法やCVD法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合窒化物層や複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, in general, tungsten carbide (hereinafter, referred to as “WC”) based cemented carbide, titanium carbonitride (hereinafter, referred to as “TiCN”) based cermet or cubic boron nitride (hereinafter, referred to as “cBN”) based A Ti-Al-based composite nitride layer is coated as a hard coating layer on the surface of a tool base made of a high-pressure sintered body (hereinafter collectively referred to as "tool base") by a PVD method or a CVD method. There are coated tools formed which are known to exhibit excellent wear resistance.
However, although the coated tool formed by coating the conventional Ti-Al-based composite nitride layer or composite carbonitride layer is relatively excellent in wear resistance, when used under high-speed interrupted cutting conditions, abnormalities such as chipping occur. Various proposals have been made on the improvement of the hard coating layer because it is likely to cause wear.

例えば、特許文献1には、硬質被覆層として、Ti1−xAlN層および/またはTi1−xAlC層および/またはTi1−xAlCN層(式中、xは0.65〜0.95である)の上にAl層が外層として配置されている被覆工具が記載されている。 For example, Patent Document 1, as a hard coating layer, Ti 1-x Al x N layer and / or a Ti 1-x Al x C layer and / or a Ti 1-x Al x CN layer (wherein, x is 0 .65 to 0.95) on which an Al 2 O 3 layer is arranged as an outer layer.

また、例えば、特許文献2には、硬質被覆層として、外層が、Ti1−xAlN、Ti1−xAlC、および/またはTi1−xAlCN(式中、0.65≦x≦0.9、好ましくは0.7≦x≦0.9)からなり、この外層が100〜1100MPaの範囲内、好ましくは400〜800MPaの範囲内の圧縮応力を有し、TiCN層またはAl層がこの外層の下に配置されている被覆工具が記載されている。 In addition, for example, in Patent Document 2, as a hard coating layer, the outer layer is formed of Ti 1-x Al x N, Ti 1-x Al x C, and / or Ti 1-x Al x CN (where 65 ≦ x ≦ 0.9, preferably 0.7 ≦ x ≦ 0.9), the outer layer having a compressive stress in the range of 100 to 1100 MPa, preferably in the range of 400 to 800 MPa; Or a coated tool is described in which an Al 2 O 3 layer is arranged below this outer layer.

さらに、例えば、特許文献3には、工具基体と、その表面に形成された硬質被膜とを含む表面被覆切削工具であって、前記硬質被膜は、1または2以上の層により構成され、前記層のうち少なくとも1層は、CVD法により形成され、第1単位層と第2単位層とが交互に積層された多層構造を含み、前記第1単位層は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含み、前記第2単位層は、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含む、被覆工具が記載されている。   Further, for example, Patent Document 3 discloses a surface-coated cutting tool including a tool base and a hard coating formed on a surface thereof, wherein the hard coating includes one or more layers. At least one of the layers is formed by a CVD method and includes a multilayer structure in which first unit layers and second unit layers are alternately stacked, and the first unit layer includes Ti, B, C, N, and A first compound containing at least one element selected from the group consisting of O; and the second unit layer includes Al, one or more elements selected from the group consisting of B, C, N, and O; A coated tool comprising a second compound comprising:

加えて、例えば、特許文献4には、工具基体と、その表面に形成された硬質被膜とを含む表面被覆切削工具であって、前記硬質被膜は1または2以上の層により構成され、前記層のうち少なくとも1層は、硬質粒子を含む層であり、前記硬質粒子は、第1単位層と第2単位層とが交互に積層された多層構造を含み、前記第1単位層は、周期表の4族元素、5族元素、6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第1化合物を含み、前記第2単位層は、周期表の4族元素、5族元素、6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第2化合物を含む、被覆工具が記載されている。   In addition, for example, Patent Document 4 discloses a surface-coated cutting tool including a tool base and a hard coating formed on the surface thereof, wherein the hard coating includes one or more layers. At least one layer is a layer containing hard particles, wherein the hard particles have a multilayer structure in which first unit layers and second unit layers are alternately laminated, and the first unit layer is a periodic table. A first element consisting of one or more elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and Al, and one or more elements selected from the group consisting of B, C, N and O; A second unit layer containing at least one element selected from the group consisting of a group 4 element, a group 5 element, a group 6 element and Al in the periodic table, and a group consisting of B, C, N and O; A coated tool comprising a second compound comprising at least one element selected from the group consisting of: It is.

特表2011−516722号公報JP 2011-516722 A 特表2011−513594号公報JP 2011-513594 A 特開2014−128848号公報JP 2014-128848 A 特開2014−129562号公報JP 2014-129562 A

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。
しかし、前記特許文献1〜4に記載された被覆工具は、所定の硬さを有し耐摩耗性に優れているものの靱性に劣るため、鋳鉄の高速断続切削加工等に供したときに、チッピング、欠損等の異常損耗が発生しやすく、満足できる切削性能を有しているとはいえない。
In recent years, there has been a strong demand for labor saving and energy saving in cutting work, and with this, cutting work has tended to be even faster and more efficient, and coated tools have more chipping resistance, chipping resistance, In addition to being required to have abnormal damage resistance such as peel resistance, excellent wear resistance is required over a long period of use.
However, the coated tools described in Patent Literatures 1 to 4 have a predetermined hardness and excellent wear resistance, but are inferior in toughness. In addition, abnormal wear such as chipping easily occurs, and it cannot be said that it has satisfactory cutting performance.

そこで、本発明は前記課題を解決し、鋳鉄の高速断続切削等に供した場合であっても、長期の使用にわたって優れた耐チッピング性を発揮する被覆工具を提供することを目的とする。   Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a coated tool that exhibits excellent chipping resistance over a long period of use even when subjected to high-speed interrupted cutting of cast iron.

本発明者は、TiとAlとの複合窒化物または複合炭窒化物(以下、「TiAlCN」と表すことがある)層を少なくとも含む硬質被覆層を工具基体に設けた被覆工具の耐チッピング性の改善を図るべく、鋭意研究を重ねた結果、次のような知見を得た。   The present inventor has proposed a chipping resistance of a coated tool in which a hard coating layer including at least a composite nitride or composite carbonitride of Ti and Al (hereinafter sometimes referred to as “TiAlCN”) is provided on a tool base. The following findings were obtained as a result of intensive studies for improvement.

すなわち、アモルファス相を主とする金属酸化物層がTiAlCN層の直上に存在することにより、耐酸化性が優れ、さらに、摩擦抵抗を低減し刃先で生じる切削熱を低減することによって刃先温度を下げ、熱亀裂の発生進展を抑制するという驚くべき知見を得た。   In other words, the metal oxide layer mainly composed of an amorphous phase is present immediately above the TiAlCN layer, so that the oxidation resistance is excellent, and further, the frictional resistance is reduced and the cutting heat generated at the cutting edge is reduced, thereby lowering the cutting edge temperature. As a result, a surprising finding that the generation and propagation of thermal cracks was suppressed was obtained.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層とその直上に金属酸化物層を含む被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物層または複合炭窒酸化物層は、工具基体の表面と垂直な縦断面から分析した場合、NaCl型の面心立方構造を有する結晶粒を70面積%以上含み、
(c)前記TiとAlの複合窒化物層または複合炭窒化物層の組成を組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiおよびAlの合量に占める平均含有割合xavg、CのCおよびNの合量に占める平均含有割合yavg(ただし、xavg、yavgはいずれも原子比)は、それぞれ、0.60≦xavg≦0.95、0.0000≦yavg≦0.0050を満足し、
(d)前記金属酸化物層の平均層厚は0.1〜5.0μmであり、
(e)前記金属酸化物層は、5.0原子%以上のAlおよび30.0原子%以上のO原子を含み、
(f)前記金属酸化物層は、アモルファス相が占める割合が50面積%〜100面積%を満足することを特徴とする表面被覆切削工具。
(2)前記金属酸化物層は、C原子を0.5原子%以上10.0原子%以下含むことを特徴とする(1)に記載の表面被覆切削工具。
(3)前記金属酸化物層は、Mn原子を0.5原子%以上20.0原子%以下含むことを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4)前記金属酸化物層は、Si原子を0.5原子%以上20.0原子%以下含むことを特徴とする(1)〜(3)のいずれかに記載の表面被覆切削工具。」
である。
The present invention has been made based on the above findings,
"(1) A hard coating layer and a metal oxide immediately above it are formed on the surface of a tool substrate made of a tungsten carbide-based cemented carbide, a titanium carbonitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body. In a surface-coated cutting tool provided with a coating layer including a layer,
(A) the hard coating layer includes at least a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm;
(B) When analyzed from a vertical section perpendicular to the surface of the tool substrate, the composite nitride layer or composite carbonitride layer of Ti and Al contains 70 area% of crystal grains having a NaCl-type face-centered cubic structure. Including
(C) the Ti and Al composite nitride layer or composition of the composition of the composite carbonitride layer formula: (Ti 1-x Al x ) if (C y N 1-y) expressed in, Al Ti and Al The average content ratio x avg in the total amount of C and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are both atomic ratios) are 0.60 ≦ x avg , respectively. satisfy the ≦ 0.95,0.0000 ≦ y avg ≦ 0.0050,
(D) the metal oxide layer has an average layer thickness of 0.1 to 5.0 μm;
(E) the metal oxide layer contains at least 5.0 atomic% of Al and at least 30.0 atomic% of O atoms,
(F) The surface-coated cutting tool, wherein the metal oxide layer satisfies a ratio of 50% to 100% by area of an amorphous phase.
(2) The surface-coated cutting tool according to (1), wherein the metal oxide layer contains C atoms in an amount of 0.5 to 10.0 atomic%.
(3) The surface-coated cutting tool according to (1) or (2), wherein the metal oxide layer contains 0.5 to 20.0 atomic% of Mn atoms.
(4) The surface-coated cutting tool according to any one of (1) to (3), wherein the metal oxide layer contains 0.5 to 20.0 atomic% of Si atoms. "
It is.

本発明に係る被覆工具は、TiAlCN層の直上にアモルファス相を主とする金属酸化物層が存在することにより、優れた耐酸化性を有し、特にすくい面において、当該金属酸化物層が軟質であるため切屑の排出を容易にして摩耗を低減させ刃先温度を下げることができ、熱亀裂の発生、進展を抑制するという優れた効果を発揮する。   The coated tool according to the present invention has excellent oxidation resistance due to the presence of the metal oxide layer mainly composed of the amorphous phase immediately above the TiAlCN layer, and particularly in the rake face, the metal oxide layer is soft. Therefore, it is possible to easily discharge the chips, reduce the wear, reduce the temperature of the cutting edge, and exhibit an excellent effect of suppressing the generation and propagation of thermal cracks.

本発明に係る被覆工具の一実施態様を示す断面模式図である。It is a cross section showing an embodiment of a covering tool concerning the present invention.

次に、本発明の被覆工具の硬質被覆層について、より具体的に説明する。
なお、本明細書および特許請求の範囲において、数値範囲を「〜」で表現するとき、その範囲は上限および下限の数値を含んでいる。
Next, the hard coating layer of the coated tool of the present invention will be described more specifically.
In the present specification and claims, when a numerical range is expressed by "-", the range includes upper and lower numerical values.

1.TiAlCN層の平均層厚
TiAlCN層の平均層厚は、1.0〜20.0μmとする。その理由は、平均層厚が1.0μm未満であると、層厚が薄いため長期の使用にわたって耐摩耗性を十分に発揮することができず、一方、平均層厚が20.0μmを超えると、TiAlCN層の結晶粒が粗大化しやすくなって、チッピングが発生しやすくなるためである。なお、より好ましい平均層厚は、3.0〜15.0μmである。
1. Average layer thickness of TiAlCN layer The average layer thickness of the TiAlCN layer is 1.0 to 20.0 µm. The reason is that if the average layer thickness is less than 1.0 μm, the layer thickness is too thin to exhibit sufficient wear resistance over a long period of use, while if the average layer thickness exceeds 20.0 μm. This is because the crystal grains of the TiAlCN layer are likely to be coarse and chipping is likely to occur. In addition, a more preferable average layer thickness is 3.0 to 15.0 μm.

ここで、TiAlCN層の平均層厚は、工具基体に垂直な方向の断面(縦断面)を研磨し、研磨した断面を走査型電子顕微鏡を用いて適切な倍率(例えば、倍率5000倍)で測定し、観察視野内の5点の層厚を測って平均して求めることができる。   Here, the average layer thickness of the TiAlCN layer is measured by polishing a cross section (longitudinal cross section) in a direction perpendicular to the tool base and using a scanning electron microscope at an appropriate magnification (for example, 5000 times). Then, the thickness can be obtained by measuring and averaging the layer thicknesses at five points in the observation visual field.

2.TiAlCN層のNaCl型の面心立方構造を有する結晶粒の面積割合
TiAlCN層におけるNaCl型の面心立方構造を有する結晶粒が70面積%以上存在することが必要である。その理由は、NaCl型の面心立方構造は高硬度であるため、六方晶構造の結晶粒が存在してもTiAlCN層の硬さを確保することができるが、70面積%未満であると硬さが不十分になりチッピング等の異常損傷を生じやすくなる。一方、この面積割合は高い方が望ましいため、95面積%以上であることがより望ましく、上限値は100面積%である。
2. Area ratio of crystal grains having NaCl-type face-centered cubic structure in TiAlCN layer It is necessary that 70% by area or more of crystal grains having a NaCl-type face-centered cubic structure in the TiAlCN layer exist. The reason is that since the face-centered cubic structure of the NaCl type has a high hardness, the hardness of the TiAlCN layer can be ensured even when the crystal grains of the hexagonal structure are present. And insufficient damage such as chipping is likely to occur. On the other hand, the higher the area ratio is, the more preferable it is. The area ratio is more preferably 95% or more, and the upper limit is 100% by area.

ここで、NaCl型の面心立方構造の面積割合は以下のような手順で算出できる。NaCl型の面心立方構造を有する結晶粒の面積割合は電子線後方散乱回折装置を用いて縦断面において膜厚方向に0.1μm間隔で解析し、幅10μm、縦は膜厚の範囲内での測定を5視野で実施し、該複合窒化物または複合炭窒化物層を構成する立方晶構造を有する結晶粒に属するピクセル数を求め、前記5視野での測定において全測定ピクセル数との比によって、TiAlCN層のNaCl型の面心立方構造を有する結晶粒が占める面積割合(面積%)を求める(1ピクセルの大きさは、NaCl型の面心立方構造の結晶粒の大きさをもとに任意に決められるが、例えば、0.1μm×0.1μm以下の大きさが例示できる)。   Here, the area ratio of the NaCl-type face-centered cubic structure can be calculated by the following procedure. The area ratio of the crystal grains having the NaCl-type face-centered cubic structure was analyzed at intervals of 0.1 μm in the film thickness direction in the longitudinal section using an electron beam backscattering diffractometer. Is measured in five visual fields, the number of pixels belonging to the crystal grains having a cubic structure constituting the composite nitride or composite carbonitride layer is determined, and the ratio to the total number of measured pixels in the measurement in the five visual fields is determined. The area ratio (area%) occupied by the crystal grains having the NaCl-type face-centered cubic structure of the TiAlCN layer is calculated (the size of one pixel is based on the size of the crystal grains having the NaCl-type face-centered cubic structure). Can be arbitrarily determined, for example, a size of 0.1 μm × 0.1 μm or less can be exemplified).

3.TiAlCN層の組成
本発明のTiAlCN層の組成は、前記組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0.0000≦yavg≦0.0050を満足するように制御する。
その理由は、Alの平均含有割合xavgが0.60未満であると、TiAlCN層は耐酸化性に劣るため、鋳鉄の断続切削加工や合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合xavgが0.95を超えると、硬さに劣る六方晶の析出量が増大して硬さが低下するため、耐摩耗性が低下する。
3. Composition of TiAlCN Layer The composition of the TiAlCN layer of the present invention, when represented by the above composition formula: (Ti 1-x Al x ) ( CyN 1-y ), average content of Al in the total amount of Ti and Al The ratio x avg and the average content ratio y avg of the total amount of C and N in C (where x avg and y avg are both atomic ratios) are 0.60 ≦ x avg ≦ 0.95 and 0.50, respectively. Control is performed so as to satisfy 0000 ≦ y avg ≦ 0.0050.
The reason is that, when the average content ratio xavg of Al is less than 0.60, the TiAlCN layer is inferior in oxidation resistance, so when subjected to interrupted cutting of cast iron or high-speed interrupted cutting of alloy steel, etc., Insufficient wear resistance. On the other hand, when the average content ratio xavg of Al is more than 0.95, the amount of hexagonal crystals inferior in hardness increases and the hardness decreases, so that the wear resistance decreases.

また、TiAlCN層に含まれるC成分の平均含有割合yavgは、0.0000≦yavg≦0.0050の範囲の微量であるとき、TiAlCN層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果としてTiAlCN層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合yが0.0000≦yavg≦0.0050の範囲を外れると、TiAlCN層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。 Further, when the average content ratio y avg of the C component contained in the TiAlCN layer is a trace amount in the range of 0.0000 ≦ y avg ≦ 0.0050, the adhesion between the TiAlCN layer and the tool base or the lower layer is improved. In addition, the improved lubricity reduces the impact during cutting, and as a result, improves the chipping resistance and chipping resistance of the TiAlCN layer. On the other hand, when the average content ratio y of the C component is out of the range of 0.0000 ≦ y avg ≦ 0.0050, the toughness of the TiAlCN layer is reduced, and thus the chipping resistance and chipping resistance are undesirably reduced.

ここで、TiAlCN層のAlの平均含有割合xavgは、オージェ電子分光法(Auger Electron Spectroscopy:AES)を用い、試料断面を研磨した試料において、電子線を縦断面側から照射し、膜厚方向に5本の線分析を行って得られたオージェ電子の解析結果を平均したものである。また、Cの平均含有割合yavgについては、二次イオン質量分析(Secondary−Ion−Mass−Spectroscopy:SIMS)により求めることができる。すなわち、試料表面を研磨した試料において、TiAlCN層の表面側からイオンビームを70μm×70μmの範囲に照射し、イオンビームによる面分析とスパッタイオンビームによるエッチングとを交互に繰り返すことにより深さ方向の濃度測定を行う。まず、TiAlCN層についての層の深さ方向へ0.5μm以上侵入した箇所から0.1μm以下のピッチで少なくとも0.5μmの長さの測定を行ったデータの平均を求める。さらに、これを少なくとも試料表面の5箇所において繰り返し算出した結果を平均してCの平均含有割合yavgとして求めることが出来る。 Here, the average Al content x x avg of the TiAlCN layer is determined by irradiating an electron beam from the longitudinal section side of a sample whose sample section has been polished using Auger Electron Spectroscopy (AES). The average of the analysis results of Auger electrons obtained by performing line analysis of five lines. Further, the average content ratio yavg of C can be determined by secondary ion mass spectrometry (SIMS). That is, in a sample whose surface is polished, an ion beam is irradiated to a range of 70 μm × 70 μm from the surface side of the TiAlCN layer, and the surface analysis by the ion beam and the etching by the sputter ion beam are alternately repeated so that the depth direction is increased. Perform a concentration measurement. First, an average of data obtained by measuring a length of at least 0.5 μm at a pitch of 0.1 μm or less from a portion where the TiAlCN layer has penetrated 0.5 μm or more in the depth direction of the layer is obtained. Further, the results obtained by repeatedly calculating the values at least at five points on the sample surface can be averaged to obtain the average C content yavg .

4.金属酸化物層の平均層厚
金属酸化物層の平均層厚は、0.1〜5.0μmとする。その理由は、平均層厚が0.1μm未満であると、層厚が薄いため長期の使用にわたって耐摩耗性を十分に発揮することができず、一方、平均層厚が5.0μmを超えると、金属酸化物層とTiAlCN層の界面において剥離が生じやすくなるためである。
4. Average layer thickness of metal oxide layer The average layer thickness of the metal oxide layer is 0.1 to 5.0 µm. The reason is that if the average layer thickness is less than 0.1 μm, the layer thickness is too small to exhibit sufficient wear resistance over a long period of use, while if the average layer thickness exceeds 5.0 μm. This is because separation easily occurs at the interface between the metal oxide layer and the TiAlCN layer.

ここで、金属酸化物層の平均層厚は、工具基体に垂直な方向の断面(縦断面)を研磨し、研磨した断面を透過型電子顕微鏡もしくは走査型電子顕微鏡を用いて適切な倍率(例えば、倍率10000〜40000倍)で測定し、観察視野内の5点の層厚を測って平均して求めることができる。   Here, the average layer thickness of the metal oxide layer is determined by polishing a cross section (longitudinal cross section) in a direction perpendicular to the tool base, and applying a suitable magnification (for example, by using a transmission electron microscope or a scanning electron microscope) to the polished cross section. , And magnification of 10,000 to 40,000), and the layer thickness at five points in the observation visual field is measured and averaged.

5.金属酸化物層の組成(総論)
金属酸化物層は、Al原子を5.0原子%以上およびO原子を30.0原子%以上含む。このように規定する理由は、Al原子が5.0原子%未満であると、耐熱性が低下し、酸化物層の摩滅がはやくなり、熱亀裂が発生しやすくなり、O原子が30.0原子%未満であると、耐酸化性が十分ではなくなり摩耗の進行やチッピングが発生しやすくなるためである。
そして、この金属酸化物層には、C、Si、Mn原子の他、ごく微量のTi、Zr、B、Cr、S、Cl等が含まれていても前記性能向上効果は損なわない。
5. Composition of Metal Oxide Layer (General)
The metal oxide layer contains at least 5.0 atomic% of Al atoms and at least 30.0 atomic% of O atoms. The reason for this definition is that if the Al atom content is less than 5.0 atomic%, the heat resistance is reduced, the oxide layer is quickly worn, heat cracks are easily generated, and the O atom content is 30.0%. If the content is less than atomic%, the oxidation resistance is not sufficient, and the progress of wear and chipping tend to occur.
And even if this metal oxide layer contains a very small amount of Ti, Zr, B, Cr, S, Cl, etc. in addition to C, Si, and Mn atoms, the performance improving effect is not impaired.

6.金属酸化物層の組成(各論)
(1)C原子
金属酸化物層の組成としてC原子を0.5原子%以上10.0原子%以下含むことが好ましい。C原子を所定の範囲で含むことにより、金属酸化物層の潤滑性が高まり切屑の排出性が向上することによって刃先温度の低減を図ることが出来る。C原子が0.5原子%未満となると前記効果が小さくなり、10.0原子%を超えると切削時に金属酸化物層を維持できなくなり摩滅が進むため、金属酸化物層にC原子が存在する効果が得られなくなる。
6. Composition of metal oxide layer (details)
(1) C atom It is preferable that the metal oxide layer contains C atom in an amount of 0.5 to 10.0 atomic%. By including C atoms in a predetermined range, the lubricating property of the metal oxide layer is enhanced, and the chip discharging property is improved, so that the cutting edge temperature can be reduced. When the amount of C atoms is less than 0.5 atomic%, the above effect is reduced. When the amount of C atoms exceeds 10.0 atomic%, the metal oxide layer cannot be maintained at the time of cutting and abrasion proceeds, so that C atoms are present in the metal oxide layer. The effect cannot be obtained.

(2)Mn原子
金属酸化物層の組成としてMn原子を0.5原子%以上20.0原子%以下含むことが好ましい。Mn原子を所定の範囲で含むことにより、金属酸化物層の高温安定性が高まり、切削時に長期にわたって金属酸化物層を維持することが出来る。Mn原子が0.5原子%未満となると前記効果が小さくなり、20.0原子%を超えるとMnが過剰となり、金属酸化物層の高温硬さが低下することで耐摩耗性が低下し、金属酸化物層にMn原子が存在する効果が得られなくなる。
(2) Mn atom The composition of the metal oxide layer preferably contains Mn atoms in a range of 0.5 to 20.0 atomic%. By including Mn atoms in a predetermined range, the high-temperature stability of the metal oxide layer is enhanced, and the metal oxide layer can be maintained for a long time during cutting. When the Mn atom is less than 0.5 at%, the above effect is reduced, and when it exceeds 20.0 at%, Mn becomes excessive, and the high-temperature hardness of the metal oxide layer is reduced, whereby the wear resistance is reduced. The effect of the presence of Mn atoms in the metal oxide layer cannot be obtained.

(3)Si原子
金属酸化物層の組成としてSi原子を0.5原子%以上20.0原子%以下含むことが好ましい。Si原子を所定の範囲で含むことにより、金属酸化物層の潤滑性が高まり切屑の排出性が向上することによって刃先温度の低減を図ることが出来る。Si原子が0.5原子%未満となると前記効果が小さくなり、20.0原子%を超えると切削時に金属酸化物層を維持できなくなり摩滅が進むため、金属酸化物層にSiが存在する効果が得られなくなる。
(3) Si atom The metal oxide layer preferably contains 0.5 to 20.0 atomic% of Si atoms. By including Si atoms in a predetermined range, the lubricating property of the metal oxide layer is enhanced, and the chip discharging property is improved, so that the cutting edge temperature can be reduced. If the Si atom content is less than 0.5 atomic%, the above effect is reduced. If the Si atom content is more than 20.0 atomic%, the metal oxide layer cannot be maintained at the time of cutting and abrasion proceeds. Can not be obtained.

各元素の平均含有割合については、二次イオン質量分析(Secondary−Ion−Mass−Spectrometry:SIMS)により求めることができる。イオンビームを表面側から70μm×70μmの範囲に照射し、イオンビームによる面分析とスパッタイオンビームによるエッチングとを交互に繰り返すことにより深さ方向の濃度測定を行った。   The average content ratio of each element can be determined by Secondary-Ion-Mass-Spectrometry (SIMS). The ion beam was irradiated to a range of 70 μm × 70 μm from the surface side, and the surface analysis with the ion beam and the etching with the sputter ion beam were alternately repeated to measure the concentration in the depth direction.

7.アモルファス酸化物相の面積割合
アモルファス酸化物相の面積が前記金属酸化物層に対して占める面積割合は、50〜100面積%とする。この面積割合とする理由は、50面積%未満となると、切削加工時に摩耗を低減させ、刃先温度を下げる効果が得られなくなる。なお、ここで、アモルファスとは実質的に非晶質であると見なせることをいう。
金属酸化物層において占めるアモルファス酸化物相の面積割合は、縦断面からナノビーム電子回折を用いた結晶性の同定、もしくは透過電子後方散乱回折(Transmission Electron BackScattered Diffraction Pattern)のマッピングによりアモルファス部分の占める面積を算出し、金属酸化物層の膜厚方向断面に占める割合を測定する。面積割合の算出は、少なくとも幅500nmの異なる領域の面積割合を5領域以上求め、平均することで算出する。ここで、アモルファス酸化物相の面積割合とは、前記金属酸化物層の中でポアや結晶質部分として測定されない部分かつ、波長分散形X線分光器(Wavelength Dispersive X−ray Spectorometer)等による元素分析から金属酸化物相であることが確認された領域の面積割合を表している。
7. Area Ratio of Amorphous Oxide Phase The area ratio of the area of the amorphous oxide phase to the metal oxide layer is 50 to 100% by area. The reason for this area ratio is that if it is less than 50 area%, the effect of reducing wear during cutting and lowering the cutting edge temperature cannot be obtained. Here, amorphous means that it can be regarded as substantially amorphous.
The area ratio of the amorphous oxide phase occupied in the metal oxide layer can be determined by identifying the crystallinity using a nanobeam electron diffraction from a longitudinal section or by mapping the transmission electron backscattered diffraction pattern from the vertical section. Is calculated, and the ratio of the metal oxide layer to the section in the thickness direction is measured. The area ratio is calculated by calculating at least five area ratios of different regions having a width of 500 nm and averaging them. Here, the area ratio of the amorphous oxide phase means a portion of the metal oxide layer that is not measured as a pore or a crystalline portion, and an element determined by a wavelength dispersive X-ray spectrometer (Wavelength Dispersive X-ray Spectrometer) or the like. The analysis shows the area ratio of the region confirmed to be the metal oxide phase.

8.その他の層
本発明の表面被覆切削工具が有する硬質被覆層(TiAlCN層)は、それだけでも十分に前記効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、合計で0.1〜20.0μmの平均層厚を有する下部層を設けた場合には、これらの層が奏する効果と相俟って、一層優れた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
8. Other Layers The hard coating layer (TiAlCN layer) included in the surface-coated cutting tool of the present invention can sufficiently exhibit the above-described effects by itself, but includes a carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbon layer of Ti. When a lower layer composed of one or two or more Ti compound layers of the nitrided oxide layers and having a total average thickness of 0.1 to 20.0 μm is provided, the effects of these layers are exhibited. In combination with this, more excellent characteristics can be created. When a lower layer composed of one or more Ti compound layers of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride layer is provided, a total average layer of the lower layers When the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently exerted. On the other hand, when the thickness is more than 20.0 μm, the crystal grains tend to be coarse and chipping is likely to occur.

9.製造方法
本発明で規定する硬質被覆層は、例えば、以下に示す化学蒸着法による製造法(製造条件)により、工具基体上に成膜することができる。
(1)TiAlCN層の形成
反応ガス組成(%は容量%を表し、ガス群Aとガス群Bの和を100容量%とする)
ガス群A:NH:2.0〜3.0%、H:60〜75%
ガス群B:AlCl:0.60〜1.00%、TiCl:0.07〜0.40%、
:0.00〜0.50%、N:0.0〜12.0%、H:残
反応雰囲気圧力:4.0〜5.0kPa
反応雰囲気温度:700〜850℃
供給周期:1.00〜5.00秒
1周期当たりのガス供給時間:0.15〜0.25秒
ガス群Aとガス群Bとの供給の位相差:0.10〜0.20秒
(2)金属酸化物層の形成
反応ガス組成(%は容量%を表し、ガス群Aとガス群Bの和を100容量%とする)
ガス群A:H:30〜45%
ガス群B:AlCl:1.00〜3.00%、
SiCl:0.00〜2.00%、Mn(C:0.00〜2.00%、
:0.00〜0.50%、CHCN:0.00〜5.00%、
S:0.00〜0.30%、HCl:1.00〜3.00%、
CO:5.0〜15.0%、H:残
反応雰囲気圧力:4.0〜5.0kPa
反応雰囲気温度:700〜850℃
供給周期:1.00〜5.00秒
1周期当たりのガス供給時間:0.15〜0.25秒
ガス群Aとガス群Bとの供給の位相差:0.10〜0.20秒
9. Manufacturing Method The hard coating layer defined in the present invention can be formed on a tool substrate by, for example, a manufacturing method (manufacturing conditions) by a chemical vapor deposition method described below.
(1) Composition of reactive gas for forming TiAlCN layer (% represents volume%, and the sum of gas group A and gas group B is 100 volume%)
Gas Group A: NH 3: 2.0~3.0%, H 2: 60~75%
Gas group B: AlCl 3 : 0.60 to 1.00%, TiCl 4 : 0.07 to 0.40%,
C 2 H 4: 0.00~0.50%, N 2: 0.0~12.0%, H 2: residual reaction atmosphere pressure: 4.0~5.0KPa
Reaction atmosphere temperature: 700 to 850 ° C
Supply cycle: 1.00 to 5.00 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference of supply between gas group A and gas group B: 0.10 to 0.20 second ( 2) Metal oxide layer forming reaction gas composition (% represents volume%, and the sum of gas group A and gas group B is 100 volume%)
Gas Group A: H 2: 30~45%
Gas group B: AlCl 3 : 1.00 to 3.00%,
SiCl 4: 0.00~2.00%, Mn ( C 5 H 5) 2: 0.00~2.00%,
C 2 H 4: 0.00~0.50%, CH 3 CN: 0.00~5.00%,
H 2 S: 0.00~0.30%, HCl : 1.00~3.00%,
CO 2 : 5.0 to 15.0%, H 2 : residual reaction atmosphere pressure: 4.0 to 5.0 kPa
Reaction atmosphere temperature: 700 to 850 ° C
Supply cycle: 1.00 to 5.00 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference of supply between gas group A and gas group B: 0.10 to 0.20 second

次に、実施例について説明する。
ここでは、本発明被覆工具の具体例として、工具基体としてWC基超高圧焼結体を用いたインサート切削工具に適用したものについて述べるが、工具基体として、TiCN基サーメット、cBN基超高圧焼結体を用いた場合であっても同様であるし、さらには、ドリル、エンドミルに適用した場合も同様である。
Next, examples will be described.
Here, as a specific example of the coated tool of the present invention, a tool applied to an insert cutting tool using a WC-based ultra-high pressure sintered body as a tool base will be described. As the tool base, a TiCN-based cermet and a cBN-based ultra-high pressure sintered The same applies to the case where a body is used, and the same applies to the case of applying to a drill or an end mill.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末、ZrC粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜CおよびISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体D〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, ZrC powder, TiN powder and Co powder each having an average particle size of 1 to 3 μm are prepared, and these raw material powders are prepared. Compounded in the composition shown in Table 1, further added wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. Vacuum sintering at a predetermined temperature in the range of 1370 to 1470 ° C. in a vacuum of 5 Pa for 1 hour, and after sintering, a WC-based cemented carbide tool base having an insert shape of ISO standard SEEN1203AFSN Tool bases D to F made of WC-based cemented carbide having insert shapes of A to C and ISO standard CNMG120412 were manufactured, respectively.

Figure 2020006487
Figure 2020006487

次に、これら工具基体A〜Fの表面に、表2および3に示す成膜条件によりCVD装置を用いて、TiAlCN層および金属酸化物層を形成し、表4に示す条件で表5に示す下部層を成膜した。
TiAlCN層の成膜条件は、表2および3に記載したとおりであるが、概ね次のとおりである。
(1)TiAlCN層の形成
反応ガス組成(%は容量%を表し、ガス群Aとガス群Bの和を100容量%とする)
ガス群A:NH:2.0〜3.0%、H:60〜75%
ガス群B:AlCl:0.60〜1.00%、TiCl:0.07〜0.40%、
:0.00〜0.50%、N:0.0〜12.0%、H:残
反応雰囲気圧力:4.0〜5.0kPa
反応雰囲気温度:700〜850℃
供給周期:1.00〜5.00秒
1周期当たりのガス供給時間:0.15〜0.25秒
ガス群Aとガス群Bとの供給の位相差:0.10〜0.20秒
(2)金属酸化物層の形成
反応ガス組成(%は容量%を表し、ガス群Aとガス群Bの和を100容量%とする)
ガス群A:H:30〜45%
ガス群B:AlCl:1.00〜3.00%、
SiCl:0.00〜2.00%、Mn(C:0.00〜2.00%、
:0.00〜0.50%、CHCN:0.00〜5.00%、
S:0.00〜0.30%、HCl:1.00〜3.00%、
CO:5.0〜15.0%、H:残
反応雰囲気圧力:4.0〜5.0kPa
反応雰囲気温度:700〜850℃
供給周期:1.00〜5.00秒
1周期当たりのガス供給時間:0.15〜0.25秒
ガス群Aとガス群Bとの供給の位相差:0.10〜0.20秒
Next, a TiAlCN layer and a metal oxide layer were formed on the surfaces of the tool bases A to F using a CVD apparatus under the film forming conditions shown in Tables 2 and 3, and shown in Table 5 under the conditions shown in Table 4. A lower layer was formed.
The film forming conditions of the TiAlCN layer are as described in Tables 2 and 3, and are generally as follows.
(1) Composition of reactive gas for forming TiAlCN layer (% represents volume%, and the sum of gas group A and gas group B is 100 volume%)
Gas Group A: NH 3: 2.0~3.0%, H 2: 60~75%
Gas group B: AlCl 3 : 0.60 to 1.00%, TiCl 4 : 0.07 to 0.40%,
C 2 H 4: 0.00~0.50%, N 2: 0.0~12.0%, H 2: residual reaction atmosphere pressure: 4.0~5.0KPa
Reaction atmosphere temperature: 700 to 850 ° C
Supply cycle: 1.00 to 5.00 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference of supply between gas group A and gas group B: 0.10 to 0.20 second ( 2) Metal oxide layer forming reaction gas composition (% represents volume%, and the sum of gas group A and gas group B is 100 volume%)
Gas Group A: H 2: 30~45%
Gas group B: AlCl 3 : 1.00 to 3.00%,
SiCl 4: 0.00~2.00%, Mn ( C 5 H 5) 2: 0.00~2.00%,
C 2 H 4: 0.00~0.50%, CH 3 CN: 0.00~5.00%,
H 2 S: 0.00~0.30%, HCl : 1.00~3.00%,
CO 2 : 5.0 to 15.0%, H 2 : residual reaction atmosphere pressure: 4.0 to 5.0 kPa
Reaction atmosphere temperature: 700 to 850 ° C
Supply cycle: 1.00 to 5.00 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference of supply between gas group A and gas group B: 0.10 to 0.20 second

また、比較の目的で工具基体A〜Fの表面に、表2および3に示す成膜条件によりCVD装置を用いて、TiAlCN層を形成し、表4に示す条件で表5に示す下部層を成膜した。   For the purpose of comparison, a TiAlCN layer was formed on the surfaces of the tool bases A to F using a CVD apparatus under the film forming conditions shown in Tables 2 and 3, and the lower layer shown in Table 5 was formed under the conditions shown in Table 4. A film was formed.

また、前記本発明被覆工具1〜16、比較被覆工具1〜16の硬質被覆層について、前述した方法を用いて、TiAlCN層の平均Al含有割合xavg、平均C含有割合yavgおよび、金属酸化物層のAl、O、C、Si、Mn原子の平均含有割合を求め、これらの結果を表6にまとめた。なお、C、Si、Mnについては、0.1原子%未満は存在しないものとして扱っている。 For the hard coating layers of the coated tools 1 to 16 of the present invention and the comparative coated tools 1 to 16, the average Al content ratio x avg , the average C content ratio y avg , The average content ratio of Al, O, C, Si, and Mn atoms in the material layer was determined, and the results are summarized in Table 6. It is assumed that C, Si, and Mn do not exist at less than 0.1 atomic%.

Figure 2020006487
Figure 2020006487

Figure 2020006487
Figure 2020006487

Figure 2020006487
Figure 2020006487

Figure 2020006487
Figure 2020006487

Figure 2020006487
Figure 2020006487

続いて、前記本発明被覆工具および比較被覆工具について、以下に示す、鋳鉄の湿式高速断続切削試験(切削条件1)と鋳鉄の乾式高速断続切削試験(切削条件2)を実施して、いずれも切刃の逃げ面の摩耗幅を測定した。その結果を表7、表8に示す。なお、比較被覆工具については、チッピングが原因で寿命に至ったため、寿命に至るまでの時間を示す。   Subsequently, for the coated tool of the present invention and the comparative coated tool, a wet high-speed interrupted cutting test (cutting condition 1) and a dry high-speed interrupted cut test (cutting condition 2) of cast iron shown below were performed. The wear width of the flank of the cutting edge was measured. The results are shown in Tables 7 and 8. In addition, since the life of the comparative coated tool has been reached due to chipping, the time until the life is reached is shown.

切削条件1: 湿式高速正面フライス、センターカット切削加工
カッタ径: 125mm
被削材: JIS FCD700 幅100mm、長さ400mmブロック材
回転速度: 891/min
切削速度: 350m/min
切り込み: 2.0mm
一刃送り量: 0.3mm/刃
切削時間: 5分
(通常切削速度は、150〜250m/min)
切削条件2: 乾式高速断続切削加工
被削材: JIS FCD700 長さ方向等間隔8本の縦溝入り丸棒
切削速度: 300m/min
切り込み: 1.5mm
送り: 0.3mm/rev
切削時間: 5分
(通常切削速度は、150〜200m/min)
Cutting conditions 1: Wet high-speed face milling, center-cut cutting Cutter diameter: 125 mm
Work material: JIS FCD700 Block material, width 100 mm, length 400 mm Rotation speed: 891 / min
Cutting speed: 350m / min
Cut: 2.0mm
Feed amount per blade: 0.3mm / tooth Cutting time: 5 minutes (normal cutting speed is 150 to 250m / min)
Cutting condition 2: Dry high-speed intermittent cutting Work material: JIS FCD700 Round bar with vertical grooves at 8 equally spaced lengths Cutting speed: 300 m / min
Cut: 1.5mm
Feed: 0.3mm / rev
Cutting time: 5 minutes (normal cutting speed is 150 to 200 m / min)

Figure 2020006487
Figure 2020006487

Figure 2020006487
Figure 2020006487

表7および表8に示される結果から、本発明の被覆工具1〜16は、いずれも、硬質被覆層とその直上の金属酸化物層を含む被覆層を含むため、鋳鉄の高速断続切削加工においてチッピングの発生がなく、長期にわたって優れた切削性能を発揮する。これに対して、本発明の被覆工具に規定される事項を一つでも満足していない比較被覆工具1〜16は、鋳鉄の高速断続切削加工においてチッピングが発生し、短時間で使用寿命に至っている。   From the results shown in Tables 7 and 8, all of the coated tools 1 to 16 of the present invention include a hard coating layer and a coating layer including a metal oxide layer immediately above the coating tool. No chipping and excellent cutting performance over a long period. On the other hand, the comparative coated tools 1 to 16, which do not satisfy at least one of the items specified in the coated tool of the present invention, cause chipping in high-speed interrupted cutting of cast iron, and reach a service life in a short time. I have.

前述のように、本発明の被覆工具は、鋳鉄の高速断続切削加工のように靱性が要求される被削材の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに、低コスト化に十分に満足する対応ができるものである。   As described above, the coated tool of the present invention can be used not only for high-speed interrupted cutting of work materials requiring toughness such as high-speed interrupted cutting of cast iron, but also as a coated tool for various work materials. It is capable of achieving excellent cutting performance over a long period of use, and is capable of satisfying the needs of high-performance cutting equipment, labor-saving and energy-saving cutting, and low cost. It is.

Claims (4)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層とその直上に金属酸化物層を含む被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物層または複合炭窒酸化物層は、工具基体の表面と垂直な縦断面から分析した場合、NaCl型の面心立方構造を有する結晶粒を70面積%以上含み、
(c)前記TiとAlの複合窒化物層または複合炭窒化物層の組成を組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiおよびAlの合量に占める平均含有割合xavg、CのCおよびNの合量に占める平均含有割合yavg(ただし、xavg、yavgはいずれも原子比)は、それぞれ、0.60≦xavg≦0.95、0.0000≦yavg≦0.0050を満足し、
(d)前記金属酸化物層の平均層厚は0.1〜5.0μmであり、
(e)前記金属酸化物層は、5.0原子%以上のAlおよび30.0原子%以上のO原子を含み、
(f)前記金属酸化物層は、アモルファス相が占める割合が50面積%〜100面積%を満足することを特徴とする表面被覆切削工具。
Coating that includes a hard coating layer and a metal oxide layer immediately above it on the surface of a tool substrate composed of either tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered compact In a surface-coated cutting tool provided with a layer,
(A) the hard coating layer includes at least a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm;
(B) When analyzed from a vertical section perpendicular to the surface of the tool substrate, the composite nitride layer or composite carbonitride layer of Ti and Al contains 70 area% of crystal grains having a NaCl-type face-centered cubic structure. Including
(C) the Ti and Al composite nitride layer or composition of the composition of the composite carbonitride layer formula: (Ti 1-x Al x ) if (C y N 1-y) expressed in, Al Ti and Al The average content ratio x avg in the total amount of C and the average content ratio y avg in the total amount of C and N in C (where x avg and y avg are both atomic ratios) are 0.60 ≦ x avg , respectively. satisfy the ≦ 0.95,0.0000 ≦ y avg ≦ 0.0050,
(D) the metal oxide layer has an average layer thickness of 0.1 to 5.0 μm;
(E) the metal oxide layer contains at least 5.0 atomic% of Al and at least 30.0 atomic% of O atoms,
(F) The surface-coated cutting tool, wherein the metal oxide layer satisfies a ratio of 50% to 100% by area of an amorphous phase.
前記金属酸化物層は、C原子を0.5原子%以上10.0原子%以下含むことを特徴とする請求項1に記載の表面被覆切削工具。   2. The surface-coated cutting tool according to claim 1, wherein the metal oxide layer contains C atoms in an amount of 0.5 to 10.0 atomic%. 3. 前記金属酸化物層は、Mn原子を0.5原子%以上20.0原子%以下含むことを特徴とする請求項1または2に記載の表面被覆切削工具。   3. The surface-coated cutting tool according to claim 1, wherein the metal oxide layer contains Mn atoms in a range of 0.5 to 20.0 atomic%. 4. 前記金属酸化物層は、Si原子を0.5原子%以上20.0原子%以下含むことを特徴とする請求項1〜3のいずれかに記載の表面被覆切削工具。   The surface-coated cutting tool according to any one of claims 1 to 3, wherein the metal oxide layer contains 0.5 to 20.0 atomic% of Si atoms.
JP2018131117A 2018-07-10 2018-07-10 A surface cutting tool with a hard coating that exhibits excellent chipping resistance Active JP7121234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018131117A JP7121234B2 (en) 2018-07-10 2018-07-10 A surface cutting tool with a hard coating that exhibits excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018131117A JP7121234B2 (en) 2018-07-10 2018-07-10 A surface cutting tool with a hard coating that exhibits excellent chipping resistance

Publications (2)

Publication Number Publication Date
JP2020006487A true JP2020006487A (en) 2020-01-16
JP7121234B2 JP7121234B2 (en) 2022-08-18

Family

ID=69150064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018131117A Active JP7121234B2 (en) 2018-07-10 2018-07-10 A surface cutting tool with a hard coating that exhibits excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP7121234B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959696A (en) * 2022-04-29 2022-08-30 清华大学 Hard coating and preparation method and application thereof
CN115305441A (en) * 2022-08-25 2022-11-08 株洲钻石切削刀具股份有限公司 Composite coated cutting tool with multiple oxide layer structure
WO2024029362A1 (en) * 2022-08-05 2024-02-08 日本特殊陶業株式会社 Coated substrate
WO2024029363A1 (en) * 2022-08-05 2024-02-08 日本特殊陶業株式会社 Coated base material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858273A (en) * 1981-10-01 1983-04-06 Sumitomo Electric Ind Ltd Coated sintered hard alloy
JPH11264066A (en) * 1998-03-16 1999-09-28 Hitachi Tool Eng Ltd Coated-hard tool
JP2000117509A (en) * 1998-10-14 2000-04-25 Mitsubishi Materials Corp Throw away cut tip made of surface covering cemented carbide having excellent wear resistance
JP2000254805A (en) * 1999-03-09 2000-09-19 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide in which hard coated layer has excellent high temperature heat conductivity
JP2006192531A (en) * 2005-01-13 2006-07-27 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool and its manufacturing method
JP2007015106A (en) * 2006-10-11 2007-01-25 Hitachi Tool Engineering Ltd Multilayered film coated tool and its coating method
US20140178659A1 (en) * 2012-12-26 2014-06-26 Shanghua Wu Al2o3 or al2o3-contained multilayer coatings for silicon nitride cutting tools by physical vapor deposition and methods of making the same
JP2017080884A (en) * 2015-10-30 2017-05-18 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent wear resistance and chipping resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858273A (en) * 1981-10-01 1983-04-06 Sumitomo Electric Ind Ltd Coated sintered hard alloy
JPH11264066A (en) * 1998-03-16 1999-09-28 Hitachi Tool Eng Ltd Coated-hard tool
JP2000117509A (en) * 1998-10-14 2000-04-25 Mitsubishi Materials Corp Throw away cut tip made of surface covering cemented carbide having excellent wear resistance
JP2000254805A (en) * 1999-03-09 2000-09-19 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide in which hard coated layer has excellent high temperature heat conductivity
JP2006192531A (en) * 2005-01-13 2006-07-27 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool and its manufacturing method
JP2007015106A (en) * 2006-10-11 2007-01-25 Hitachi Tool Engineering Ltd Multilayered film coated tool and its coating method
US20140178659A1 (en) * 2012-12-26 2014-06-26 Shanghua Wu Al2o3 or al2o3-contained multilayer coatings for silicon nitride cutting tools by physical vapor deposition and methods of making the same
JP2017080884A (en) * 2015-10-30 2017-05-18 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent wear resistance and chipping resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959696A (en) * 2022-04-29 2022-08-30 清华大学 Hard coating and preparation method and application thereof
WO2024029362A1 (en) * 2022-08-05 2024-02-08 日本特殊陶業株式会社 Coated substrate
WO2024029363A1 (en) * 2022-08-05 2024-02-08 日本特殊陶業株式会社 Coated base material
CN115305441A (en) * 2022-08-25 2022-11-08 株洲钻石切削刀具股份有限公司 Composite coated cutting tool with multiple oxide layer structure
CN115305441B (en) * 2022-08-25 2023-09-05 株洲钻石切削刀具股份有限公司 Composite Coated Cutting Tool with Multiple Oxide Layer Structure

Also Published As

Publication number Publication date
JP7121234B2 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6738556B2 (en) Surface coated cutting tool
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP2019217579A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent fracture resistance and chipping resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP6617917B2 (en) Surface coated cutting tool
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP6858346B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2020146820A (en) Cutting tool with hard coating layer exhibiting excellent chipping resistance
JP7453613B2 (en) surface coated cutting tools
JP7190111B2 (en) surface coated cutting tools
WO2020166683A1 (en) Surface-coated cutting tool
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP7137149B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
US20210402486A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP6957824B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP5569740B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6651130B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2020055041A (en) Surface cutting tool with hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7121234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150