JP2010125539A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2010125539A
JP2010125539A JP2008300756A JP2008300756A JP2010125539A JP 2010125539 A JP2010125539 A JP 2010125539A JP 2008300756 A JP2008300756 A JP 2008300756A JP 2008300756 A JP2008300756 A JP 2008300756A JP 2010125539 A JP2010125539 A JP 2010125539A
Authority
JP
Japan
Prior art keywords
coating layer
measured
cutting tool
values
unpolished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008300756A
Other languages
Japanese (ja)
Other versions
JP5247377B2 (en
Inventor
Yousen Shu
ヨウセン シュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008300756A priority Critical patent/JP5247377B2/en
Publication of JP2010125539A publication Critical patent/JP2010125539A/en
Application granted granted Critical
Publication of JP5247377B2 publication Critical patent/JP5247377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool having a long tool life even under such a cutting condition that an impact is intermittently applied to a cutting blade in such a case that a rotary tool is cut and processed. <P>SOLUTION: The cutting tool has a base body whose surface is coated with a coating layer comprising a nitride or a carbon nitride containing Ti and Al. When diffraction angles of diffraction peaks of a (111) surface and a (200) surface of the coating layer in the X ray diffraction measurement of the Cu-Kα line are 2θ<SB>(111)</SB>and 2θ<SB>(200)</SB>, respectively, the values 2θ<SB>(111)N</SB>and 2θ<SB>(200)N</SB>measured at the unpolished surface of the coating layer are detected at a side having a smaller angle of 0.1° or larger than the values 2θ<SB>(111)G</SB>and 2θ<SB>(200)G</SB>measured at a polished surface formed by obliquely polishing the coating layer with respect to a thickness direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は基体の表面に被覆層を成膜してなる切削工具に関する。   The present invention relates to a cutting tool formed by forming a coating layer on the surface of a substrate.

切削工具は耐摩耗性や摺動性、耐欠損性が必要とされるため、WC基超硬合金やTiCN基サーメット等の硬質基体の表面に様々な被覆層を成膜して工具の耐摩耗性、耐欠損性を向上させる手法が使われている。   Since cutting tools are required to have wear resistance, slidability, and fracture resistance, various coating layers are formed on the surface of a hard substrate such as a WC-based cemented carbide or TiCN-based cermet to provide wear resistance for the tool. Techniques that improve the durability and fracture resistance are used.

かかる被覆層として、TiCN層やTiAlN層が一般的に広く採用されているが、より高い耐摩耗性と耐欠損性の向上を目的として種々な被覆層が開発されつつある。   As the coating layer, a TiCN layer or a TiAlN layer is generally widely used, but various coating layers are being developed for the purpose of improving higher wear resistance and fracture resistance.

例えば、特許文献1では、CVD法においてTiCN膜のC/(C+N)比を大きくしてTiCN膜のX線回折測定における回折ピークの回折角2θが低角度側にシフトすることが開示されている。また、特許文献2では、物理蒸着法で得られた非晶質硬質膜AlM(NO)は、蒸着時のNガス分圧を大きくすることによって、X線回折ピークが低角度にシフトすることが開示されている。上記特許文献1、2のように、Ti系被覆層においてX線回折における回折強度を制御して被覆層の特性を制御することが知られている。
特開2008−87150号公報 特開2006−32517号公報
For example, Patent Document 1 discloses that the C / (C + N) ratio of the TiCN film is increased in the CVD method, and the diffraction angle 2θ of the diffraction peak in the X-ray diffraction measurement of the TiCN film is shifted to the lower angle side. . In Patent Document 2, the amorphous hard film AlM (NO) obtained by physical vapor deposition has an X-ray diffraction peak shifted to a low angle by increasing the N 2 gas partial pressure during vapor deposition. Is disclosed. As in Patent Documents 1 and 2, it is known to control the characteristics of the coating layer by controlling the diffraction intensity in X-ray diffraction in the Ti-based coating layer.
JP 2008-87150 A JP 2006-32517 A

しかしながら、フライス切削やドリル加工、エンドミル加工等の断続的な衝撃がかかる回転工具の加工に用いる切削工具では、特許文献1、2のように、被覆層全体のX線回折ピークをシフトさせた被覆層では、被覆層の硬度や耐酸化性を高めることはできるものの、切刃において被覆層のチッピングや剥離が生じやすいという問題があった。そのため、このような被覆層の剥離を予防するために、被覆層の厚みを薄くして被覆層のチッピングや剥離を抑制していた。その結果、被覆層の耐摩耗性が充分とは言えなかった。   However, in cutting tools used for machining rotary tools that are subject to intermittent impacts such as milling, drilling, and end milling, a coating in which the X-ray diffraction peak of the entire coating layer is shifted as in Patent Documents 1 and 2. In the layer, although the hardness and oxidation resistance of the coating layer can be increased, there is a problem that chipping and peeling of the coating layer are likely to occur at the cutting edge. Therefore, in order to prevent such peeling of the coating layer, the thickness of the coating layer is reduced to suppress chipping and peeling of the coating layer. As a result, the wear resistance of the coating layer was not sufficient.

本発明は、回転工具の切削加工のように切刃に断続的に衝撃がかかる切削条件においても工具寿命が長い切削工具を提供することを目的とする。   An object of the present invention is to provide a cutting tool having a long tool life even under cutting conditions in which impact is intermittently applied to the cutting edge, such as cutting of a rotary tool.

本発明の切削工具は、基体の表面がTiとAlとを含む窒化物または炭窒化物からなる被覆層で被覆された切削工具であって、前記被覆層のCu−Kα線のX線回折測定についての(111)面および(200)面の回折ピークの回折角度をそれぞれ2θ(111)、2θ(200)とするとき、前記被覆層の未研磨面で測定したときの値2θ(111)N、2θ(200)Nが、前記被覆層を厚み方向に対して斜めに研磨した研磨面にて測定したときの値2θ(111)G、2θ(200)Gに比べてそれぞれ0.1°以上低角度側に検出されることを特徴とする。 The cutting tool of the present invention is a cutting tool in which the surface of a base is coated with a coating layer made of a nitride or carbonitride containing Ti and Al, and X-ray diffraction measurement of Cu-Kα rays of the coating layer When the diffraction angles of the diffraction peaks on the (111) plane and (200) plane are 2θ (111) and 2θ (200) , respectively, the value 2θ (111) N measured on the unpolished surface of the coating layer 2θ (200) N is 0.1 ° or more in comparison with values 2θ (111) G and 2θ (200) G measured on a polished surface obtained by polishing the coating layer obliquely with respect to the thickness direction. It is detected on the low angle side.

ここで、未研磨の前記被覆層の厚みが4〜15μmであることが望ましい。   Here, it is desirable that the unpolished coating layer has a thickness of 4 to 15 μm.

また、前記被覆層の未研磨面で測定したときの値2θ(111)N、2θ(200)Nと、前記研磨面において前記被覆層が2μm厚み残存する位置を中心として測定したときの値2θ(111)G2μm、2θ(200)G2μmとを比較した際、2θ(111)G2μmと2θ(111)Nとの差が0.2〜0.6°であり、2θ(200)G2μmと2θ(200)Nとの差が0.1〜0.5°であることが望ましい。 Further, the values 2θ (111) N and 2θ (200) N when measured on the unpolished surface of the coating layer and the value 2θ when measured around the position where the coating layer remains 2 μm thick on the polished surface. When comparing (111) G 2 μm, 2θ (200) G 2 μm, the difference between 2θ (111) G 2 μm and 2θ (111) N is 0.2 to 0.6 °, and 2θ (200) G It is desirable that the difference between 2 μm and 2θ (200) N is 0.1 to 0.5 °.

さらに、前記被覆層の未研磨面で測定したときのX線回折測定についての(111)面および(200)面の回折ピークのピーク強度をそれぞれP(111)、P(200)とするとき、前記被覆層の未研磨面で測定したときの値P(111)NとP(200)Nとの比率P(200)N/P(111)Nが、前記被覆層を厚み方向に対して斜めに研磨した研磨面にて測定したときの値P(111)GとP(200)Gとの比率P(200)G/P(111)Gに比べて大きいことが望ましい。 Furthermore, when the peak intensities of the diffraction peaks of the (111) plane and (200) plane in the X-ray diffraction measurement when measured on the unpolished surface of the coating layer are P (111) and P (200) , respectively. The ratio P (200) N / P (111) N between the values P (111) N and P (200) N when measured on the unpolished surface of the coating layer is oblique to the thickness direction of the coating layer. It is desirable that it is larger than the ratio P (200) G / P (111) G of the value P (111) G and P (200) G when measured on the polished surface.

また、前記被覆層が柱状結晶の集合体から構成されており、表面側における前記柱状結晶の平均結晶幅が前記基体側における前記柱状結晶の平均結晶幅よりも大きいことが望ましい。   Further, it is desirable that the coating layer is composed of an aggregate of columnar crystals, and the average crystal width of the columnar crystals on the surface side is larger than the average crystal width of the columnar crystals on the substrate side.

本発明の切削工具によれば、被覆層のCu−Kα線のX線回折測定についての(111)面および(200)面の回折ピークの回折角度をそれぞれ2θ(111)、2θ(200)とするとき、前記被覆層の未研磨面で測定したときの値2θ(111)N、2θ(200)Nが、前記被覆層を厚み方向に対して斜めに研磨した研磨面にて測定したときの値2θ(111)G、2θ(200)Gに比べてそれぞれ0.1°以上低角度側に検出されることによって、基体側の被覆層においては基体との密着性が良くて、被覆層の剥離を抑制できる。一方、被覆層の表面側では、一般的に圧縮応力が増大して自己破壊しやすくなるが、本発明の被覆層については表面における応力が緩和されて被覆層の耐欠損性が向上することに寄与する。 According to the cutting tool of the present invention, the diffraction angles of the diffraction peaks of the (111) plane and the (200) plane in the X-ray diffraction measurement of the Cu—Kα ray of the coating layer are 2θ (111) , 2θ (200) and When the values 2θ (111) N and 2θ (200) N measured on the unpolished surface of the coating layer are measured on a polished surface obtained by polishing the coating layer obliquely with respect to the thickness direction, The values 2θ (111) G and 2θ (200) G are detected on the lower angle side by 0.1 ° or more, respectively, so that the coating layer on the substrate side has good adhesion to the substrate, Peeling can be suppressed. On the other hand, on the surface side of the coating layer, the compressive stress generally increases and it tends to self-destruct, but for the coating layer of the present invention, the stress on the surface is relaxed and the fracture resistance of the coating layer is improved. Contribute.

ここで、未研磨の前記被覆層の厚みが4〜15μmであることが、被覆層の回折ピークの回折角を制御しやすい点で望ましい。   Here, it is desirable that the unpolished coating layer has a thickness of 4 to 15 μm because the diffraction angle of the diffraction peak of the coating layer can be easily controlled.

また、前記被覆層の未研磨面で測定したときの値2θ(111)N、2θ(200)Nと、前記研磨面において前記被覆層が2μm厚み残存する位置を中心として測定したときの値2θ(111)G2μm、2θ(200)G2μmとを比較した際、2θ(111)G2μmと2θ(111)Nとの差が0.2〜0.6°であり、2θ(200)G2μmと2θ(200)Nとの差が0.1〜0.5°であることが、前記被覆層の硬度が上昇し、耐摩耗性を向上させるために望ましい。 Further, the values 2θ (111) N and 2θ (200) N when measured on the unpolished surface of the coating layer and the value 2θ when measured around the position where the coating layer remains 2 μm thick on the polished surface. When comparing (111) G 2 μm, 2θ (200) G 2 μm, the difference between 2θ (111) G 2 μm and 2θ (111) N is 0.2 to 0.6 °, and 2θ (200) G The difference between 2 μm and 2θ (200) N is preferably 0.1 to 0.5 ° in order to increase the hardness of the coating layer and improve the wear resistance.

さらに、前記被覆層の未研磨面で測定したときのX線回折測定についての(111)面および(200)面の回折ピークのピーク強度をそれぞれP(111)、P(200)とするとき、前記被覆層の未研磨面で測定したときの値P(111)NとP(200)Nとの比率P(200)N/P(111)Nが、前記被覆層を厚み方向に対して斜めに研磨した研磨面にて測定したときの値P(111)GとP(200)Gとの比率P(200)G/P(111)Gに比べて大きいことが、前記被覆層の靭性を向上させるために望ましい。 Furthermore, when the peak intensities of the diffraction peaks of the (111) plane and (200) plane in the X-ray diffraction measurement when measured on the unpolished surface of the coating layer are P (111) and P (200) , respectively. The ratio P (200) N / P (111) N between the values P (111) N and P (200) N when measured on the unpolished surface of the coating layer is oblique to the thickness direction of the coating layer. The toughness of the coating layer is greater than the ratio P (200) G / P (111) G of the value P (111) G and P (200) G measured on the polished surface. Desirable to improve.

また、前記被覆層が柱状結晶の集合体から構成されており、表面側における前記柱状結晶の平均結晶幅が前記基体側における前記柱状結晶の平均結晶幅よりも大きいことが、被覆層の耐摩耗性を高める点で望ましい。   Further, the coating layer is composed of an aggregate of columnar crystals, and the average crystal width of the columnar crystals on the surface side is larger than the average crystal width of the columnar crystals on the substrate side, the wear resistance of the coating layer It is desirable in terms of enhancing the performance.

本発明の切削工具は、基体の表面にTiとAlとを含む窒化物または炭窒化物からなる被膜が被覆され、すくい面と逃げ面との交差稜線部を切刃とする構成となっている。   The cutting tool of the present invention is configured such that the surface of the base is coated with a coating made of a nitride or carbonitride containing Ti and Al, and the ridge line portion between the rake face and the flank face is used as a cutting edge. .

そして、本発明によれば、切削工具の前記被覆層のCu−Kα線のX線回折測定についての(111)面および(200)面の回折ピークの回折角度をそれぞれ2θ(111)、2θ(200)とするとき、前記被覆層の未研磨面で測定したときの値2θ(111)N、2θ(200)Nが、前記被覆層を厚み方向に対して斜めに研磨した研磨面にて測定したときの値2θ(111)G、2θ(200)Gに比べてそれぞれ0.1°以上低角度側に検出されることを特徴とする。これによって、基体側の被覆層においては基体との密着性が良くて、被覆層の剥離を抑制できる。一方、被覆層の表面側では、内部応力が緩和されて被覆層の自己破壊を抑制できる結果、切削工具の耐欠損性が向上することに寄与する。なお、本発明における研磨面でX線回折測定をする際は、基体側から被覆層の厚みの1/2以下の厚みの位置、すなわち基体側に近い位置で測定する。 And according to this invention, the diffraction angle of the diffraction peak of the (111) plane and the (200) plane in the X-ray diffraction measurement of the Cu-Kα ray of the coating layer of the cutting tool is 2θ (111)( 200) , the values 2θ (111) N and 2θ (200) N measured on the unpolished surface of the coating layer are measured on the polished surface obtained by polishing the coating layer obliquely with respect to the thickness direction. It is characterized in that it is detected on the lower angle side by 0.1 ° or more compared to the values 2θ (111) G and 2θ (200) G. As a result, the coating layer on the substrate side has good adhesion to the substrate, and the peeling of the coating layer can be suppressed. On the other hand, on the surface side of the coating layer, the internal stress is relaxed and self-destruction of the coating layer can be suppressed, which contributes to an improvement in the fracture resistance of the cutting tool. Note that when X-ray diffraction measurement is performed on the polished surface in the present invention, measurement is performed at a position that is 1/2 or less the thickness of the coating layer from the substrate side, that is, at a position close to the substrate side.

ここで、未研磨の前記被覆層の厚みが4〜15μmであることが、被覆層の回折ピークの回折角を制御しやすい点で望ましい。   Here, it is desirable that the unpolished coating layer has a thickness of 4 to 15 μm because the diffraction angle of the diffraction peak of the coating layer can be easily controlled.

また、前記被覆層の未研磨面で測定したときの値2θ(111)N、2θ(200)Nと、前記研磨面において前記被覆層が2μm厚み残存する位置を中心として測定したときの値2θ(111)G2μm、2θ(200)G2μmとを比較した際、2θ(111)G2μmと2θ(111)Nとの差が0.2〜0.6°であり、2θ(200)G2μmと2θ(200)Nとの差が0.1〜0.5°であることが、前記被覆層の硬度が上昇し、耐摩耗性を向上させるために望ましい。 Further, the values 2θ (111) N and 2θ (200) N when measured on the unpolished surface of the coating layer and the value 2θ when measured around the position where the coating layer remains 2 μm thick on the polished surface. When comparing (111) G 2 μm, 2θ (200) G 2 μm, the difference between 2θ (111) G 2 μm and 2θ (111) N is 0.2 to 0.6 °, and 2θ (200) G The difference between 2 μm and 2θ (200) N is preferably 0.1 to 0.5 ° in order to increase the hardness of the coating layer and improve the wear resistance.

さらに、前記被覆層の未研磨面で測定したときのX線回折測定についての(111)面および(200)面の回折ピークのピーク強度をそれぞれP(111)、P(200)とするとき、前記被覆層の未研磨面で測定したときの値P(111)NとP(200)Nとの比率P(200)N/P(111)Nが、前記被覆層を厚み方向に対して斜めに研磨した研磨面にて測定したときの値P(111)GとP(200)Gとの比率P(200)G/P(111)Gに比べて大きいことが、前記被覆層の靭性を向上させるために望ましい。 Furthermore, when the peak intensities of the diffraction peaks of the (111) plane and (200) plane in the X-ray diffraction measurement when measured on the unpolished surface of the coating layer are P (111) and P (200) , respectively. The ratio P (200) N / P (111) N between the values P (111) N and P (200) N when measured on the unpolished surface of the coating layer is oblique to the thickness direction of the coating layer. The toughness of the coating layer is greater than the ratio P (200) G / P (111) G of the value P (111) G and P (200) G measured on the polished surface. Desirable to improve.

また、前記被覆層が柱状結晶の集合体から構成されており、表面側における前記柱状結晶の平均結晶幅が前記基体側における前記柱状結晶の平均結晶幅よりも大きいことが、被覆層の耐摩耗性を高める点で望ましい。   Further, the coating layer is composed of an aggregate of columnar crystals, and the average crystal width of the columnar crystals on the surface side is larger than the average crystal width of the columnar crystals on the substrate side, the wear resistance of the coating layer It is desirable in terms of enhancing the performance.

なお、被膜は、単純なTi1−aAlNにて構成されていても良いが、例えば、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0≦a<1、0<b≦1、0≦x≦1である。)にて構成されていてもよい。中でも、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0.4≦a≦0.65、0≦b≦0.3、0≦x≦1である。)からなることが耐酸化性、耐摩耗性および耐欠損性を高める点で望ましい。さらには、上記組成の中でも、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0.4≦a≦0.65、0≦b≦0.3、0≦x≦1である。)からなることが望ましく、この組成領域では、酸化開始温度が高くなって耐酸化性が高くて切削時の耐摩耗性が向上するとともに切刃先端に発生しやすいチッピングが抑制できて耐欠損性が高いものとなる。また、金属MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であるが、中でもNbまたはMoを含有することが耐摩耗性・耐酸化性に最も優れる点で望ましい。 The coating may be composed of simple Ti 1-a Al a N. For example, Ti 1-a-b Al a M b (C x N 1-x ) (where M is Ti 1 or more selected from Group 4, 5 and 6 elements of the periodic table, rare earth elements and Si, and 0 ≦ a <1, 0 <b ≦ 1, and 0 ≦ x ≦ 1. May be. Among them, Ti 1-a-b Al a M b (C x N 1-x ) (where M is one or more selected from Group 4, 5, 6 elements, rare earth elements and Si in the periodic table excluding Ti) Yes, 0.4 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1) is desirable from the viewpoint of improving oxidation resistance, wear resistance, and fracture resistance. Further, among the above composition, Ti 1-a-b- c-d Al a M b W c Si d (C x N 1-x) ( however, M is the periodic table excluding Ti 4, 5, 6 1 or more selected from group elements, rare earth elements and Si, and 0.4 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1). In the composition region, the oxidation start temperature is high, the oxidation resistance is high, the wear resistance at the time of cutting is improved, and chipping that is likely to occur at the tip of the cutting edge can be suppressed, and the fracture resistance is high. Further, the metal M is at least one selected from Nb, Mo, Ta, Hf, and Y. Among them, the inclusion of Nb or Mo is desirable in terms of the most excellent wear resistance and oxidation resistance.

さらに、被膜の非金属成分であるC、Nは切削工具に必要な硬度および靭性に優れたものであり、被膜表面に発生するドロップレットの過剰な発生を抑制するために、x(C含有比率)の特に望ましい範囲は0≦x≦0.5である。なお、被膜の組成はエネルギー分散型X線分光(EDS)分析法またはX線光電子分光分析法(XPS)にて測定できる。   Furthermore, C and N, which are non-metallic components of the coating, are excellent in hardness and toughness required for the cutting tool. In order to suppress excessive generation of droplets generated on the coating surface, x (C content ratio) ) Is particularly desirable in the range 0 ≦ x ≦ 0.5. The composition of the coating can be measured by energy dispersive X-ray spectroscopy (EDS) analysis or X-ray photoelectron spectroscopy (XPS).

また、基体としては、炭化タングステンや、炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの他、窒化ケイ素や、酸化アルミニウムを主成分とするセラミック、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相と、セラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。   In addition, as a substrate, tungsten carbide, a cemented carbide or cermet composed of a hard phase mainly composed of titanium carbonitride and a binder phase mainly composed of an iron group metal such as cobalt and nickel, silicon nitride, , Hard materials such as ceramics mainly composed of aluminum oxide, hard phases made of polycrystalline diamond or cubic boron nitride, and bonded phases such as ceramics and iron group metals under super high pressure, etc. Are preferably used.

(製造方法)
次に、本発明の表面被覆切削工具の製造方法について説明する。
(Production method)
Next, the manufacturing method of the surface coating cutting tool of this invention is demonstrated.

まず、工具形状の基体を従来公知の方法を用いて作製する。次に、基体の表面に、被膜を成膜する。被膜の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。成膜方法の一例についての詳細について説明すると、被膜をイオンプレーティング法で作製する場合には、金属チタン(Ti)、金属アルミニウム(Al)、金属M(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上)をそれぞれ独立に含有する金属ターゲットまたは複合化した合金ターゲットに用いる。   First, a tool-shaped substrate is produced using a conventionally known method. Next, a film is formed on the surface of the substrate. As a film forming method, a physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied. The details of an example of the film forming method will be described. When a film is formed by an ion plating method, metal titanium (Ti), metal aluminum (Al), metal M (where M is a periodic table excluding Ti). It is used for a metal target or a composite alloy target containing one or more selected from Group 4, 5, 6 elements, rare earth elements and Si) independently.

本発明によれば、成膜初期に蒸発させる金属の組成と成膜後期に蒸発させる金属の組成とを変えて、成膜初期に蒸発させる金属の組成に比べて成膜後期に蒸発させる金属の組成がイオン半径の大きな金属の含有比率が大きくなるように設定する。また、このとき、本発明によれば、成膜条件としては、このターゲットを用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させる条件が好適に採用できる。このとき、成膜初期におけるバイアス電圧を100〜200Vに設定して成膜を開始するとともに、成膜後期におけるバイアス電圧を成膜初期のバイアス電圧に比べて20〜75Vと低くして成膜する。また、成膜初期における基体の温度を400〜500℃に設定して成膜を開始するとともに、成膜後期における基体の温度を成膜初期の基体の温度に比べて500〜650℃と高くして成膜する。これによって、成膜される被覆層の結晶構造を制御して、X線回折ピークの回折角度を上述した範囲に制御することができる。 According to the present invention, the composition of the metal evaporated in the early stage of film formation and the composition of the metal evaporated in the late stage of film formation are changed so that the composition of the metal evaporated in the later stage of film formation is different from the composition of the metal evaporated in the early stage of film formation. The composition is set so that the content ratio of the metal having a large ionic radius is increased. At this time, according to the present invention, as a film forming condition, using this target, the metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas or carbon of the nitrogen source is used. Conditions for reacting with the source methane (CH 4 ) / acetylene (C 2 H 2 ) gas can be suitably employed. At this time, the film formation is started by setting the bias voltage at the initial stage of film formation to 100 to 200 V, and the film is formed by setting the bias voltage at the latter stage of film formation to 20 to 75 V lower than the bias voltage at the initial stage of film formation. . In addition, the temperature of the substrate at the initial stage of film formation is set to 400 to 500 ° C. and film formation is started, and the temperature of the substrate at the latter stage of film formation is set to 500 to 650 ° C. higher than the temperature of the substrate at the initial stage of film formation. To form a film. Thereby, the crystal structure of the coating layer to be formed can be controlled, and the diffraction angle of the X-ray diffraction peak can be controlled within the above-described range.

なお、成膜に際しては、窒素(N)ガスやアルゴン(Ar)ガス等の不活性ガスを用いて、イオンプレーティング法またはスパッタリング法によって被膜を成膜する。 In film formation, a film is formed by an ion plating method or a sputtering method using an inert gas such as nitrogen (N 2 ) gas or argon (Ar) gas.

平均粒径0.5μmの炭化タングステン(WC)粉末に対して、金属コバルト(Co)粉末を10質量%、炭化バナジウム(VC)粉末を0.2質量%、炭化クロム(Cr)粉末を0.8質量%の割合で添加、混合し、ミリングインサート(京セラ製スローアウェイチップBDMT11T304-JT)に成型して焼成した。そして、研削工程を経た後、アルカリ、酸、蒸留水の順によって表面を洗浄してインサート基体を作製した。 10% by mass of metallic cobalt (Co) powder, 0.2% by mass of vanadium carbide (VC) powder, chromium carbide (Cr 3 C 2 ) powder with respect to tungsten carbide (WC) powder having an average particle size of 0.5 μm Was added and mixed at a ratio of 0.8% by mass, and molded into a milling insert (KYOSERA throw-away tip BDMT11T304-JT) and fired. After the grinding process, the surface was washed in the order of alkali, acid, and distilled water to produce an insert substrate.

そして、表1に示すターゲットを装着したアークイオンプレーティング装置内に上記基体をセットし基体を表1に示す温度に加熱して表1に示す被膜を成膜した。なお、メインターゲットはチャンバの側壁面に3個、サブターゲットはチャンバの上壁面に1個セットし、成膜時間の半分までを成膜前期、成膜時間の半分が過ぎた時点から成膜終了までを成膜後期として、成膜前半ではメインターゲットのみを用いて成膜し、成膜後期にはメインターゲットとサブターゲットの両方を用いて成膜した。また、表1に示す以外の成膜条件は窒素ガスを総圧力4Paの雰囲気中、アーク電流150Aで一定とした。   Then, the substrate was set in an arc ion plating apparatus equipped with the target shown in Table 1, and the substrate was heated to the temperature shown in Table 1 to form the coating shown in Table 1. Three main targets are set on the side wall surface of the chamber, and one sub target is set on the upper wall surface of the chamber, and the film formation is completed when half of the film formation time has passed, up to half the film formation time. In the first half of the film formation, the film was formed using only the main target, and in the second film formation, the film was formed using both the main target and the sub target. The film forming conditions other than those shown in Table 1 were constant at an arc current of 150 A in an atmosphere of nitrogen gas at a total pressure of 4 Pa.

Figure 2010125539
Figure 2010125539

得られたインサートについて、キーエンス社製走査型電子顕微鏡(VE8800)を用いて倍率50000倍にて組織観察を行い、被膜を構成する結晶の形状や膜厚(t、t)を確認した。また、同装置に付随のEDAXアナライザ(AMETEK EDAX-VE9800)を用いて加速電圧15kVにてエネルギー分散型X線分光(EDS)分析法の一種であるZAF法により被膜の組成の定量分析を行い、すくい面と逃げ面それぞれについてTiとAlの比率であるTi/(Ti+Al)を算出した(Ti、Ti)。なお、この方法で測定できなかった元素については、PHI社製X線光電子分光分析装置(Quantum2000)を用い、X線源はモノクロAlK(200μm、35W、15kV)を測定領域約200μmに照射して測定を行った。結果は表2に示した。 The resulting insert performs tissue observation at a magnification 50,000 fold with Keyence scanning electron microscope (VE8800), crystal shape and thickness of the film constituting the coating (t r, t f) was confirmed. In addition, using the EDAX analyzer (AMETEK EDAX-VE9800) attached to the apparatus, the composition of the film is quantitatively analyzed by the ZAF method, which is a kind of energy dispersive X-ray spectroscopy (EDS) analysis method, at an acceleration voltage of 15 kV. Ti / (Ti + Al), which is the ratio of Ti and Al, was calculated for each of the rake face and the flank face (Ti r , Ti f ). For elements that could not be measured by this method, a PHI X-ray photoelectron spectrometer (Quantum2000) was used, and the X-ray source was irradiated with monochrome AlK (200 μm, 35 W, 15 kV) to a measurement region of about 200 μm. Measurements were made. The results are shown in Table 2.

Figure 2010125539
Figure 2010125539

また、走査型電子顕微鏡SEM写真から被覆層の膜厚を測定した。そして、微小部X線回折分析を行い、ピーク強度比I(400)/I(331)の測定を行った。コリメータ径は0.3mmφとし、それぞれの面の平坦部中央において測定した。なお、線源はCu−Kα線であり、出力は45kV、110mA、入射角度2.0°、Cu−Kα線、Step・0.02°、Time・2secとした。X線回折分析で得られえた回折ピークからp、pを算出した。果は表3に記載した。 Moreover, the film thickness of the coating layer was measured from the scanning electron microscope SEM photograph. Then, a micro X-ray diffraction analysis was performed, and the peak intensity ratio I (400) / I (331) was measured. The collimator diameter was 0.3 mmφ, and measurement was performed at the center of the flat portion of each surface. The radiation source was Cu-Kα ray, and the output was 45 kV, 110 mA, incident angle 2.0 °, Cu-Kα ray, Step · 0.02 °, Time · 2 sec. P r and pf were calculated from diffraction peaks obtained by X-ray diffraction analysis. The results are shown in Table 3.

さらに、得られたインサートを用いて以下の切削条件にて切削試験を行った。結果は表3に記載した。
切削方法:肩削り(ミリング加工)
被削材 :SKD11
切削速度:150m/分
送り :0.12mm/刃
切り込み:横切り込み10mm、深さ切り込み3mm
切削状態:乾式
評価方法:20分間切削した時点で、逃げ面摩耗量と切刃におけるチッピング状態を測定。
Furthermore, the cutting test was done on the following cutting conditions using the obtained insert. The results are shown in Table 3.
Cutting method: Shoulder (milling)
Work material: SKD11
Cutting speed: 150 m / minute feed: 0.12 mm / blade cutting: lateral cutting 10 mm, depth cutting 3 mm
Cutting state: Dry evaluation method: At the time of cutting for 20 minutes, the flank wear amount and the chipping state at the cutting edge are measured.

ただし、加工時間20分前に欠損した試料については欠損した時点での摩耗量を測定。   However, the amount of wear at the time of failure was measured for samples that were lost 20 minutes before the processing time.

Figure 2010125539
Figure 2010125539

表1〜3より、2θ(200)Nと2θ(200)Gとが同じ回折角に検出された試料No.11および2θ(200)Nよりも2θ(200)Gが高角度側に検出された試料No.12では、被覆層にチッピングが発生して早期に欠損した。ピークシフトが小さくて2θ(200)Nよりも2θ(200)Gの差が0.1°より小さかった試料No.13では摩耗の進行が早かった。基体側から表面まで単一な組織からなる試料No.14では耐摩耗性も耐欠損性も不十分であった。2θ(111)G、2θ(200)Gともに2θ(111)N、2θ(200)Nよりも高角度側に検出された試料No.15では自己破壊により早期に被覆層中にチッピングが発生して摩耗の進行も早いものであった。 From Tables 1 to 3, Sample No. 2 in which 2θ (200) N and 2θ (200) G were detected at the same diffraction angle. No. 11 and 2θ (200) N(200) G was detected on the higher angle side than sample No. In No. 12, chipping occurred in the coating layer and it was lost early. Sample No. in which the peak shift was small and the difference of 2θ (200) G was smaller than 0.1 ° than 2θ (200) N. In No. 13, the wear progressed quickly. Sample No. consisting of a single tissue from the substrate side to the surface. No. 14 was insufficient in wear resistance and fracture resistance. For both 2θ (111) G and 2θ (200) G , sample No. 2 detected at a higher angle than 2θ (111) N and 2θ (200) N. In No. 15, chipping occurred early in the coating layer due to self-destruction, and the wear progressed quickly.

これに対し、2θ(111)N、2θ(200)Nが2θ(111)G、2θ(200)Gに比べてそれぞれ低角度側に検出された試料No.1〜10では、耐欠損性と耐摩耗性が良くて切削性能に優れたものであった。 On the other hand, the sample numbers of 2θ (111) N and 2θ (200) N detected on the lower angle side compared to 2θ (111) G and 2θ (200) G , respectively. In Nos. 1 to 10, the chipping resistance and wear resistance were good and the cutting performance was excellent.

Claims (5)

基体の表面がTiとAlとを含む窒化物または炭窒化物からなる被覆層で被覆された切削工具であって、前記被覆層のCu−Kα線のX線回折測定についての(111)面および(200)面の回折ピークの回折角度をそれぞれ2θ(111)、2θ(200)とするとき、前記被覆層の未研磨面で測定したときの値2θ(111)N、2θ(200)Nが、前記被覆層を厚み方向に対して斜めに研磨した研磨面にて測定したときの値2θ(111)G、2θ(200)Gに比べてそれぞれ0.1°以上低角度側に検出されることを特徴とする切削工具。 A cutting tool in which the surface of a substrate is coated with a coating layer made of a nitride or carbonitride containing Ti and Al, the (111) plane for X-ray diffraction measurement of Cu-Kα rays of the coating layer, and When the diffraction angles of the diffraction peaks of the (200) plane are 2θ (111) and 2θ (200) , respectively, the values 2θ (111) N and 2θ (200) N when measured on the unpolished surface of the coating layer are , Each of which is detected on the lower angle side by 0.1 ° or more compared to the values 2θ (111) G and 2θ (200) G measured on a polished surface obtained by polishing the coating layer obliquely with respect to the thickness direction. A cutting tool characterized by that. 未研磨の前記被覆層の厚みが4〜15μmであることを特徴とする請求項1記載の切削工具。   The cutting tool according to claim 1, wherein a thickness of the unpolished coating layer is 4 to 15 μm. 前記被覆層の未研磨面で測定したときの値2θ(111)N、2θ(200)Nと、前記研磨面において前記被覆層が2μm厚み残存する位置を中心として測定したときの値2θ(111)G2μm、2θ(200)G2μmとを比較した際、2θ(111)G2μmと2θ(111)Nとの差が0.2〜0.6°であり、2θ(200)G2μmと2θ(200)Nとの差が0.1〜0.5°であることを特徴とする請求項2記載の切削工具。 The coating layer of the values 2 [Theta] (111) when measured at unpolished surface N,(200) N and the value of when the coating layer at the polishing surface was measured of a position remaining 2μm thickness 2 [Theta] (111 ) When comparing G 2 μm, 2θ (200) G 2 μm, the difference between 2θ (111) G 2 μm and 2θ (111) N is 0.2 to 0.6 °, and 2θ (200) G 2 μm The cutting tool according to claim 2, wherein a difference from 2θ (200) N is 0.1 to 0.5 °. 前記被覆層の未研磨面で測定したときのX線回折測定についての(111)面および(200)面の回折ピークのピーク強度をそれぞれP(111)、P(200)とするとき、前記被覆層の未研磨面で測定したときの値P(111)NとP(200)Nとの比率P(200)N/P(111)Nが、前記被覆層を厚み方向に対して斜めに研磨した研磨面にて測定したときの値P(111)GとP(200)Gとの比率P(200)G/P(111)Gに比べて大きいことを特徴とする請求項1乃至3のいずれか記載の切削工具。 When the peak intensities of diffraction peaks on the (111) plane and (200) plane in the X-ray diffraction measurement when measured on the unpolished surface of the coating layer are P (111) and P (200) , respectively, The ratio P (200) N / P (111) N between the values P (111) N and P (200) N as measured on the unpolished surface of the layer polishes the coating layer obliquely with respect to the thickness direction. The ratio P (200) G / P (111) G between the values P (111) G and P (200) G when measured on the polished surface is larger. Any cutting tool. 前記被覆層が柱状結晶の集合体から構成されており、表面側における前記柱状結晶の平均結晶幅が前記基体側における前記柱状結晶の平均結晶幅よりも大きいことを特徴とする請求項1乃至4のいずれか記載の切削工具。   5. The covering layer is composed of an aggregate of columnar crystals, and an average crystal width of the columnar crystals on the surface side is larger than an average crystal width of the columnar crystals on the substrate side. The cutting tool of any one of.
JP2008300756A 2008-11-26 2008-11-26 Cutting tools Active JP5247377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300756A JP5247377B2 (en) 2008-11-26 2008-11-26 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300756A JP5247377B2 (en) 2008-11-26 2008-11-26 Cutting tools

Publications (2)

Publication Number Publication Date
JP2010125539A true JP2010125539A (en) 2010-06-10
JP5247377B2 JP5247377B2 (en) 2013-07-24

Family

ID=42326277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300756A Active JP5247377B2 (en) 2008-11-26 2008-11-26 Cutting tools

Country Status (1)

Country Link
JP (1) JP5247377B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084938A1 (en) * 2014-11-28 2016-06-02 三菱マテリアル株式会社 Surface-coated cutting tool
JP2016107397A (en) * 2014-11-28 2016-06-20 三菱マテリアル株式会社 Surface coated cutting tool
WO2018181123A1 (en) * 2017-03-27 2018-10-04 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2018161739A (en) * 2017-03-27 2018-10-18 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239813A (en) * 2001-02-20 2002-08-28 Hitachi Tool Engineering Ltd Covered cemented carbide tool and its manufacturing method
JP2003305601A (en) * 2002-04-11 2003-10-28 Kobe Steel Ltd Hard film-coated tool and its manufacturing method
JP2006316351A (en) * 2000-12-28 2006-11-24 Kobe Steel Ltd Method for producing hard film for cutting tool
JP2008075178A (en) * 2006-08-24 2008-04-03 Hitachi Tool Engineering Ltd Thick coating film-coated member and thick coating film-coated member production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316351A (en) * 2000-12-28 2006-11-24 Kobe Steel Ltd Method for producing hard film for cutting tool
JP2002239813A (en) * 2001-02-20 2002-08-28 Hitachi Tool Engineering Ltd Covered cemented carbide tool and its manufacturing method
JP2003305601A (en) * 2002-04-11 2003-10-28 Kobe Steel Ltd Hard film-coated tool and its manufacturing method
JP2008075178A (en) * 2006-08-24 2008-04-03 Hitachi Tool Engineering Ltd Thick coating film-coated member and thick coating film-coated member production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084938A1 (en) * 2014-11-28 2016-06-02 三菱マテリアル株式会社 Surface-coated cutting tool
JP2016107397A (en) * 2014-11-28 2016-06-20 三菱マテリアル株式会社 Surface coated cutting tool
CN107000069A (en) * 2014-11-28 2017-08-01 三菱综合材料株式会社 Surface-coated cutting tool
WO2018181123A1 (en) * 2017-03-27 2018-10-04 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2018161739A (en) * 2017-03-27 2018-10-18 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance

Also Published As

Publication number Publication date
JP5247377B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5046726B2 (en) Surface coated cutting tool
JP5116777B2 (en) Cutting tools
JP5297388B2 (en) Surface coated cutting tool
JP5066301B2 (en) Cutting tools
JP5038303B2 (en) Surface coating tool and method for machining workpiece
JP5542925B2 (en) Cutting tools
JP5052666B2 (en) Surface coating tool
JP5383019B2 (en) End mill
JP5127477B2 (en) Cutting tools
JP5883161B2 (en) Cutting tools
JP5558558B2 (en) Cutting tools
JP5247377B2 (en) Cutting tools
JP2024022661A (en) Cutting tools
JP7354933B2 (en) Cutting tools
JP5697750B2 (en) Surface covering member
JP5153969B2 (en) Cutting tools
JP6794604B1 (en) Cutting tools
JP5495735B2 (en) Cutting tools
WO2020213263A1 (en) Cutting tool
JP5800571B2 (en) Cutting tools
JP2008156714A (en) Surface-coated tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3