JP3872244B2 - Hard film and hard film coated member with excellent wear resistance - Google Patents

Hard film and hard film coated member with excellent wear resistance Download PDF

Info

Publication number
JP3872244B2
JP3872244B2 JP37117199A JP37117199A JP3872244B2 JP 3872244 B2 JP3872244 B2 JP 3872244B2 JP 37117199 A JP37117199 A JP 37117199A JP 37117199 A JP37117199 A JP 37117199A JP 3872244 B2 JP3872244 B2 JP 3872244B2
Authority
JP
Japan
Prior art keywords
layer
film
hard
hard film
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37117199A
Other languages
Japanese (ja)
Other versions
JP2001181826A (en
Inventor
夏樹 一宮
保之 山田
龍哉 安永
俊樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP37117199A priority Critical patent/JP3872244B2/en
Publication of JP2001181826A publication Critical patent/JP2001181826A/en
Application granted granted Critical
Publication of JP3872244B2 publication Critical patent/JP3872244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フライス加工,切削加工,穿孔加工等の加工に使用される切削工具の表面被覆材、或は金型,軸受け,ダイス,ロールなど高硬度が要求される耐摩耗部材の表面被覆材、もしくは成形機用スクリューやシリンダ等の耐熱・耐食部材の表面被覆材として有用な硬質皮膜に関し、更には該硬質皮膜を被覆することによって優れた耐摩耗性を発揮する硬質皮膜被覆部材に関するものである。
【0002】
【従来の技術】
高速度工具や超硬合金工具など高い耐摩耗性が要求される切削工具は、工具の基材表面にTiNやTiCN等の硬質皮膜を形成することにより耐摩耗性の向上が図られている。
【0003】
またこれらの皮膜より一層優れた特性を示す皮膜材料として、Tiと、Ti以外の4a,5a,6a族金属元素の複合(炭)窒化物が提案されている(例えば、特開昭60−248879号公報,特開平4−221057号公報,特開平7−173608号公報)。具体的には、(Ti,M)(N,C)[但し、MはZr,Hf,V,Nb,Ta,Cr,Mo,W]で示される硬質皮膜であり、これらの皮膜は耐摩耗性の上では非常に優れた特性を発揮するが、TiNやTiCNに比べると密着性が不十分であり、使用中に皮膜が剥離するという問題があった。
【0004】
そこで、例えば特開平10−158861号公報に示されている様に、TiNを中間層に用いることにより密着性の改善が試みられているが、十分な密着性は得られていなかった。特に、切削工具に使用した場合には、密着性が不十分であることに加えて、折角、高硬度の(Ti,M)(N,C)膜をコーティングしているにもかかわらず、中間層のTiNの硬度が高くないために耐摩耗性が劣化するという問題があった。即ち、上記(Ti,M)(N,C)を切削工具用の耐摩耗コーティング材料に用いた場合は、耐摩耗特性で優れた性能を発揮することで最近注目されている(Ti,Al)N膜と比較すると、S50C等の炭素鋼に代表される低硬度材の切削においては同程度の耐摩耗特性を示すものの、SKD61焼入れ鋼等に代表される高硬度材の切削に至っては、上記(Ti,Al)N膜に比べ耐摩耗特性が劣ることが指摘されていた。
【0005】
また皮膜の密着性を向上させる手段として、界面での結晶組織を連続的に成長させる方法が検討されている。例えば、特開平9−170067号公報では(Ti,Al)CN系硬質膜を基材に密着性良く積層させるために、被覆する硬質層と基材の結晶組織が界面で不連続にならないよう連続的にエピタキシャル成長させることが検討されており、六方晶である炭化タングステンを主体とした超硬基材の結晶面と立方晶である(Ti,Al)CN系硬質層の結晶面が特定の方向関係を維持してエピタキシャル成長させれば高い密着性が得られることが示されている。
【0006】
さらに特開平7−133111号公報には、2層以上の異なる硬質層を積層させる多層硬質皮膜においても、結晶構造が六方晶であるAlNと立方晶であるTiNの各層の厚さを20nm以下とすることにより、両者の結晶構造が同一の立方晶構造になるようにエピタキシャル成長させることができ、層間界面の密着性が高くなると共に、格子歪に誘起された高硬度が発現することが開示されている。
【0007】
しかしながら、特開平7−133111号公報のように六方晶のAlNと立方晶のTiNを同じ立方晶構造としてエピタキシャル成長させるには各層の厚さを20nm以下にする必要があり、厚さ数μmの硬質膜を得る為には数百層もの積層を繰り返す必要がある。このため、エピタキシャル成長により界面密着性はある程度良いものの、生産工程が非常に煩雑になるという問題があった。
【0008】
【発明が解決しようとする課題】
本発明は上記事情に着目してなされたものであって、2層以上の異なる硬質層が積層された硬質皮膜であって、厚さ数μm以上であっても、優れた耐摩耗性及び密着性を発揮する硬質皮膜と、上記硬質皮膜が形成された硬質皮膜被覆部材を提供しようとするものである。
【0009】
【課題を解決するための手段】
上記課題を達成した本発明に係る耐摩耗性に優れた硬質皮膜とは、1種以上の金属元素を含む窒化物,炭化物,炭窒化物からなり、これらの中から選ばれた化学組成の異なる2種以上が積層されて基板上に形成される硬質皮膜であって、各層の厚さが0.4μm以上で、皮膜全体の厚さが0.8〜50μmであると共に、いずれの層も実質的に岩塩型結晶構造からなり、且つ各層の結晶組織が界面で実質的にエピタキシャル成長しており、
および、表面側最外層の組成が
(VuTi1-u)(Nv1-v
但し0.25≦u≦0.75,0.6≦v≦1
であると共に、
表面から2番目に層の組成が、
(AlTi1- )(N1-
但し0.56≦x≦0.65,0.6≦y≦1
であることを要旨とするものである。
【0011】
本発明に係る上記硬質皮膜を形成すれば、優れた耐摩耗性を発揮する硬質皮膜被覆部材を得ることができる。尚、切削工具の表面に本発明に係る硬質皮膜を形成する場合には、上記硬質皮膜の厚さを20μm以下とすることが推奨される。
【0012】
【発明の実施の形態】
本発明において採用する硬質層は、1種以上の金属元素を含む窒化物,炭化物,炭窒化物からなり、且つ岩塩型(NaCl型)構造を有するものであり、その例としては、従来より単層として使用実績があるTiN,TiCN,AlTiNなどがあり、これらを下地とし、その上に更に岩塩型(NaCl型)結晶からなる硬質層を積層するものであり、特開平7−133111号公報に記載の技術のように硬質層の厚さが20nm以上になるとエピタキシャル成長界面を形成できないという制約は受けず、層間界面は実質的にエピタキシャル成長構造であるにもかかわらず、一層の厚さをμmオーダーまで厚くすることが可能である。従って、膜全体の強度と信頼性を向上させることができる。
【0013】
こうして、耐摩耗性,耐酸化性,耐反応性などの目的とする表面特性を獲得しつつ、基材との密着性、硬質層相互の密着性を維持することができ、しかも多層膜全体としての強度も維持することができ、これまでの多層膜で生じていた種々の問題をすべて解決することができる。
【0014】
また、本発明に係る硬質皮膜を高速度鋼基材や超硬合金基材の上に形成する場合には、これらの基材との密着性を優先して基材側の硬質膜を選定すればよい。
【0015】
本発明に採用できる硬質層の組成としては、TiN,TiCN,AlTiN,TiVN,AlTiVN等が挙げられるが、高速度鋼や超硬基材との密着性を確保する下地層としてはTiN,TiCN,AlTiN等を用い、その上に積層して耐摩耗性,耐酸化性,耐反応性などの表面機能を発現する層としては、TiVN,AlTiVN等を用いることが推奨される。
【0016】
中でも、表面側に積層された最外層の組成は
(VuTi1-u)(Nv1-v
但し0.25≦u≦0.75,0.6≦v≦1
とすることが望ましい。
【0017】
その理由は、uの値が、0.25以上0.75以下の範囲において、(V,Ti)(N,C)膜の硬度が高くなり、(V,Ti)(N,C)膜を表面側に形成することによる優れた特性が発揮できるからであり、またVを添加することによる潤滑性と耐溶着性の向上効果が十分に得られるからである。なお、uの値は、高い硬度を得る上で0.30≦u≦0.70が望ましく、0.40≦u≦0.60がより望ましい。またvの値が0.6未満では、(V,Ti)(N,C)膜の靭性が低下し、十分な密着力が得られなくなるので、0.6≦v≦1であることが必要である。
【0018】
更に、表面から第2番目の層の組成は、
(AlxTi1-x)(Ny1-y
但し0.25≦x≦0.75,0.6≦y≦1
とすることが望ましい。xの範囲が0.25以上0.75以下であることが望ましい理由は、以下の通りである。TiCNの結晶構造は、金属元素であるTi原子と、非金属元素であるC原子またはN原子とが3次元的に交互に並んだ岩塩(NaCl)型構造をとっている。このTiCNにVを添加していくと、Vは岩塩型構造を組んでいるTiCNのTiのサイトに置換型で入ると考えられるが、VはTiよりも原子半径が小さいために、Vの添加量が増加すると共に(V,Ti)(N,C)の格子定数は小さくなる。一方、(Al,Ti)(N,C)も岩塩型構造をとっており、Alの添加量が増えると、(Al,Ti)(N,C)の格子定数は小さくなる。耐摩耗性で優れた性能を示す上記(VuTi1-u)(N,C)の組成範囲(0.25≦u≦0.75)における(V,Ti)(N,C)の格子定数と、xの範囲が0.25以上0.75以下の(AlxTi1-x)(N,C)の格子定数とが近い値を示すため、同じ岩塩型構造をとる(V,Ti)(N,C)と(Al,Ti)(N,C)の格子のミスマッチが小さくなり、(V,Ti)(N,C)と(Al,Ti)(N,C)が実質的にエピタキシャル成長して優れた密着性を示すと考えられる。更にxの範囲が0.25以上0.75以下では、(Al,Ti)(N,C)の硬度も最も高くなり、優れた耐摩耗性を示す。また、xの値が0.75を超えると、(AlxTi1-x)(Ny1-y)の結晶構造が立方晶(岩塩型結晶構造)から第2層の(V,Ti)(N,C)と異なる六方晶に変化して、十分な密着力が得られなくなると共に、硬度も大幅に低下してしまう。なお、より高い密着性及び硬度を得る上で、xの範囲は0.40≦x≦0.70が望ましく、0.56≦x≦0.65であればより望ましい。
【0019】
またyの値は、0.6未満では、(AlxTi1-x)(Ny1-y)膜の靭性が低下し、十分な密着力が得られないので0.6≦y≦1とすることが望ましい。
【0020】
本発明に係る硬質皮膜の厚さは、薄過ぎると耐摩耗性が不十分となるので0.8μm以上とすることが必要であり、1.5μm以上であれば望ましい。一方厚過ぎると膜自体にクラックが入り易くなって強度が不十分となるので50μm以下の厚さとすることが必要であり、30μm以下であれば望ましい。尚、本発明の硬質皮膜は切削工具の表面に形成することにより非常に優れた効果を発揮するが、皮膜が厚過ぎると切れ味が低下しチッピング等が発生するので、特に高い密着性が要求される切削工具に適用する場合には、皮膜の厚さを20μm以下とすることが望ましい。
【0021】
また本発明に係る硬質皮膜の各層の厚みは、十分な耐摩耗性を発揮させる上で0.4μm以上であることが必要である。硬質皮膜の積層数は、2層以上であれば特に制限はないが、積層数が多くなるにしたがって生産工程数が増えコスト上昇につながるので8層以下とすることが推奨される。
【0022】
本発明に係る硬質皮膜を形成する方法としては、アークイオンプレーティング法を採用することが推奨される。その理由は、イオン化効率を高くすることや反応性を高めること、又は基板にバイアス電圧を印加することなどによって一層密着性の優れた皮膜を得ることができるからである。またカソードとして目的とする組成比の合金ターゲットを用いれば、皮膜組成のコントロールが容易であり推奨される。
【0023】
本発明は硬質皮膜を被覆する基材の材質を限定するものではないが、基材表面に密着性よく被覆して優れた耐摩耗性を発揮させるためには、超硬合金,高速度工具鋼,ダイス鋼,サーメットまたはセラミック等の硬質物質が適している。
【0024】
特に切削工具に使用する場合には、本発明皮膜の優れた密着性により、低硬度材の切削においては従来例よりも優れた耐摩耗性が得られると共に、高硬度材の切削においても十分な耐摩耗性が得られ、低硬度材から高硬度材まで切削が可能な切削工具とすることができる。
【0025】
以下、実施例について説明するが、本発明は下記の実施例に限定されるものではなく、前・後記の趣旨に基づいて適宜変更することは本発明の技術的範囲に含まれるものである。
【0026】
【実施例】
実施例1
超硬チップをアークイオンプレーティング装置内に置き、真空排気を行い、ヒータによって炉内雰囲気温度を約400℃で60分間保持した。その後、ワークに−150Vのバイアス電圧を印加すると共に、炉内に高純度N2ガスを0.93Paとなるまで導入し、種々の組成を有するTiAlカソードを用いてアーク放電を行い、表1に示す組成の第1層を成膜した。その後、種々の組成を有するTiVカソード及びAlカソードを用いてアーク放電を行い、表1に示す組成の第2層を成膜した。尚、(Al,Ti)N系膜と(V,Ti)N系膜はいずれも岩塩型(NaCl型)の結晶構造であり、Al,Ti,Vの組成を変化させることにより格子定数を制御することができる。第1層と第2層の格子定数が近くなると両層の界面がエピタキシャル成長するが、両層の格子定数の差が大きくなると第1層と第2層の界面が不連続になる。このことを利用として、各種組成の第1層と第2層を積層させることにより岩塩型結晶構造であり異なる界面構造を有する2層系硬質層を作製した。また、比較のため、Alカソードにより六方晶構造であるAlNを第2層として積層したサンプルも作製した。これらの皮膜の組成は、電子プローブX線マイクロアナリシス及びオージェ電子分光法により確認した。
【0027】
得られた試験片の第1層と第2層の界面を透過電子顕微鏡(TEM)により断面観察を行い、界面の結晶構造が連続(エピタキシャル成長)であるか、不連続であるかを調べた。またスクラッチ試験器を用いて、膜損傷時の発生音波(AE信号)の変化とテスト後の光学顕微鏡観察によって皮膜が剥離したときの荷重を調べ、第1層と第2層の界面構造と密着性の関係を調べた。結果は表1に併記する。尚、表1において「第1層と第2層の結晶の連続性」の欄の○×の評価は、界面の結晶構造においてエピタキシャル成長している部分が80%以上の場合を○、エピタキシャル成長している部分が80%未満の場合を×とした。
【0028】
【表1】

Figure 0003872244
【0029】
No.1〜4は、硬質膜と基材間の剥離密着性を調べた試験結果である。No.1〜3に示すように、超硬基材と(Al,Ti)N系膜の界面の剥離臨界荷重は、膜組成に係らず全て90N以上となっており、十分良い密着性を示している。しかし、No.4に示すように、超硬基材と(V,Ti)N系膜の界面の剥離荷重は22Nと低く、(V,Ti)N単層では実用に耐える密着性が得られず、(Al,Ti)N系膜を下地(第1層)とするなどの工夫が必要であることが分かる。
【0030】
No.5〜25は第1層と第2層の間の密着性を調べた試験結果である。まずNo.5〜17では、第1層と第2層の厚さを各々2μmとし、膜組成を変化させて密着性を調べた。(Al,Ti)N系膜と(V,Ti)N系膜の結晶構造は共に岩塩型構造であり、格子定数も近いので、ほとんどの組成において第1層と第2層の界面が実質的にエピタキシャル成長構造になっている。但し、(Al,Ti)N系膜のAl量と、(V,Ti)N系膜のV量が多すぎるか、少なすぎる場合には、実質的にエピタキシャル成長構造となっていない。本発明例としてNo.8のサンプルの第1層と第2層の界面の写真を図1に、比較例としてNo.11のサンプルの第1層と第2層の界面の写真を図2に示す。図1では、界面のほとんどの結晶が連続的につながっているが、図2では、界面の結晶構造が不連続になっている部分が多く確認できる。
【0031】
界面構造がエピタキシャル成長の場合は剥離臨界荷重が90N前後となっており、(Al,Ti)N系膜と超硬基材の界面の密着性に近い実用に耐えうる値となっている。しかし、No.5,11,12,17の様に(Al,Ti)N系膜のAl量と、(V,Ti)N系膜のV量が多すぎるか、少なすぎる場合には、第1層と第2層の界面が不連続となっており、界面の剥離臨界荷重は30N前後まで低くなってしまった。また、No.18は第2層を岩塩型構造ではないAlN(六方晶)とした例である。この場合も第1層と第2層の界面が不連続となる為、剥離臨界荷重は32Nと低くなっている。
【0032】
以上の様に、(V,Ti)N系膜の下地として(Al,Ti)N系膜を用いると超硬基材との密着性を確保することができ、しかも第1層と第2層の界面を実質的にエピタキシャル成長させることにより、硬質層間界面も優れた密着性を得ることができ、全体として実用に耐え得る密着性が得られることが分かる。
【0033】
No.19〜25は第1層と第2層の厚さを変えた場合の試験結果である。いずれの界面も実質的にエピタキシャル成長している。しかし、膜厚の合計が20μmを超える付近から両層の剥離臨界荷重が低下し始め、膜厚の合計が50μmを超えると両層の剥離臨界荷重が極端に低下することが分かる。
【0034】
実施例2
実施例1に示した各硬質膜の耐摩耗性の評価を目的として、ボールオンディスク試験を実施した。ボールとしては、鏡面仕上げをした直径10mmの超硬球の表面に実施例1と同様の方法により表2に示す組成及び層を有する皮膜を形成した超硬球を用い、S55C製のディスクに対し、荷重10N、摺動速度1m/sec、温度500℃、摺動距離500mの条件で摺動試験を行い、摩耗量と摩擦係数を測定した。なお摩耗量は超硬球に生じた摺動痕の幅をとった。結果は表2に示す。
【0035】
【表2】
Figure 0003872244
【0036】
No.1〜4は、単層の硬質膜の耐摩耗性を調べた試験結果である。No.1〜3に示すように、(Al,Ti)N系膜が単層の場合は、ボールの摩耗量が0.6mm前後で、摩擦係数が0.5前後となっている。また(V,Ti)N系膜が単層であるNo.4の場合には、実施例1でも示したように超硬基材との密着性が不足しており、摩耗試験においても膜が剥離してしまい、摩耗量及び摩擦係数の測定はできなかった。
【0037】
No.5〜17は第1層と第2層の膜厚を各々2μmずつとし、両層の組成を変化させたときの影響を調べた試験結果である。No.5,11,12,17の様に、AlとTiの組成比及びVとTiの組成比が本発明に係る範囲から外れている場合は、第1層と第2層の界面が不連続なので、摩耗試験時に両層の界面が剥離して膜損傷が発生し、表面凹凸により摩擦係数が0.8前後まで上昇する。これに対して、AlとTiの組成比及びVとTiの組成比が本発明に係る範囲の場合(No.6〜10、No.13〜16)は両層の界面が実質的にエピタキシャル構造となって密着性が向上するため、摩耗試験時に両層の界面が剥離することなく、実用的な耐久性が得られた。また、摩耗量は0.2mm前後で、摩擦係数は0.2〜0.3程度であって、(Al,Ti)N単層よりも小さな値となっており、最表面が(V,Ti)N系になることにより優れた耐摩耗特性が得られることが分かる。
【0038】
No.18の様に、第2層が六方晶のAlNである場合も、摩耗試験時に両層の界面剥離により膜損傷が発生し、摩擦係数が0.8程度まで高くなった。
【0039】
No.19〜25は、第1層と第2層のAlとTiの組成比、VとTiの組成比を各々50原子%とし、各層の膜厚を変化させたときの影響を調べたものである。No.19のように全体の膜厚が0.4μmと薄い場合は、摩耗量が0.8mm程度まで大きくなっているが、No.20の様に全体の膜厚が0.8μmになると摩耗量が0.25mmと小さくなっており、No.6〜10及びNo.21〜23などの様に、全体の膜厚が4μm以上になると摩耗量が0.20前後まで小さくなる。このことから、本発明においては皮膜全体の膜厚を0.8μm以上に設定した。但し、No.25のように全体の膜厚が50μmを超えると膜中の残留応力が増大して膜が剥離するため、摩耗量及び摩擦係数の測定は不可能であった。従って、皮膜全体厚さの上限は50μmに設定した。
【0040】
実施例3
超硬合金製ボールエンドミル(径5R)に対し、実施例1と同様の方法により表3に組成及び膜厚を示す硬質皮膜を形成し、切削試験を行った。切削試験に用いた被削材はS55Cであり、切削速度は98m/min、送りは1刃あたり0.05mm、切り込み量はピックフィード0.5mm、軸方向切り込みは4.0mmで、エアブローしながらダウンカットにて切削を行い、切削長50mを加工した後の先端部と境界部の摩耗量を測定した。結果は表3に示す。
【0041】
【表3】
Figure 0003872244
【0042】
No.1〜4とNo.18は従来例であり、No.5,11,12,17,19,25は比較例、No.6〜10,No.13〜16,No.20〜24は本発明例である。本発明例は、先端部と境界部のいずれにおいても比較例及び従来例と比べて摩耗量が非常に小さく、優れた耐摩耗性を発揮することが分かる。
【0043】
【発明の効果】
本発明は以上の様に構成されているので、2層以上の異なる硬質層が積層された硬質皮膜であって、厚さ数μm以上であっても、優れた耐摩耗性及び密着性を発揮する硬質皮膜と、上記硬質皮膜が形成された硬質皮膜被覆部材が提供できることとなった。
【図面の簡単な説明】
【図1】本発明例(実施例1のNo.8)の層界面を透過型電子顕微鏡で撮像した写真の複写である。
【図2】比較例(実施例1のNo.11)の層界面を透過型電子顕微鏡で撮像した写真の複写である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface covering material for a cutting tool used for milling, cutting, drilling, or the like, or a surface covering material for a wear-resistant member requiring high hardness such as a die, a bearing, a die, or a roll. Or, it relates to a hard coating useful as a surface coating material for heat and corrosion resistant members such as screws and cylinders for molding machines, and further relates to a hard coating coated member that exhibits excellent wear resistance by coating the hard coating. is there.
[0002]
[Prior art]
Cutting tools that require high wear resistance, such as high-speed tools and cemented carbide tools, have improved wear resistance by forming a hard film such as TiN or TiCN on the surface of the tool substrate.
[0003]
Further, as a film material exhibiting properties superior to those of these films, composite (carbon) nitrides of Ti and Group 4a, 5a, and 6a metal elements other than Ti have been proposed (for example, JP-A-60-248879). No. 4, JP-A-4-221557, JP-A-7-173608). Specifically, it is a hard film represented by (Ti, M) (N, C) [where M is Zr, Hf, V, Nb, Ta, Cr, Mo, W]. However, the adhesion is insufficient compared with TiN and TiCN, and there is a problem that the film peels off during use.
[0004]
Thus, for example, as shown in JP-A-10-158861, attempts have been made to improve adhesion by using TiN as an intermediate layer, but sufficient adhesion has not been obtained. In particular, when used for cutting tools, in addition to insufficient adhesion, it is in the middle even though it is coated with a (Ti, M) (N, C) film with high bending angle and high hardness. There was a problem that the wear resistance deteriorated because the TiN hardness of the layer was not high. That is, when (Ti, M) (N, C) is used as a wear-resistant coating material for a cutting tool, it has recently attracted attention because of its excellent performance in wear resistance (Ti, Al). Compared to the N film, although it shows the same level of wear resistance in the cutting of a low-hardness material typified by carbon steel such as S50C, the cutting of a high-hardness material typified by SKD61 hardened steel etc. It has been pointed out that the wear resistance is inferior to that of the (Ti, Al) N film.
[0005]
As a means for improving the adhesion of the film, a method of continuously growing a crystal structure at the interface has been studied. For example, in Japanese Patent Laid-Open No. 9-170067, in order to laminate a (Ti, Al) CN hard film on a substrate with good adhesion, the hard layer to be coated and the crystal structure of the substrate are not continuous at the interface. The epitaxial growth is considered, and the crystal plane of the cemented carbide base mainly composed of hexagonal tungsten carbide and the crystal plane of the cubic (Ti, Al) CN hard layer have a specific directional relationship. It is shown that high adhesion can be obtained if epitaxial growth is performed while maintaining the above.
[0006]
Furthermore, in JP-A-7-133111, even in a multilayer hard film in which two or more different hard layers are laminated, the thickness of each layer of AlN that is hexagonal and TiN that is cubic is 20 nm or less. By doing so, it is disclosed that both crystal structures can be epitaxially grown so as to have the same cubic structure, adhesion at the interlayer interface is enhanced, and high hardness induced by lattice strain is expressed. Yes.
[0007]
However, as described in JP-A-7-133111, in order to epitaxially grow hexagonal AlN and cubic TiN as the same cubic crystal structure, the thickness of each layer must be 20 nm or less, and the thickness is several μm. In order to obtain a film, it is necessary to repeat several hundred layers. For this reason, although the interfacial adhesion is good to some extent by epitaxial growth, there is a problem that the production process becomes very complicated.
[0008]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above circumstances, and is a hard film in which two or more different hard layers are laminated, and has excellent wear resistance and adhesion even when the thickness is several μm or more. The present invention is intended to provide a hard coating that exhibits the properties and a hard coating-coated member on which the hard coating is formed.
[0009]
[Means for Solving the Problems]
The hard film with excellent wear resistance according to the present invention that has achieved the above-mentioned problems is composed of nitride, carbide, carbonitride containing one or more metal elements, and the chemical composition selected from these is different. It is a hard film formed by laminating two or more kinds on a substrate, each layer has a thickness of 0.4 μm or more, and the entire film has a thickness of 0.8 to 50 μm. In the form of a rock salt type crystal structure, and the crystal structure of each layer is substantially epitaxially grown at the interface,
And the composition of the outermost layer on the surface side is (V u Ti 1-u ) (N v C 1-v )
However, 0.25 ≦ u ≦ 0.75, 0.6 ≦ v ≦ 1
And
The composition of the layer second from the surface
(Al x Ti 1- x ) (N y C 1- y )
However, 0.56 ≦ x ≦ 0.65, 0.6 ≦ y ≦ 1
This is the gist.
[0011]
If the said hard film which concerns on this invention is formed, the hard film coating | coated member which exhibits the outstanding abrasion resistance can be obtained. In addition, when forming the hard film which concerns on this invention on the surface of a cutting tool, it is recommended that the thickness of the said hard film shall be 20 micrometers or less.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The hard layer employed in the present invention is made of a nitride, carbide or carbonitride containing one or more metal elements and has a rock salt type (NaCl type) structure. There are TiN, TiCN, AlTiN, etc. that have been used as layers, and these are used as a base, and a hard layer made of a rock salt type (NaCl type) crystal is further laminated thereon, as disclosed in JP-A-7-133111. When the thickness of the hard layer is 20 nm or more as in the described technique, there is no restriction that an epitaxial growth interface cannot be formed, and even though the interlayer interface is substantially an epitaxial growth structure, the thickness of one layer is reduced to the μm order. It can be thickened. Therefore, the strength and reliability of the entire film can be improved.
[0013]
In this way, the desired surface properties such as wear resistance, oxidation resistance, and reaction resistance can be obtained, while maintaining the adhesion to the base material and the adhesion between the hard layers. The strength of the film can be maintained, and all the various problems that have occurred in the conventional multilayer films can be solved.
[0014]
In addition, when the hard film according to the present invention is formed on a high-speed steel base material or a cemented carbide base material, the hard film on the base material side should be selected giving priority to adhesion to these base materials. That's fine.
[0015]
Examples of the composition of the hard layer that can be employed in the present invention include TiN, TiCN, AlTiN, TiVN, AlTiVN, etc. As the underlayer for ensuring adhesion with high-speed steel or carbide substrate, TiN, TiCN, It is recommended to use TiVN, AlTiVN, or the like as a layer that uses AlTiN or the like and is laminated thereon to exhibit surface functions such as wear resistance, oxidation resistance, and reaction resistance.
[0016]
Among these, the composition of the outermost layer laminated on the surface side is (V u Ti 1-u ) (N v C 1-v )
However, 0.25 ≦ u ≦ 0.75, 0.6 ≦ v ≦ 1
Is desirable.
[0017]
The reason for this is that the hardness of the (V, Ti) (N, C) film increases in the range of u value from 0.25 to 0.75, and the (V, Ti) (N, C) film becomes This is because excellent characteristics can be exhibited by forming on the surface side, and the effect of improving lubricity and welding resistance by adding V can be sufficiently obtained. The value of u is preferably 0.30 ≦ u ≦ 0.70 and more preferably 0.40 ≦ u ≦ 0.60 in order to obtain high hardness. Further, if the value of v is less than 0.6, the toughness of the (V, Ti) (N, C) film decreases and sufficient adhesion cannot be obtained, so 0.6 ≦ v ≦ 1 is required. It is.
[0018]
Furthermore, the composition of the second layer from the surface is
(Al x Ti 1-x ) (N y C 1-y )
However, 0.25 ≦ x ≦ 0.75, 0.6 ≦ y ≦ 1
Is desirable. The reason why the range of x is preferably 0.25 or more and 0.75 or less is as follows. The crystal structure of TiCN has a rock salt (NaCl) type structure in which Ti atoms that are metal elements and C atoms or N atoms that are nonmetal elements are alternately arranged three-dimensionally. When V is added to TiCN, it is thought that V enters the TiCN Ti site of the rock salt structure in a substitutional form, but V has an atomic radius smaller than that of Ti. As the amount increases, the lattice constant of (V, Ti) (N, C) decreases. On the other hand, (Al, Ti) (N, C) also has a rock salt structure, and the lattice constant of (Al, Ti) (N, C) decreases as the amount of Al added increases. (V, Ti) (N, C) lattice in the composition range (0.25 ≦ u ≦ 0.75) of the above (V u Ti 1-u ) (N, C) showing excellent performance in wear resistance Since the constants and the lattice constants of (Al x Ti 1-x ) (N, C) in the range of x from 0.25 to 0.75 are close to each other, they have the same rock salt structure (V, Ti ) (N, C) and (Al, Ti) (N, C) lattice mismatch is reduced, and (V, Ti) (N, C) and (Al, Ti) (N, C) are substantially reduced. It is considered that the epitaxial growth shows excellent adhesion. Further, when the range of x is 0.25 or more and 0.75 or less, the hardness of (Al, Ti) (N, C) is the highest and shows excellent wear resistance. When the value of x exceeds 0.75, the crystal structure of (Al x Ti 1-x ) (N y C 1-y ) changes from cubic (rock salt type crystal structure) to (V, Ti ) It changes to a hexagonal crystal different from (N, C), and sufficient adhesion cannot be obtained, and the hardness is also greatly reduced. In order to obtain higher adhesion and hardness, the range of x is preferably 0.40 ≦ x ≦ 0.70, and more preferably 0.56 ≦ x ≦ 0.65.
[0019]
On the other hand, if the value of y is less than 0.6, the toughness of the (Al x Ti 1-x ) (N y C 1-y ) film decreases and sufficient adhesion cannot be obtained, so 0.6 ≦ y ≦ 1 is desirable.
[0020]
If the thickness of the hard coating according to the present invention is too thin, the wear resistance becomes insufficient, so it is necessary to set it to 0.8 μm or more, and it is desirable if it is 1.5 μm or more. On the other hand, if it is too thick, cracks are likely to occur in the film itself and the strength becomes insufficient. Therefore, it is necessary to set the thickness to 50 μm or less, and 30 μm or less is desirable. The hard coating of the present invention exhibits a very excellent effect when formed on the surface of a cutting tool. However, if the coating is too thick, sharpness is reduced and chipping occurs, so that particularly high adhesion is required. When applied to a cutting tool, the thickness of the coating is desirably 20 μm or less.
[0021]
Further, the thickness of each layer of the hard coating according to the present invention needs to be 0.4 μm or more in order to exhibit sufficient wear resistance. The number of laminated hard coatings is not particularly limited as long as it is two or more, but it is recommended that the number of production layers be eight or less because the number of production steps increases and the cost increases as the number of lamination increases.
[0022]
As a method for forming the hard coating according to the present invention, it is recommended to employ an arc ion plating method. The reason is that it is possible to obtain a film having further excellent adhesion by increasing ionization efficiency, increasing reactivity, or applying a bias voltage to the substrate. If an alloy target having a desired composition ratio is used as the cathode, it is easy to control the coating composition and it is recommended.
[0023]
Although the present invention does not limit the material of the base material on which the hard film is coated, in order to exhibit excellent wear resistance by coating the base material surface with good adhesion, cemented carbide, high speed tool steel Hard materials such as die steel, cermet or ceramic are suitable.
[0024]
Especially when used in cutting tools, the excellent adhesion of the coating of the present invention provides superior wear resistance in cutting low hardness materials than in conventional examples, and is sufficient in cutting high hardness materials. Abrasion resistance is obtained, and a cutting tool capable of cutting from a low hardness material to a high hardness material can be obtained.
[0025]
Hereinafter, although an Example is described, this invention is not limited to the following Example, It is contained in the technical scope of this invention changing suitably based on the meaning of the above-mentioned and postscript.
[0026]
【Example】
Example 1
The carbide tip was placed in an arc ion plating apparatus, evacuated, and the furnace atmosphere temperature was maintained at about 400 ° C. for 60 minutes by a heater. Thereafter, a bias voltage of −150 V was applied to the workpiece, high purity N 2 gas was introduced into the furnace until 0.93 Pa, and arc discharge was performed using TiAl cathodes having various compositions. A first layer having the composition shown was formed. Thereafter, arc discharge was performed using a TiV cathode and an Al cathode having various compositions, and a second layer having the composition shown in Table 1 was formed. The (Al, Ti) N-based film and the (V, Ti) N-based film have a rock salt type (NaCl type) crystal structure, and the lattice constant is controlled by changing the composition of Al, Ti, V. can do. When the lattice constants of the first layer and the second layer are close to each other, the interface between the two layers is epitaxially grown. However, when the difference between the lattice constants of the two layers is increased, the interface between the first layer and the second layer becomes discontinuous. Utilizing this fact, a two-layer hard layer having a rock salt type crystal structure and a different interface structure was produced by laminating a first layer and a second layer having various compositions. For comparison, a sample was also prepared in which AlN having a hexagonal crystal structure was laminated as a second layer with an Al cathode. The composition of these films was confirmed by electron probe X-ray microanalysis and Auger electron spectroscopy.
[0027]
The cross section of the interface between the first layer and the second layer of the obtained test piece was observed with a transmission electron microscope (TEM) to examine whether the crystal structure of the interface was continuous (epitaxial growth) or discontinuous. Also, using a scratch tester, the change in the sound wave (AE signal) generated when the film was damaged and the load when the film was peeled off by optical microscope observation after the test were examined, and the interface structure between the first and second layers was in close contact I examined the relationship of sex. The results are also shown in Table 1. In Table 1, the evaluation of ○ × in the column of “continuity of the crystal of the first layer and the second layer” is ○ when the portion where the epitaxial growth is 80% or more in the crystal structure of the interface, The case where the part which exists is less than 80% was set as x.
[0028]
[Table 1]
Figure 0003872244
[0029]
No. 1-4 are the test results which investigated peeling adhesiveness between a hard film and a base material. No. 1-3, the critical peeling load at the interface between the cemented carbide substrate and the (Al, Ti) N-based film is all 90 N or more regardless of the film composition, indicating sufficiently good adhesion. . However, no. As shown in FIG. 4, the peeling load at the interface between the carbide substrate and the (V, Ti) N-based film is as low as 22N, and the (V, Ti) N single layer does not provide the adhesion that can withstand practical use. , Ti) N-based film is used as a base (first layer).
[0030]
No. 5 to 25 are test results obtained by examining the adhesion between the first layer and the second layer. First, no. In Nos. 5 to 17, the thicknesses of the first layer and the second layer were each 2 μm, and the film composition was changed to examine the adhesion. Since the crystal structures of the (Al, Ti) N-based film and the (V, Ti) N-based film are both rock-salt structures and have close lattice constants, the interface between the first layer and the second layer is substantially the same in most compositions. It has an epitaxial growth structure. However, when the amount of Al in the (Al, Ti) N-based film and the amount of V in the (V, Ti) N-based film are too large or too small, the epitaxial growth structure is not substantially formed. As an example of the present invention, No. A photograph of the interface between the first layer and the second layer of the sample No. 8 is shown in FIG. A photograph of the interface between the first layer and the second layer of 11 samples is shown in FIG. In FIG. 1, most of the crystals at the interface are connected continuously, but in FIG. 2, there are many portions where the crystal structure of the interface is discontinuous.
[0031]
When the interface structure is epitaxial growth, the critical separation load is about 90 N, which is a value that can withstand practical use close to the adhesion between the (Al, Ti) N-based film and the cemented carbide substrate. However, no. When the amount of Al in the (Al, Ti) N-based film and the amount of V in the (V, Ti) N-based film are too large or too small as in 5, 11, 12, 17, the first layer and the first layer The interface between the two layers is discontinuous, and the critical peeling load at the interface has been lowered to around 30N. No. 18 is an example in which the second layer is AlN (hexagonal crystal) which is not a rock salt type structure. Also in this case, since the interface between the first layer and the second layer is discontinuous, the critical separation load is as low as 32N.
[0032]
As described above, when an (Al, Ti) N-based film is used as a base for a (V, Ti) N-based film, adhesion with a carbide substrate can be ensured, and the first layer and the second layer can be secured. It can be seen that by substantially epitaxially growing the interface, excellent adhesion can also be obtained at the hard interlayer interface, and as a whole, adhesion that can withstand practical use can be obtained.
[0033]
No. 19 to 25 are test results when the thicknesses of the first layer and the second layer are changed. Both interfaces are substantially epitaxially grown. However, it can be seen that the critical separation load of both layers begins to decrease from the vicinity of the total thickness exceeding 20 μm, and the critical separation load of both layers is extremely decreased when the total thickness exceeds 50 μm.
[0034]
Example 2
For the purpose of evaluating the wear resistance of each hard film shown in Example 1, a ball-on-disk test was conducted. As the balls, super hard balls formed with a film having a composition and layer shown in Table 2 on the surface of a hard ball having a mirror finish of 10 mm in diameter by the same method as in Example 1 were used. A sliding test was conducted under the conditions of 10 N, sliding speed 1 m / sec, temperature 500 ° C., sliding distance 500 m, and the wear amount and the friction coefficient were measured. The amount of wear was the width of a sliding mark generated on the hard ball. The results are shown in Table 2.
[0035]
[Table 2]
Figure 0003872244
[0036]
No. 1-4 are the test results which investigated the abrasion resistance of the hard film of a single layer. No. 1 to 3, when the (Al, Ti) N-based film is a single layer, the wear amount of the ball is around 0.6 mm and the friction coefficient is around 0.5. No. 1 in which the (V, Ti) N-based film is a single layer. In the case of 4, the adhesion with the cemented carbide substrate was insufficient as shown in Example 1, the film was peeled even in the wear test, and the amount of wear and the coefficient of friction could not be measured. .
[0037]
No. 5 to 17 are test results obtained by examining the influence when the film thicknesses of the first layer and the second layer are 2 μm each and the composition of both layers is changed. No. When the composition ratio of Al and Ti and the composition ratio of V and Ti are outside the range according to the present invention as in 5, 11, 12, and 17, the interface between the first layer and the second layer is discontinuous. During the wear test, the interface between the two layers peels off and film damage occurs, and the friction coefficient rises to around 0.8 due to surface irregularities. On the other hand, when the composition ratio of Al and Ti and the composition ratio of V and Ti are within the ranges according to the present invention (No. 6 to 10, No. 13 to 16), the interface between both layers is substantially an epitaxial structure. As a result, adhesion was improved and practical durability was obtained without the interface between the two layers being peeled off during the wear test. Further, the wear amount is around 0.2 mm, the friction coefficient is about 0.2 to 0.3, which is smaller than the (Al, Ti) N single layer, and the outermost surface is (V, Ti It can be seen that excellent wear resistance characteristics can be obtained by using N).
[0038]
No. As shown in FIG. 18, even when the second layer was hexagonal AlN, film damage occurred due to interfacial peeling between the two layers during the wear test, and the friction coefficient increased to about 0.8.
[0039]
No. Nos. 19 to 25 are the results of investigating the influence of changing the film thickness of each layer by setting the composition ratio of Al and Ti of the first layer and the second layer and the composition ratio of V and Ti to 50 atomic%, respectively. . No. When the entire film thickness is as thin as 0.4 μm as in No. 19, the wear amount is increased to about 0.8 mm. As shown in No. 20, when the total film thickness is 0.8 μm, the wear amount is as small as 0.25 mm. 6-10 and no. As in the case of 21 to 23, etc., when the total film thickness is 4 μm or more, the wear amount is reduced to around 0.20. Therefore, in the present invention, the film thickness of the entire film was set to 0.8 μm or more. However, no. When the total film thickness exceeds 50 μm as in 25, the residual stress in the film increases and the film peels off, so that it is impossible to measure the wear amount and the friction coefficient. Therefore, the upper limit of the total film thickness was set to 50 μm.
[0040]
Example 3
A hard film having the composition and film thickness shown in Table 3 was formed on a cemented carbide ball end mill (diameter 5R) in the same manner as in Example 1, and a cutting test was performed. The work material used for the cutting test was S55C, the cutting speed was 98 m / min, the feed was 0.05 mm per blade, the cutting amount was 0.5 mm pick feed, the axial cutting was 4.0 mm, while air blowing Cutting was performed by down-cutting, and the amount of wear at the tip and boundary after machining a cutting length of 50 m was measured. The results are shown in Table 3.
[0041]
[Table 3]
Figure 0003872244
[0042]
No. 1-4 and No.1. No. 18 is a conventional example. Nos. 5, 11, 12, 17, 19, and 25 are comparative examples. 6-10, no. 13-16, no. 20-24 are examples of the present invention. It can be seen that the example of the present invention has an extremely small amount of wear at both the tip and the boundary, as compared with the comparative example and the conventional example, and exhibits excellent wear resistance.
[0043]
【The invention's effect】
Since the present invention is configured as described above, it is a hard film in which two or more different hard layers are laminated, and exhibits excellent wear resistance and adhesion even when the thickness is several μm or more. And a hard film covering member on which the hard film is formed can be provided.
[Brief description of the drawings]
FIG. 1 is a copy of a photograph taken with a transmission electron microscope of a layer interface of an example of the present invention (No. 8 in Example 1).
FIG. 2 is a copy of a photograph obtained by imaging the layer interface of a comparative example (No. 11 in Example 1) with a transmission electron microscope.

Claims (3)

1種以上の金属元素を含む窒化物,炭化物,炭窒化物からなり、これらの中から選ばれた化学組成の異なる2種以上が積層されて基板上に形成される硬質皮膜であって、
各層の厚さが0.4μm以上で、皮膜全体の厚さが0.8〜50μmであると共に、いずれの層も実質的に岩塩型結晶構造からなり、且つ各層の結晶組織が界面で実質的にエピタキシャル成長しており、
および、表面側最外層の組成が
(VuTi1-u)(Nv1-v
但し0.25≦u≦0.75,0.6≦v≦1
であると共に、
表面から2番目に層の組成が、
(AlTi1- )(N1-
但し0.56≦x≦0.65,0.6≦y≦1
であることを特徴とする耐摩耗性に優れた硬質皮膜。
A hard film made of nitride, carbide, carbonitride containing one or more metal elements, and formed on a substrate by laminating two or more different chemical compositions selected from these,
The thickness of each layer is 0.4 μm or more, and the total thickness of the film is 0.8 to 50 μm. Each layer is substantially composed of a rock salt type crystal structure, and the crystal structure of each layer is substantially at the interface. Epitaxially grown,
And the composition of the outermost layer on the surface side is (V u Ti 1-u ) (N v C 1-v )
However, 0.25 ≦ u ≦ 0.75, 0.6 ≦ v ≦ 1
And
The composition of the layer second from the surface
(Al x Ti 1- x ) (N y C 1- y )
However, 0.56 ≦ x ≦ 0.65 , 0.6 ≦ y ≦ 1
Hard film with excellent wear resistance characterized by
請求項1に記載の硬質皮膜が形成されてなる硬質皮膜被覆部材。  A hard film-coated member formed with the hard film according to claim 1. 請求項1に記載の硬質皮膜が20μm以下の厚さで形成されてなる切削工具。  A cutting tool in which the hard coating according to claim 1 is formed with a thickness of 20 μm or less.
JP37117199A 1999-12-27 1999-12-27 Hard film and hard film coated member with excellent wear resistance Expired - Lifetime JP3872244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37117199A JP3872244B2 (en) 1999-12-27 1999-12-27 Hard film and hard film coated member with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37117199A JP3872244B2 (en) 1999-12-27 1999-12-27 Hard film and hard film coated member with excellent wear resistance

Publications (2)

Publication Number Publication Date
JP2001181826A JP2001181826A (en) 2001-07-03
JP3872244B2 true JP3872244B2 (en) 2007-01-24

Family

ID=18498269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37117199A Expired - Lifetime JP3872244B2 (en) 1999-12-27 1999-12-27 Hard film and hard film coated member with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP3872244B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747324A (en) * 2011-04-22 2012-10-24 株式会社日立制作所 Slide member including diamond-like-carbon film

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062582B2 (en) * 2001-07-23 2008-03-19 株式会社神戸製鋼所 Hard coating for cutting tool, method for producing the same, and target for forming hard coating
JP4445815B2 (en) * 2004-07-14 2010-04-07 住友電工ハードメタル株式会社 Surface coated cutting tool
JP2009068047A (en) * 2007-09-11 2009-04-02 Kobe Steel Ltd Hard coating film, material coated with hard coating film and die for cold plastic working
JP5305236B2 (en) * 2009-03-10 2013-10-02 日立ツール株式会社 Hard coating tool
JP5514149B2 (en) * 2011-04-19 2014-06-04 株式会社神戸製鋼所 Hard coating, hard coating coating material, and mold for cold plastic working
JP5838769B2 (en) * 2011-12-01 2016-01-06 三菱マテリアル株式会社 Surface coated cutting tool
JP6651130B2 (en) * 2014-12-26 2020-02-19 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping and wear resistance
JP6650108B2 (en) * 2014-12-26 2020-02-19 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping and wear resistance
WO2023190000A1 (en) * 2022-03-30 2023-10-05 三菱マテリアル株式会社 Surface-coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747324A (en) * 2011-04-22 2012-10-24 株式会社日立制作所 Slide member including diamond-like-carbon film

Also Published As

Publication number Publication date
JP2001181826A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP3417907B2 (en) Multi-layer coating tool
EP1939327A1 (en) Multilayered coated cutting tool
KR101170396B1 (en) Hard coating and its production method
JP4132931B2 (en) Hard film coated tool and manufacturing method thereof
JP5303816B2 (en) Hard coating tool
US20080318013A1 (en) Hard films, multilayer hard films, and production methods thereof
EP3346021B1 (en) Hard coating and hard coating-covered member
JPH07310173A (en) Hard film coated tool and hard film coated member excellent in adhesion
JPH11335813A (en) Hard coating film and laminated hard coating film
KR100633286B1 (en) Covering member having hard coating on its surface excellent in abrasion resistance
JP3872244B2 (en) Hard film and hard film coated member with excellent wear resistance
JP3963354B2 (en) Coated cutting tool
CN110603342A (en) Metal cutting tool with multi-layer coating
JP2003165003A (en) Hard film coated member
KR101079902B1 (en) Surface-coated cutting tool
KR101082655B1 (en) Surface-coated cutting tool
JP4676780B2 (en) Hard coating, laminated hard coating and method for producing the same
Varela et al. NbC-Ni coatings deposited by DC reactive magnetron sputtering: Effect of Ni content on mechanical properties, thermal stability and oxidation resistance
JP4393650B2 (en) Wear-resistant coated tool
JP4331807B2 (en) Hard film and hard film coated member with excellent wear resistance
JP3333081B2 (en) Crystal orientation high strength coated member
JP4350822B2 (en) Hard film and hard film coated member with excellent wear resistance
JP5056808B2 (en) Hard coating tool
JP3836640B2 (en) Hard film and hard film coated member with excellent wear resistance
JP3934263B2 (en) Hard film and hard film coated member with excellent wear resistance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Ref document number: 3872244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term