JP2014198362A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2014198362A
JP2014198362A JP2013074402A JP2013074402A JP2014198362A JP 2014198362 A JP2014198362 A JP 2014198362A JP 2013074402 A JP2013074402 A JP 2013074402A JP 2013074402 A JP2013074402 A JP 2013074402A JP 2014198362 A JP2014198362 A JP 2014198362A
Authority
JP
Japan
Prior art keywords
layer
average
cutting
thickness
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013074402A
Other languages
Japanese (ja)
Inventor
隆二 立山
Ryuji Tateyama
隆二 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013074402A priority Critical patent/JP2014198362A/en
Publication of JP2014198362A publication Critical patent/JP2014198362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coated tool capable of exhibiting excellent chipping resistance and wear resistance even when cutting a precipitation hardening stainless steel or a heat resistant alloy such as inconel under high speed cutting condition.SOLUTION: A hard coated layer includes a lower layer made from a Ti compound having a cubic crystal structure consisting of one or two or more layers among a TiAlN layer, a TiAlC layer, and a TiAlCN layer (X is 0.65≤X≤0.95 in an atom ratio representing a content ratio of Al) of a predetermined single layer average layer thickness; an intermediate layer made from a Cr compound having a cubic crystal structure consisting of one or two or more layers among a CrAlN layer, a CrAlC layer, a CrAlCN layer (Y is 0.60≤Y≤0.90 in an atom ratio representing a content ratio of Al) of a predetermined single layer average layer thickness; and an upper layer made from AlOhaving an average layer thickness and a minute vacancy of a predetermined hole diameter and vacancy density.

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、析出硬化系ステンレス鋼やインコネル等の耐熱合金を高速切削加工した場合にも、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する被覆工具に関するものである。 The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool). More specifically, for example, even when a heat-resistant alloy such as precipitation hardened stainless steel or Inconel is subjected to high-speed cutting, the present invention has an excellent hard coating layer. The present invention relates to a coated tool that exhibits chipping and wear resistance.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミル工具などが知られている。   In general, coated tools are used for turning and planing of work materials such as various types of steel and cast iron, inserts that can be used detachably attached to the tip of a cutting tool, drilling processing of work materials, etc. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material, etc. Also, inserts are detachably attached and cutting is performed in the same way as solid type end mills Insert type end mill tools are known.

近年、金属材料の切削加工においては高能率化の要求が高く、切削速度を高速化させることが求められている。このため、切削工具の工具基体表面を被覆する被膜に対して耐摩耗性や耐チッピング性を向上させることが要求されている。
したがって、このような要求を満足するべく前記被膜の開発が種々行なわれている。
In recent years, there is a high demand for higher efficiency in cutting metal materials, and it is required to increase the cutting speed. For this reason, it is requested | required that the abrasion resistance and chipping resistance should be improved with respect to the film which coat | covers the tool base | substrate surface of a cutting tool.
Therefore, various developments of the coating have been made to satisfy such requirements.

例えば、特許文献1は、CVDによって蒸着形成された、Ti1−XAlN層および/またはTi1−XAlC層および/またはTi1−XAlCN層(X:0.65〜0.95)の上層にAlを被覆した切削工具は、従来一般に多く使用されているTiCN層と比べてTi1−XAlN層および/またはTi1−XAlC層および/またはTi1−XAlCN層がすぐれた断熱効果を有することにより、1000度を超えるような高速ないし高能率の厳しい切削条件においても、良好な切削性能を示すことを開示している。 For example, Patent Document 1 discloses a Ti 1-X Al X N layer and / or a Ti 1-X Al X C layer and / or a Ti 1-X Al X CN layer (X: 0.65) formed by CVD. To 0.95), the cutting tool in which Al 2 O 3 is coated on the upper layer is a Ti 1-X Al X N layer and / or a Ti 1-X Al X C layer as compared with a TiCN layer generally used in the past. And / or that the Ti 1-X Al X CN layer has an excellent heat insulating effect, and thus shows that it exhibits good cutting performance even under severe cutting conditions of high speed or high efficiency exceeding 1000 degrees. .

特表2011−516722号公報Special table 2011-516722 gazette

ところが、近年の切削加工装置の自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらには低コスト化の要求は強く、これに伴い、切削工具には被削材の影響を受けにくい汎用性、すなわち、できるだけ多くの被削材の切削加工が可能な切削工具が求められる傾向にあるが、(Ti,Al)N層および/または(Ti,Al)C層および/または(Ti,Al)CN層の上層にAlを被覆した硬質被覆層を用いた従来被覆工具においては、これを、鋼や鋳鉄などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、析出硬化系ステンレス鋼やインコネル等の耐熱合金を高速切削条件で切削した場合には、層間剥離が起こりやすいという問題があり、この結果、切刃部におけるチッピングの発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。 However, the automation of cutting machines in recent years has been remarkable, while there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting tools are less susceptible to the work material. In other words, there is a tendency to demand a cutting tool capable of cutting as much work material as possible, but a (Ti, Al) N layer and / or a (Ti, Al) C layer and / or (Ti, Al) ) In a conventional coated tool using a hard coating layer in which the upper layer of the CN layer is coated with Al 2 O 3 , when this is used for cutting at a normal cutting speed of a work material such as steel or cast iron, There is no problem, but when heat-resistant alloys such as precipitation hardened stainless steel and Inconel are cut under high-speed cutting conditions, there is a problem that delamination tends to occur. As a result, chipping occurs at the cutting edge. Increased stimulation, which is at present, leading to a relatively short time service life due.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、析出硬化系ステンレス鋼やインコネル等の耐熱合金を、高速切削条件で切削した場合においてもすぐれた耐チッピング性および耐摩耗性を発揮する被覆工具を提供することである。 Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide excellent chipping resistance and resistance even when a heat-resistant alloy such as precipitation hardened stainless steel or Inconel is cut under high-speed cutting conditions. It is to provide a coated tool that exhibits wear characteristics.

そこで、本発明者らは、前述のような観点から、特に析出硬化系ステンレス鋼およびインコネル等の耐熱合金の切削加工を、高速断続切削条件で切削加工した場合に、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を併せ持つ被覆工具を開発すべく、鋭意研究を行った。   In view of the above, the inventors of the present invention have a hard coating layer with excellent resistance when cutting high-temperature interrupted cutting conditions, particularly heat-resistant alloys such as precipitation hardening stainless steel and Inconel. In order to develop a coated tool that has both chipping and wear resistance, we conducted intensive research.

前述した従来技術における硬質被覆層における切削性能の低下原因を探求した結果、高熱が発生する析出硬化系ステンレス鋼およびインコネル等の耐熱合金の高速ミーリング加工で使用した場合に、高温時に上部層であるAlと下部層であるTi1−XAlN層、Ti1−XAlC層、Ti1−XAlCN層の1層または2層以上からなるTi化合物層との密着強度が不足し短寿命となることを見出した。 As a result of investigating the cause of the reduction in cutting performance of the hard coating layer in the prior art described above, it is the upper layer at high temperatures when used in high-speed milling processing of heat-resistant alloys such as precipitation hardened stainless steel and Inconel that generate high heat. Adhesion between Al 2 O 3 and Ti compound layer consisting of one or more of Ti 1-X Al X N layer, Ti 1-X Al X C layer, Ti 1-X Al X CN layer as lower layer It was found that the strength was insufficient and the life was short.

そこで、性能向上を図るべく改良を行った結果、上部層のAlと下部層のTi1−XAlN層、Ti1−XAlC層、Ti1−XAlCN層の1層または2層以上からなるTi化合物層との間に中間層としてCr1−YAlN層、Cr1−YAlC層、Cr1−YAlCN層の1層または2層以上からなるCr化合物層を介することで、高温時においてもAl層と下部層のTi化合物層との密着強度が飛躍的に向上し、高負荷・高熱下において高い耐チッピング性と耐摩耗性を発揮することを見出した。
さらに、上部層のAl層を所定の孔径と空孔密度の微小空孔を有するAl層とすることにより、機械的、熱的衝撃を緩和することができるため、前述した中間層の効果と相俟って、高速断熱切削に使用した際に、きわめて、すぐれた耐チッピング性および耐摩耗性を有することを見出した。
Therefore, as a result of improvements to improve performance, the upper layer Al 2 O 3 and the lower layer Ti 1-X Al X N layer, Ti 1-X Al X C layer, Ti 1-X Al X CN layer One or two of a Cr 1-Y Al Y N layer, a Cr 1-Y Al Y C layer, a Cr 1-Y Al Y CN layer as an intermediate layer between the Ti compound layer composed of one layer or two or more layers of Through the Cr compound layer consisting of more than one layer, the adhesion strength between the Al 2 O 3 layer and the lower Ti compound layer is dramatically improved even at high temperatures, and the chipping resistance is high under high load and high heat. It has been found that it exhibits wear resistance.
Further, by setting the Al 2 O 3 layer having the Al 2 O 3 layer a certain pore size and pore density micro pores of the upper layer, it is possible to relieve the mechanical, thermal shock, the aforementioned In combination with the effect of the intermediate layer, it has been found that when used for high-speed adiabatic cutting, it has excellent chipping resistance and wear resistance.

本発明は、前記知見に基づいてなされたものであって、
「炭化タングステン基超硬合金、炭窒化チタン基サーメットのいずれかで構成された工具基体の表面に化学蒸着法により成膜された硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、総平均層厚が2.5〜20μmであり、
(a)1.0〜10.0μmの平均層厚を有し、かつ、Ti1−XAlN層、Ti1−XAlC層、Ti1−XAlCN層(但し、Xは、TiとAlの合量に占めるAlの含有割合を示し、原子比で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶結晶構造を有するTi化合物で構成された下部層、
(b)0.5〜5.0μmの平均層厚を有し、かつ、Cr1−YAlN層、Cr1−YAlC層、Cr1−YAlCN層(但し、Yは、CrとAlの合量に占めるAlの含有割合を示し、原子比で、0.60≦Y≦0.90)のうち1層または2層以上からなる立方晶結晶構造を有するCr化合物で構成された中間層、
(c)1.0〜5.0μmの平均層厚を有し、孔径が2〜30nmで空孔密度が100〜500個/μmの微小空孔を有するAlで構成された上部層、
からなることを特徴とする表面被覆切削工具。」
を特徴とする。
The present invention has been made based on the above findings,
“In a surface-coated cutting tool in which a hard coating layer formed by chemical vapor deposition is formed on the surface of a tool base composed of either tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer has a total average layer thickness of 2.5 to 20 μm,
(A) An average layer thickness of 1.0 to 10.0 μm, and a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (where X Indicates the Al content in the total amount of Ti and Al, and is an atomic ratio of a Ti compound having a cubic crystal structure consisting of one or more layers of 0.65 ≦ X ≦ 0.95). Composed lower layer,
(B) having an average layer thickness of 0.5 to 5.0 μm, and a Cr 1-Y Al Y N layer, a Cr 1-Y Al Y C layer, a Cr 1-Y Al Y CN layer (provided that Y Indicates the content ratio of Al in the total amount of Cr and Al, and is a Cr compound having a cubic crystal structure composed of one layer or two or more layers in an atomic ratio of 0.60 ≦ Y ≦ 0.90). Composed middle layer,
(C) Upper part made of Al 2 O 3 having an average layer thickness of 1.0 to 5.0 μm, pore diameters of 2 to 30 nm and pores of 100 to 500 / μm 2. layer,
A surface-coated cutting tool comprising: "
It is characterized by.

次に、本発明の被覆工具の硬質被覆層の構成層に関し、前記の通りに数値限定した理由を説明する。
(a)硬質被覆層の総平均層厚:
硬質被覆層の総平均層厚が、2.5μm未満では、下部層、中間層、上部層からなる硬質被覆層の備えるすぐれた耐チッピング性と耐摩耗性を十分に発揮することができず、一方、20μmを超えると、反対に、チッピング、欠損を発生しやすくなるので、硬質被覆層の総平均層厚は、2.5〜20μmと定めた。
(b)下部層の平均層厚および組成:
下部層を構成するTi化合物層の構成成分であるTi成分には高温強度を向上させ、その結果、耐摩耗性を向上させる作用があるが、平均層厚が1.0μm未満になると、十分な耐摩耗性が得られない。一方、平均層厚が10.0μmを超えると、粒子の粗大化による膜強度の低下により、耐チッピング性が低下する。そのため、下部層の平均層厚を、1.0〜10.0μmと定めた。
また、Ti化合物層には、工具基体との密着性を向上させる作用があるが、Alの含有割合がTiとの合量に対して原子比で0.65未満となると十分な密着強度が得られない。一方、0.95を超えると六方晶結晶構造が混在するようになるため耐摩耗性が低下する。そのため、TiとAlの合量に占めるAlの含有割合であるX(原子比)の値を、0.65≦X≦0.95と定めた。
(c)中間層の平均層厚および組成:
中間層を構成するCr化合物層には、上部層であるAlとも下部層であるTi化合物層とも高い密着性を示すことから、上部層と下部層の間に介在させることにより、高温時においても上部層と下部層との密着強度が飛躍的に向上し、高負荷・高熱下において高い耐チッピング性と耐摩耗性を発揮する。しかしながら、平均層厚が0.5μm未満になると、十分な密着強度が得られない。一方、平均層厚が5.0μmを超えると、上部層のAlが粒成長しやすくなり、上部層の耐チッピング性が低下する。そのため、中間層の平均層厚を、0.5〜5.0μmと定めた。
また、Cr化合物層には、下部層との中間層との密着性を向上させる作用があるが、Alの含有割合がCrとの合量に対して原子比で0.60未満となると十分な膜硬度が得られない。一方、0.90を超えると六方晶結晶構造が混在するようになるため、密着強度が低下する。そのため、CrとAlの合量に占めるAlの含有割合であるY(原子比)の値を、0.60≦Y≦0.90と定めた。
(d)上部層の平均層厚:
上部層を構成するAl層は、高温硬さと耐熱性を備えることで高速切削時の耐摩耗性を向上させるが、その平均層厚が1.0μm未満では、十分な耐摩耗性を確保することができず、一方、その平均層厚が5.0μmを超えると、Al結晶粒が粗大化し易くなり、その結果、高速断続切削加工時の耐チッピング性、耐欠損性が低下するようになることから、上部層の平均層厚を、1.0〜5.0μmと定めた。
(e)上部層の微小空孔の孔径および空孔密度
上部層であるAlに形成される微小空孔の孔径を2〜30nmと定めたのは、空孔の孔径が2nm未満では、衝撃緩和効果が期待できず、一方、孔径が30nmを超えると、Al層の靭性低下が大きくなるためであり、Al層の高温強度、高温硬さを維持しつつ、断続的・衝撃的負荷に対する衝撃緩和効果を保持するためには、Al層内部に形成される微小空孔の孔径は2〜30nmでなければならない。
また、空孔密度を100〜500個/μmと定めたのは、100個/μm未満では、機械的、熱的衝撃を緩和するには、不十分であり、500個/μmを超えると、耐衝撃性はすぐれたとしても、耐摩耗性が低下するからである。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.
(A) Total average layer thickness of the hard coating layer:
If the total average layer thickness of the hard coating layer is less than 2.5 μm, the excellent chipping resistance and wear resistance of the hard coating layer composed of the lower layer, the intermediate layer, and the upper layer cannot be sufficiently exhibited, On the other hand, if it exceeds 20 μm, on the contrary, chipping and defects are likely to occur. Therefore, the total average layer thickness of the hard coating layer is set to 2.5 to 20 μm.
(B) Average layer thickness and composition of the lower layer:
The Ti component, which is a constituent component of the Ti compound layer constituting the lower layer, has the effect of improving the high temperature strength and, as a result, improving the wear resistance. However, if the average layer thickness is less than 1.0 μm, it is sufficient. Abrasion resistance cannot be obtained. On the other hand, when the average layer thickness exceeds 10.0 μm, chipping resistance is lowered due to a decrease in film strength due to coarsening of particles. Therefore, the average layer thickness of the lower layer is set to 1.0 to 10.0 μm.
In addition, the Ti compound layer has an effect of improving the adhesion to the tool base, but sufficient adhesion strength is obtained when the Al content is less than 0.65 in terms of atomic ratio with respect to the total amount of Ti. I can't. On the other hand, if it exceeds 0.95, the hexagonal crystal structure is mixed, so that the wear resistance is lowered. Therefore, the value of X (atomic ratio), which is the Al content in the total amount of Ti and Al, was determined to be 0.65 ≦ X ≦ 0.95.
(C) Average layer thickness and composition of the intermediate layer:
The Cr compound layer constituting the intermediate layer exhibits high adhesion to both the upper layer Al 2 O 3 and the lower layer Ti compound layer. Even at times, the adhesion strength between the upper layer and the lower layer is dramatically improved, and high chipping resistance and wear resistance are exhibited under high load and high heat. However, when the average layer thickness is less than 0.5 μm, sufficient adhesion strength cannot be obtained. On the other hand, when the average layer thickness exceeds 5.0 μm, Al 2 O 3 in the upper layer is likely to grow and the chipping resistance of the upper layer is lowered. Therefore, the average layer thickness of the intermediate layer is set to 0.5 to 5.0 μm.
Further, the Cr compound layer has an effect of improving the adhesion between the lower layer and the intermediate layer, but it is sufficient when the Al content is less than 0.60 in terms of atomic ratio with respect to the total amount of Cr. The film hardness cannot be obtained. On the other hand, if it exceeds 0.90, the hexagonal crystal structure is mixed, so that the adhesion strength is lowered. Therefore, the value of Y (atomic ratio), which is the content ratio of Al in the total amount of Cr and Al, is defined as 0.60 ≦ Y ≦ 0.90.
(D) Upper layer average layer thickness:
The Al 2 O 3 layer constituting the upper layer improves the wear resistance during high-speed cutting by providing high-temperature hardness and heat resistance, but if the average layer thickness is less than 1.0 μm, sufficient wear resistance is achieved. On the other hand, if the average layer thickness exceeds 5.0 μm, the Al 2 O 3 crystal grains are likely to be coarsened. As a result, chipping resistance and fracture resistance during high-speed intermittent cutting are reduced. The average layer thickness of the upper layer was determined to be 1.0 to 5.0 μm.
(E) Hole diameter and hole density of the fine holes in the upper layer The hole diameter of the fine holes formed in the upper layer of Al 2 O 3 is determined to be 2 to 30 nm when the hole diameter is less than 2 nm. The impact relaxation effect cannot be expected. On the other hand, if the pore diameter exceeds 30 nm, the toughness of the Al 2 O 3 layer is greatly reduced. While maintaining the high-temperature strength and high-temperature hardness of the Al 2 O 3 layer, In order to maintain the impact relaxation effect against intermittent / impact loads, the pore size of the micropores formed in the Al 2 O 3 layer must be 2 to 30 nm.
Moreover, the pore density is determined to be 100 to 500 / μm 2, and if it is less than 100 / μm 2, it is insufficient to alleviate mechanical and thermal shock, and 500 / μm 2 is determined. This is because if it exceeds, even if the impact resistance is excellent, the wear resistance is lowered.

本発明の硬質被覆層は、前述したような下部層、中間層、上部層から構成されることを特徴とするが、使用済み切れ刃の識別のために、最外層としてTiN層を被覆することも可能である。   The hard coating layer of the present invention is composed of the lower layer, the intermediate layer, and the upper layer as described above, but the TiN layer is coated as the outermost layer for identifying the used cutting edge. Is also possible.

さらに、下部層と工具基体との間に、Tiの炭化物、窒化物、炭窒化物、炭酸化物および炭窒酸化物のうちの1層または2層以上からなるTi化合物層を形成することにより、硬質被覆層と工具基体との密着性をより向上させることが可能である。   Furthermore, by forming a Ti compound layer consisting of one or more of Ti carbide, nitride, carbonitride, carbonate and carbonitride between the lower layer and the tool base, It is possible to further improve the adhesion between the hard coating layer and the tool base.

また、硬質被覆層にウエットブラスト、ブラシ処理、弾性砥石処理などの機械的処理を行うことにより、硬質被覆層表面の平滑化を図り、潤滑性を向上させることが可能である。   Further, by subjecting the hard coating layer to mechanical treatment such as wet blasting, brush treatment, and elastic grindstone treatment, it is possible to smooth the surface of the hard coating layer and improve lubricity.

本発明の被覆工具の一態様によれば、硬質被覆層が総平均層厚2.5〜20μmであり、1.0〜10.0μmの平均層厚を有し、かつ、Ti1−XAlN層、Ti1−XAlC層、Ti1−XAlCN層(但し、Xは、TiとAlの合量に占めるAlの含有割合を示し、原子比で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶結晶構造を有するTi化合物で構成された下部層、0.5〜5.0μmの平均層厚を有し、かつ、Cr1−YAlN層、Cr1−YAlC層、Cr1−YAlCN層(但し、Yは、CrとAlの合量に占めるAlの含有割合を示し、原子比で、0.60≦Y≦0.90)のうち1層または2層以上からなる立方晶結晶構造を有するCr化合物で構成された中間層、1.0〜5.0μmの平均層厚を有し、孔径が2〜30nmで空孔密度が100〜500個/μmの微小空孔を有するAlで構成された上部層からなることにより、高温時における上部層と下部層との密着性が飛躍的に向上し、高負荷・高熱下において高い耐チッピング性と耐摩耗性を発揮するものであって、その効果は絶大である。 According to one aspect of the coated tool of the present invention, the hard coating layer has a total average layer thickness of 2.5 to 20 μm, an average layer thickness of 1.0 to 10.0 μm, and Ti 1-X Al X N layer, Ti 1-X Al X C layer, Ti 1-X Al X CN layer (where X represents the Al content in the total amount of Ti and Al, and the atomic ratio is 0.65 ≦ X ≦ 0.95), a lower layer composed of a Ti compound having a cubic crystal structure consisting of one or more layers, an average layer thickness of 0.5 to 5.0 μm, and Cr 1 -Y Al Y N layer, Cr 1-Y Al Y C layer, Cr 1-Y Al Y CN layer (where Y represents the Al content in the total amount of Cr and Al, and the atomic ratio is 0 .60 ≦ Y ≦ 0.90), an intermediate layer made of a Cr compound having a cubic crystal structure consisting of one or more layers Has an average layer thickness of 1.0 to 5.0 m, an upper layer comprised of Al 2 O 3 which pore size having pores density of 100 to 500 pieces / [mu] m 2 microvoided in 2~30nm As a result, the adhesion between the upper layer and the lower layer at a high temperature is drastically improved, and high chipping resistance and wear resistance are exhibited under high load and high heat, and the effect is enormous. .

本発明被覆工具および比較被覆工具を製造する際に使用した化学蒸着装置の概略図である。It is the schematic of the chemical vapor deposition apparatus used when manufacturing this invention coated tool and a comparative coated tool. 本発明被覆工具を構成する硬質被覆層の縦断面膜構成図である。It is a longitudinal cross-sectional film | membrane structural view of the hard coating layer which comprises this invention coated tool.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、表面を研磨し、切刃部にホーニング加工を施すことによりISO・SEEN1203に規定するインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10をそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and pressed into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the surface is polished, and the cutting edge is subjected to honing, thereby ISO / SEEN 1203 Tool bases A-1 to A-10 made of a WC-base cemented carbide having an insert shape as defined in 1 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後表面を研磨し、切刃部にホーニング加工を施すことにより、ISO・SEEN1203に規定するインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6をそれぞれ製造した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure Then, the green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, the sintered surface is polished, and a honing process is performed on the cutting edge portion. -The tool bases B-1 to B-6 made of TiCN base cermet having the insert shape specified in SEEN1203 were manufactured.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される化学蒸着装置を用い、
(b)まず、装置内を排気して1〜10kPaに保持しながら、ヒーターで装置内を700〜900℃に加熱した後、第1供給ラインから反応ガスとして、TiCl:0.2〜4.0%、AlCl:0.4〜4.0%、CH:0〜15%、Ar:0〜25%、H:残り、第2供給ラインから、NH:0〜10%、N:0〜20%を導入して、表3に示すような形成条件で、工具基体表面に表6に示すような目標層厚および目標組成の下部層としてのTi化合物を形成する。
(c)次に装置内雰囲気を1〜10kPaに保持しながら、ヒーターで装置内を700〜900℃に加熱した後、第1供給ラインから反応ガスとして、CrCl:0.5〜2.4%、AlCl:3.6〜5.5%、CH:0〜6%、Ar:0〜15%、H:残り、第2供給ラインから、NH:0〜6%、N:0〜20%を導入して、表4に示すような形成条件で、下部層の上に表6に示すような目標層厚および目標組成の中間層としてのCr化合物を形成する。
(d)さらに、装置内雰囲気を5〜8kPaに保持しながら、ヒーターで装置内を960〜1000℃に加熱した後、反応ガスとして、AlCl:2〜3%、CO:5〜6%、HCl:2〜3%、HS:0.15〜0.50%、H:残りを導入して、表5に示すような形成条件で、中間層の上に上部層としてのAlを形成する。
(e)前記(d)によりAlを形成している途中に、前記反応ガスの導入を停止し、その代わりに、5〜10%のガス組成になるようにSFを添加したHガスを導入し、反応雰囲気温度:800〜1050℃、反応雰囲気圧力:4〜27kPaの条件でSFエッチングを行う。
(f)前記(d)と(e)を所定の周期((d)の反応ガス1導入時間と(e)の反応ガス1導入時間の和)で所定のデューティー比(周期に対する(d)の反応ガス1導入時間)で、表6に示すような目標層厚のAl層となるまで繰り返す。
(a)〜(f)の工程により、表6に示した下部層、中間層、上部層を有する本発明被覆インサート1〜16をそれぞれ製造した。
さらに本発明被覆インサート1〜16の下部層および中間層について、X線回折装置を用いて、その結晶構造を特定した。それらの結果を同じく表6に示した。
また、上部層について走査型電子顕微鏡(倍率50000倍)を用いて、膜厚方向の縦断面を複数視野に亘って観察し、微小空孔の平均孔径を求めた。さらに、縦断面の縦0.1μm×横0.1μmの領域に含まれる孔径2〜30nmの微小空孔の数を計測し、微小空孔密度(個/μm)を求め表6に示した。
また、前記硬質被覆層を構成する下部層、中間層、上部層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に等しい平均層厚(5点測定の平均値)を示した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the chemical vapor deposition apparatus shown in FIG. 1 was used. ,
(B) First, the inside of the apparatus is heated to 700 to 900 ° C. with a heater while the inside of the apparatus is exhausted and held at 1 to 10 kPa, and then TiCl 4 : 0.2 to 4 is used as a reaction gas from the first supply line. 0.0%, AlCl 3 : 0.4 to 4.0%, CH 4 : 0 to 15%, Ar: 0 to 25%, H 2 : remaining, from the second supply line, NH 3 : 0 to 10%, N 2 : 0 to 20% is introduced, and a Ti compound as a lower layer having a target layer thickness and a target composition as shown in Table 6 is formed on the tool base surface under the formation conditions as shown in Table 3.
(C) Next, the inside of the apparatus is heated to 700 to 900 ° C. with a heater while maintaining the atmosphere in the apparatus at 1 to 10 kPa, and then CrCl 3 : 0.5 to 2.4 is used as a reaction gas from the first supply line. %, AlCl 3: 3.6~5.5%, CH 4: 0~6%, Ar: 0~15%, H 2: remainder, a second supply line, NH 3: 0~6%, N 2 0 to 20% is introduced, and a Cr compound as an intermediate layer having a target layer thickness and a target composition as shown in Table 6 is formed on the lower layer under the formation conditions as shown in Table 4.
(D) Further, while maintaining the atmosphere in the apparatus at 5 to 8 kPa, the inside of the apparatus was heated to 960 to 1000 ° C. with a heater, and then the reaction gas was AlCl 3 : 2 to 3%, CO 2 : 5 to 6%. , HCl: 2 to 3%, H 2 S: 0.15 to 0.50%, H 2 : Al is added as the upper layer on the intermediate layer under the formation conditions shown in Table 5 by introducing the remainder. 2 O 3 is formed.
(E) During the formation of Al 2 O 3 by (d), the introduction of the reaction gas was stopped, and instead, SF 6 was added so that the gas composition was 5 to 10%. Two gases are introduced, and SF 6 etching is performed under the conditions of reaction atmosphere temperature: 800 to 1050 ° C. and reaction atmosphere pressure: 4 to 27 kPa.
(F) The steps (d) and (e) are performed at a predetermined duty ratio (the sum of the reaction gas 1 introduction time of (d) and the reaction gas 1 introduction time of (e)) with a predetermined duty ratio ((d) with respect to the cycle). The reaction gas 1 is introduced) until the Al 2 O 3 layer having the target layer thickness as shown in Table 6 is obtained.
The coated inserts 1 to 16 of the present invention having the lower layer, the intermediate layer, and the upper layer shown in Table 6 were produced by the steps (a) to (f), respectively.
Furthermore, about the lower layer and intermediate | middle layer of this invention covering insert 1-16, the crystal structure was specified using the X-ray-diffraction apparatus. The results are also shown in Table 6.
In addition, the upper layer was observed with a scanning electron microscope (magnification 50000 times) over a plurality of visual fields in the film thickness direction, and the average pore diameter of the micropores was determined. Further, the number of micropores having a pore diameter of 2 to 30 nm contained in a vertical cross-sectional area of 0.1 μm × 0.1 μm wide was measured, and the micropore density (pieces / μm 2 ) was determined and shown in Table 6. .
Further, when the average layer thicknesses of the lower layer, the intermediate layer, and the upper layer constituting the hard coating layer were measured using a scanning electron microscope, the average layer thickness was substantially equal to the target layer thickness (5 points). Average value of measurement).

また、比較の目的で、
(a)前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される化学蒸着装置を用い、
(b)まず、装置内を排気して1〜12kPaに保持しながら、ヒーターで装置内を650〜1000℃に加熱した後、第1供給ラインから反応ガスとして、TiCl:0.2〜5.0%、AlCl:0.4〜3.0%、CH:0〜10%、Ar:0〜20%、H:残り、第2供給ラインから、NH:0〜10%、N:0〜20%を導入して、表3に示すような形成条件で、工具基体表面に表7に示すような目標層厚および目標組成の下部層としてのTi化合物を形成する。
(c)次に装置内雰囲気を1〜12kPaに保持しながら、ヒーターで装置内を650〜1000℃に加熱しながら、第1供給ラインから反応ガスとして、CrCl:0.5〜3.9%、AlCl:1.0〜5.5%、CH:0〜6.0%、Ar:0〜15%、H:残り、第2供給ラインから、NH:0〜6%、N:0〜20%を導入して、表4に示すような形成条件で、下部層の上に表7に示すような目標層厚および目標組成の中間層としてのCr化合物を形成する。
(d)さらに、装置内雰囲気を3〜10kPaに保持しながら、ヒーターで装置内を940〜1020℃に加熱しながら、反応ガスとして、AlCl:1.5〜6.0%、CO:2.0〜8.0%、HCl:1.0〜5.0%、HS:0.15〜0.50%、H:残りを導入して、表5に示すような形成条件で、中間層の上に上部層としてのAlを形成する。
(e)前記(d)によりAlを形成している途中に、前記反応ガスの導入を停止し、その代わりに、4〜15%のガス組成になるようにSFを添加したHガスを導入し、反応雰囲気温度:780〜1060℃、反応雰囲気圧力:3〜30kPaの条件でSFエッチングを行う。
(f)前記(d)と(e)を所定の周期((d)の反応ガス1導入時間と(e)の反応ガス1導入時間の和)で所定のデューティー比(周期に対する(d)の反応ガス1導入時間)で、表7に示すような目標層厚のAl層となるまで繰り返す。
(a)〜(f)の工程により、表7に示した上部層、中間層、上部層を有する比較被覆インサート1〜16をそれぞれ製造した。
さらに比較被覆インサート1〜16の下部層および中間層について、X線回折装置を用いて、その結晶構造を特定した。それらの結果を同じく表7に示した。
また、上部層について走査型電子顕微鏡(倍率50000倍)を用いて。膜厚方向の縦断面を複数視野に亘って観察し、微小空孔の平均孔径を求めた。さらに、縦断面の縦0.1μm×横0.1μmの領域に含まれる孔径2〜30nmの微小空孔の数を計測し、微小空孔密度(個/μm)を求め表7に示した。
また、前記硬質被覆層を構成する下部層、中間層、上部層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に等しい平均層厚(5点測定の平均値)を示した。
For comparison purposes,
(A) Each of the tool bases A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, using the chemical vapor deposition apparatus shown in FIG.
(B) First, while the inside of the apparatus is evacuated and held at 1 to 12 kPa, the inside of the apparatus is heated to 650 to 1000 ° C. with a heater, and then TiCl 4 : 0.2 to 5 is used as a reaction gas from the first supply line. 0.0%, AlCl 3 : 0.4 to 3.0%, CH 4 : 0 to 10%, Ar: 0 to 20%, H 2 : remaining, from the second supply line, NH 3 : 0 to 10%, N 2 : 0 to 20% is introduced, and a Ti compound as a lower layer having a target layer thickness and a target composition as shown in Table 7 is formed on the tool base surface under the formation conditions as shown in Table 3.
(C) Next, while maintaining the apparatus atmosphere at 1 to 12 kPa, while heating the interior of the apparatus to 650 to 1000 ° C. with a heater, CrCl 3 : 0.5 to 3.9 as a reaction gas from the first supply line. %, AlCl 3: 1.0~5.5%, CH 4: 0~6.0%, Ar: 0~15%, H 2: remainder, a second supply line, NH 3: 0~6%, N 2 : 0 to 20% is introduced, and a Cr compound as an intermediate layer having a target layer thickness and a target composition as shown in Table 7 is formed on the lower layer under the formation conditions as shown in Table 4.
(D) Further, while maintaining the atmosphere in the apparatus at 3 to 10 kPa and heating the interior of the apparatus to 940 to 1020 ° C. with a heater, as a reaction gas, AlCl 3 : 1.5 to 6.0%, CO 2 : 2.0 to 8.0%, HCl: 1.0 to 5.0%, H 2 S: 0.15 to 0.50%, H 2 : The remaining conditions were introduced, and the formation conditions as shown in Table 5 Thus, Al 2 O 3 as an upper layer is formed on the intermediate layer.
(E) In the course of forming Al 2 O 3 according to (d), the introduction of the reaction gas was stopped, and instead, SF 6 was added so that the gas composition was 4 to 15%. Two gases are introduced, and SF 6 etching is performed under conditions of reaction atmosphere temperature: 780 to 1060 ° C. and reaction atmosphere pressure: 3 to 30 kPa.
(F) The steps (d) and (e) are performed at a predetermined duty ratio (the sum of the reaction gas 1 introduction time of (d) and the reaction gas 1 introduction time of (e)) with a predetermined duty ratio ((d) with respect to the cycle). The reaction gas 1 is introduced) until the Al 2 O 3 layer having the target layer thickness as shown in Table 7 is obtained.
By the steps (a) to (f), comparative coated inserts 1 to 16 each having an upper layer, an intermediate layer, and an upper layer shown in Table 7 were produced.
Furthermore, about the lower layer and intermediate | middle layer of the comparative covering inserts 1-16, the crystal structure was specified using the X-ray-diffraction apparatus. The results are also shown in Table 7.
Moreover, about the upper layer, using a scanning electron microscope (50000 times magnification). The longitudinal cross section in the film thickness direction was observed over a plurality of fields of view, and the average pore diameter of the microvoids was determined. Further, the number of micropores having a pore diameter of 2 to 30 nm contained in a vertical cross-sectional area of 0.1 μm × 0.1 μm wide was measured, and the micropore density (pieces / μm 2 ) was determined and shown in Table 7. .
Further, when the average layer thicknesses of the lower layer, the intermediate layer, and the upper layer constituting the hard coating layer were measured using a scanning electron microscope, the average layer thickness was substantially equal to the target layer thickness (5 points). Average value of measurement).

つぎに、本発明被覆インサート1〜16、および比較被覆インサート1〜16について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS630の板材、
切削速度:200m/min.、
切り込み:ae 50mm、ap 1.5mm、
一刃送り量:0.2mm/刃、
の条件(切削条件A)での析出硬化系ステンレス鋼の乾式高速ミーリング切削加工試験(通常の切削速度は100 m/min.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのインコネル718の板材、
切削速度:60 m/min.、
切り込み:ae 50mm、ap 1.0mm、
一刃送り量:0.1mm/刃、
の条件(切削条件B)でのインコネル718の湿式高速ミーリング切削加工試験(通常の切削速度は30 m/min.)、
を行い、切れ刃逃げ面の摩耗量が0.3mmに達するまでの加工パス数をカウントした(加工する面を1回切削することを1パスとしている)。加工の途中で切れ刃の欠損が生じた場合には、その時点で終了している加工パス数をカウントした。この測定結果を表8に示した。
Next, for the present invention coated inserts 1-16 and comparative coated inserts 1-16,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS630 plate material,
Cutting speed: 200 m / min. ,
Incision: ae 50 mm, ap 1.5 mm,
Single-blade feed rate: 0.2 mm / tooth,
Dry high-speed milling cutting test of precipitation hardening stainless steel under the following conditions (cutting condition A) (normal cutting speed is 100 m / min.),
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm Inconel 718 plate,
Cutting speed: 60 m / min. ,
Incision: ae 50 mm, ap 1.0 mm,
Single blade feed amount: 0.1 mm / tooth,
Inconel 718 wet high-speed milling cutting test under normal conditions (cutting condition B) (normal cutting speed is 30 m / min.),
And the number of machining passes until the amount of wear of the cutting edge flank reached 0.3 mm was counted (one cut is made on the surface to be machined once). When a cutting edge defect occurred during the machining, the number of machining passes completed at that time was counted. The measurement results are shown in Table 8.

表8に示される結果から、本発明被覆工具は、所定の組成および目標層厚の下部層、中間層、上部層からなる積層構造を有する硬質被覆層を形成した結果、下部層であるTi化合物層によって、工具基体表面に強固に密着接合した状態で、耐欠損性、高温硬さ、高温強度が向上し、中間層であるCr化合物層が下部層と上部層との密着強度を向上させるとともに上部層が機械的、熱的衝撃を緩和させるため、析出硬化系ステンレス鋼、インコネルの高速切削加工でも、すぐれた耐チッピング性と耐摩耗性が確保され、長期に亘ってすぐれた切削性能を発揮する。これに対して、本発明とは異なる組成の下部層、中間層、上部層の積層構造からなる硬質被覆層を有する比較被覆工具においては、いずれも析出硬化系ステンレス鋼、インコネルの高速切削加工では、耐チッピング性が十分でなく、かつ皮膜の密着強度が十分でないために、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Table 8, the coated tool of the present invention formed a hard coating layer having a laminated structure composed of a lower layer, an intermediate layer, and an upper layer having a predetermined composition and target layer thickness. The layer improves the fracture resistance, high-temperature hardness, and high-temperature strength in a tightly bonded state to the tool substrate surface, and the Cr compound layer as an intermediate layer improves the adhesion strength between the lower layer and the upper layer. The upper layer relieves mechanical and thermal shocks, ensuring excellent chipping resistance and wear resistance even during high-speed cutting of precipitation hardened stainless steel and Inconel, providing excellent cutting performance over a long period of time. To do. On the other hand, in comparative coated tools having a hard coating layer composed of a laminated structure of a lower layer, an intermediate layer, and an upper layer having a composition different from that of the present invention, both are precipitation hardening stainless steel and Inconel high-speed cutting. It is apparent that the service life is reached in a relatively short time due to insufficient chipping resistance and insufficient adhesion strength of the film.

前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特に、析出硬化系ステンレス鋼、インコネル等の耐熱合金の高速切削加工でもすぐれた耐摩耗性と耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has excellent wear resistance not only for cutting general work materials, but particularly for high-speed cutting of heat-resistant alloys such as precipitation hardened stainless steel and Inconel. Because it exhibits chipping resistance and exhibits excellent cutting performance over a long period of time, it can fully satisfy the automation of cutting equipment, labor saving and energy saving of cutting, and cost reduction. is there.

Claims (1)

炭化タングステン基超硬合金、炭窒化チタン基サーメットのいずれかで構成された工具基体の表面に化学蒸着法により成膜された硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、総平均層厚が2.5〜20μmであり、
(a)1.0〜10.0μmの平均層厚を有し、かつ、Ti1−XAlN層、Ti1−XAlC層、Ti1−XAlCN層(但し、Xは、TiとAlの合量に占めるAlの含有割合を示し、原子比で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶結晶構造を有するTi化合物で構成された下部層、
(b)0.5〜5.0μmの平均層厚を有し、かつ、Cr1−YAlN層、Cr1−YAlC層、Cr1−YAlCN層(但し、Yは、CrとAlの合量に占めるAlの含有割合を示し、原子比で、0.60≦Y≦0.90)のうち1層または2層以上からなる立方晶結晶構造を有するCr化合物で構成された中間層、
(c)1.0〜5.0μmの平均層厚を有し、孔径が2〜30nmで空孔密度が100〜500個/μmの微小空孔を有するAlで構成された上部層、
からなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer formed by chemical vapor deposition on the surface of a tool base composed of any of tungsten carbide-based cemented carbide and titanium carbonitride-based cermet,
The hard coating layer has a total average layer thickness of 2.5 to 20 μm,
(A) An average layer thickness of 1.0 to 10.0 μm, and a Ti 1-X Al X N layer, a Ti 1-X Al X C layer, a Ti 1-X Al X CN layer (where X Indicates the Al content in the total amount of Ti and Al, and is an atomic ratio of a Ti compound having a cubic crystal structure consisting of one or more layers of 0.65 ≦ X ≦ 0.95). Composed lower layer,
(B) having an average layer thickness of 0.5 to 5.0 μm, and a Cr 1-Y Al Y N layer, a Cr 1-Y Al Y C layer, a Cr 1-Y Al Y CN layer (provided that Y Indicates the content ratio of Al in the total amount of Cr and Al, and is a Cr compound having a cubic crystal structure composed of one layer or two or more layers in an atomic ratio of 0.60 ≦ Y ≦ 0.90). Composed middle layer,
(C) Upper part made of Al 2 O 3 having an average layer thickness of 1.0 to 5.0 μm, pore diameters of 2 to 30 nm and pores of 100 to 500 / μm 2. layer,
A surface-coated cutting tool comprising:
JP2013074402A 2013-03-29 2013-03-29 Surface coated cutting tool Pending JP2014198362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013074402A JP2014198362A (en) 2013-03-29 2013-03-29 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013074402A JP2014198362A (en) 2013-03-29 2013-03-29 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2014198362A true JP2014198362A (en) 2014-10-23

Family

ID=52355622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013074402A Pending JP2014198362A (en) 2013-03-29 2013-03-29 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2014198362A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159366A (en) * 2015-02-26 2016-09-05 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2018034277A (en) * 2016-09-02 2018-03-08 三菱マテリアル株式会社 Surface-coated cutting tool comprising hard coating layer exerting excellent chipping resistance and wear resistance
US10618115B2 (en) 2015-10-30 2020-04-14 Mitsubishi Materials Corporation Surface-coated cutting tool and manufacturing method of the same
US10625347B2 (en) 2015-10-30 2020-04-21 Mitsubishi Materials Corporation Surface-coated cutting tool with hard coating layer that exhibits excellent chipping resistance and manufacturing method thereof
EP3711883A4 (en) * 2017-11-16 2021-08-25 MOLDINO Tool Engineering, Ltd. Coated cutting tool, and manufacturing method and chemical vapor deposition device for same
JPWO2020050262A1 (en) * 2018-09-05 2021-09-02 京セラ株式会社 Covering tools and cutting tools

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159366A (en) * 2015-02-26 2016-09-05 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
US10618115B2 (en) 2015-10-30 2020-04-14 Mitsubishi Materials Corporation Surface-coated cutting tool and manufacturing method of the same
US10625347B2 (en) 2015-10-30 2020-04-21 Mitsubishi Materials Corporation Surface-coated cutting tool with hard coating layer that exhibits excellent chipping resistance and manufacturing method thereof
JP2018034277A (en) * 2016-09-02 2018-03-08 三菱マテリアル株式会社 Surface-coated cutting tool comprising hard coating layer exerting excellent chipping resistance and wear resistance
EP3711883A4 (en) * 2017-11-16 2021-08-25 MOLDINO Tool Engineering, Ltd. Coated cutting tool, and manufacturing method and chemical vapor deposition device for same
US11541461B2 (en) 2017-11-16 2023-01-03 Moldino Tool Engineering, Ltd. Coated cutting tool, and method and system for manufacturing the same by chemical vapor deposition
JPWO2020050262A1 (en) * 2018-09-05 2021-09-02 京セラ株式会社 Covering tools and cutting tools
JP7089038B2 (en) 2018-09-05 2022-06-21 京セラ株式会社 Covering tools and cutting tools

Similar Documents

Publication Publication Date Title
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
TWI470088B (en) Hard alloy and cutting tools using it
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
JP2014198362A (en) Surface coated cutting tool
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5594577B2 (en) Surface coated cutting tool
JP6245432B2 (en) Surface coated cutting tool
JP2013223894A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high speed milling cutting and high speed intermittent cutting
JP5041222B2 (en) Surface coated cutting tool
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2011224671A (en) Surface-coated cutting tool
JP4645819B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP2006334739A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting of heat resistant alloy
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4697660B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5440350B2 (en) Surface coated cutting tool
JP5440352B2 (en) Surface coated cutting tool
JP2009285764A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed high-feed cutting work
JP4193053B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP5287383B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed cutting
JP5234351B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer