JP7021607B2 - Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer - Google Patents

Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer Download PDF

Info

Publication number
JP7021607B2
JP7021607B2 JP2018115561A JP2018115561A JP7021607B2 JP 7021607 B2 JP7021607 B2 JP 7021607B2 JP 2018115561 A JP2018115561 A JP 2018115561A JP 2018115561 A JP2018115561 A JP 2018115561A JP 7021607 B2 JP7021607 B2 JP 7021607B2
Authority
JP
Japan
Prior art keywords
layer
average
carbon dioxide
composite carbon
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115561A
Other languages
Japanese (ja)
Other versions
JP2019217579A (en
Inventor
賢一 佐藤
卓也 石垣
光亮 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018115561A priority Critical patent/JP7021607B2/en
Publication of JP2019217579A publication Critical patent/JP2019217579A/en
Application granted granted Critical
Publication of JP7021607B2 publication Critical patent/JP7021607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層が優れた耐チッピング性、耐摩耗性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention is a high-speed intermittent cutting process in which a shocking load acts on the cutting edge while generating high heat of alloy steel or the like, and the hard coating layer has excellent chipping resistance and wear resistance. It relates to a surface-coated cutting tool (hereinafter, may be referred to as a coated tool) that exhibits excellent cutting performance over a long period of use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti-Al系の複合窒化物層をPVD法やCVD法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi-Al系の複合窒化物層や複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, it is generally composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide, a titanium carbonitride (hereinafter referred to as TiCN) -based cermet or a cubic boron nitride (hereinafter referred to as cBN) -based ultrahigh-pressure sintered body. As a hard coating layer, there is a coating tool in which a Ti-Al-based composite nitride layer is coated and formed by the PVD method or the CVD method on the surface of the tool substrate (hereinafter, these are collectively referred to as a tool substrate). Is known to exhibit excellent wear resistance.
However, although the conventional coated tool coated with the Ti-Al-based composite nitride layer or composite carbonitride layer has relatively excellent wear resistance, abnormalities such as chipping when used under high-speed intermittent cutting conditions. Since wear is likely to occur, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、TiとAlの複合窒化物である硬質被覆層のX線回折における(111)面の回折強度をI(111)、(200)面の回折強度をI(200)としたときにI(200)/I(111)の値が2.0以下であり、前記被覆層の上に更にTiとAlの複合窒酸化物を被覆した表面被覆エンドミルが提案されている。 For example, in Patent Document 1, the diffraction intensity of the (111) plane in the X-ray diffraction of the hard coating layer which is a composite nitride of Ti and Al is I (111), and the diffraction intensity of the (200) plane is I (200). The value of I (200) / I (111) is 2.0 or less, and a surface-coated end mill in which a composite nitrogen oxide of Ti and Al is further coated on the coating layer has been proposed.

また、特許文献2には、単層または多層の層構造を有する硬質皮膜が被覆され、前記層構造はプラズマ励起を行わずにCVDにより作成されたTi1-xAlxN硬質皮膜を少なくとも1つ有し、前記Ti1-xAlxN硬質皮膜は、x>0.75~x=0.93の化学量論係数および0.412nm~0.405nmの格子定数afccを有する立方晶NaCl構造の単相の層として存在し、かつTi1-xAlxN硬質皮膜の塩素含有率が、0.05~0.9原子%の範囲であるか、または、前記Ti1-xAlxN硬質皮膜は、その主要な相がx>0.75~x=0.93の化学量論係数および0.412nm~0.405nmの格子定数afccを有する立方晶NaCl構造を有するTi1-xAlxNからなり、かつ別の相としてTi1-xAlxNがウルツ鉱構造として、および/またはNaCl構造のTiNxとして含有されている多相の層であり、かつTi1-xAlxN硬質皮膜の塩素含有率が、0.05~0.9原子%の範囲である、切削工具が記載されている。 Further, Patent Document 2 is coated with a hard film having a single-layer or multi-layer structure, and the layer structure is at least one Ti 1-x Al x N hard film prepared by CVD without performing plasma excitation. The Ti 1-x Al x N hard film has a cubic NaCl having a chemical quantitative coefficient of x> 0.75 to x = 0.93 and a lattice constant a fcc of 0.412 nm to 0.405 nm. It exists as a single-phase layer of the structure, and the chloride content of the Ti 1-x Al x N hard film is in the range of 0.05 to 0.9 atomic%, or the Ti 1-x Al x The N-hard film has a cubic NaCl structure in which the main phase has a chemical quantitative coefficient of x> 0.75 to x = 0.93 and a lattice constant a fcc of 0.412 nm to 0.405 nm. A multi-phase layer consisting of x Al x N and containing Ti 1-x Al x N as another phase as a wurtzite structure and / or as TiN x of a NaCl structure, and Ti 1-x . A cutting tool is described in which the chlorine content of the Al x N hard film is in the range of 0.05 to 0.9 atomic%.

加えて、特許文献3には、被覆層が、オキシ窒化アルミニウムまたは複合オキシ窒化アルミニウムおよびアルミナまたは複合アルミナを含む、複数の副相群を含む耐火性層を含有した被覆切削工具が提案されている。 In addition, Patent Document 3 proposes a coated cutting tool in which the coating layer contains a refractory layer containing a plurality of subphase groups including aluminum oxynitride or composite aluminum oxynitride and alumina or composite alumina. ..

特開平9-291353号公報Japanese Unexamined Patent Publication No. 9-291353 特許第4996602号公報Japanese Patent No. 4996602 特開2015-47690号公報Japanese Unexamined Patent Publication No. 2015-47690

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。
しかし、前記特許文献1~3で提案されている被覆工具では、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工において、耐チッピング、耐摩耗性が未だ十分ではなく、満足できる工具寿命を有しているとはいえない場合があった。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient. Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance is required over a long period of use.
However, the coated tools proposed in Patent Documents 1 to 3 are chipping-resistant and wear-resistant in high-speed intermittent cutting in which high heat is generated from alloy steel or the like and a shocking load is applied to the cutting edge. In some cases, the properties were not sufficient and it could not be said that the tool life was satisfactory.

そこで、本発明は前記課題を解決し、合金鋼等の高速断続切削等に供した場合であっても、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することを目的とする。 Therefore, the present invention solves the above-mentioned problems and provides a covering tool that exhibits excellent chipping resistance and wear resistance over a long period of time even when it is used for high-speed intermittent cutting of alloy steel or the like. With the goal.

本発明者は、TiとAlとの複合炭窒化物(「TiAlCN」と表すことがある)層を少なくとも含む硬質被覆層を工具基体に設けた被覆工具の耐チッピング性、耐摩耗性の改善を図るべく、特に、TiAlCN層の表面のみならず、厚さ方向にわたって微量のOの積極的な添加が耐チッピング性、耐摩耗性の向上にどのような影響を与えるかについて鋭意検討した。 The present inventor has improved the chipping resistance and wear resistance of a coated tool provided with a hard coating layer including at least a composite carbonitride (sometimes referred to as "TiAlCN") layer of Ti and Al on a tool substrate. In order to achieve this, in particular, not only the surface of the TiAlCN layer but also the positive addition of a small amount of O in the thickness direction affects the improvement of chipping resistance and wear resistance.

すなわち、TiとAlとの複合窒化物(「TiAlN」と表すことがある)皮膜に微量のCを添加したTiAlCN皮膜は、TiAlN皮膜に比して、Cの添加による格子歪みを有するために硬さが向上しているものであるが、さらに、微量のOを積極的に添加すると、TiAlCN皮膜自体の耐酸化性が向上して、高速断続切削における耐チッピング性、耐摩耗性がより一層向上し(以下、TiAlCNにOを積極的に添加した複合炭窒酸化物を「TiAlCNO」と表すことがある)、さらには、当該TiAlCNO皮膜内に微小粒の酸化アルミニウム(Alにより表される組成近傍のAl酸化物)が点在すると、当該TiAlCNO皮膜の熱的安定性が向上し、切削加工時のクラックの進展が抑制されて、耐欠損性や耐チッピング性が格段に向上するという驚くべき知見を得た。
なお、前記特許文献1では、最外層のTiとAlの複合窒化物、炭窒化物に酸素を含有させると、摩擦係数の低減が可能となり切削熱の低減によって工具寿命が向上すること、Zr、Hf、Y、Si、W、Crのうちの1種または2種以上の成分をTiに対して0.05~60at%の範囲で置き換えることにより耐酸化性の向上が可能となることが、それぞれ、記載されているものの、前者は耐酸化性の向上についての言及はなく、しかも、含有させる酸素量については指針となるものさえ開示されておらず、後者は耐酸化性の向上はTiに対してZr等の置き換えによってもたらされるとの記載に留まっており、いずれも、微量のOの積極的な添加により、外表面層近傍のみの酸化物の形成ではなく、TiAlCNOが形成されることにより耐酸化性が向上すること、さらには、酸化アルミニウムの微小粒の点在によって耐欠損性や耐チッピング性が格段に向上する前記知見を示唆すらしないものである。
That is, the TiAlCN film obtained by adding a small amount of C to the composite nitride (sometimes referred to as "TiAlN") film of Ti and Al is hard because it has lattice strain due to the addition of C as compared with the TiAlN film. However, when a small amount of O is positively added, the oxidation resistance of the TiAlCN film itself is improved, and the chipping resistance and wear resistance in high-speed intermittent cutting are further improved. (Hereinafter, the composite carbon dioxide oxide in which O is positively added to TiAlCN may be referred to as "TiAlCNO"), and further, it is represented by fine aluminum oxide (Al 2 O 3 ) in the TiAlCNO film. When Al oxides in the vicinity of the composition are scattered, the thermal stability of the TiAlCNO film is improved, the growth of cracks during cutting is suppressed, and the chipping resistance and chipping resistance are significantly improved. I got amazing findings.
In addition, in Patent Document 1, when oxygen is contained in the composite nitride and carbon nitride of the outermost layer Ti and Al, the coefficient of friction can be reduced and the tool life is improved by reducing the cutting heat. It is possible to improve the oxidation resistance by replacing one or more components of Hf, Y, Si, W, and Cr in the range of 0.05 to 60 at% with respect to Ti, respectively. Although it is described, the former does not mention the improvement of oxidation resistance, and even the guideline for the amount of oxygen contained is not disclosed, and the latter improves the oxidation resistance with respect to Ti. It is only stated that it is brought about by the replacement of Zr and the like, and in each case, the positive addition of a small amount of O causes the formation of TiAlCNO instead of the formation of an oxide only in the vicinity of the outer surface layer, which is acid resistant. It does not even suggest the above-mentioned findings that the chemical resistance is improved, and further, the chipping resistance and the chipping resistance are remarkably improved by the scattered fine particles of aluminum oxide.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚3.0~20.0μmのTiとAlの複合炭窒酸化物層を少なくとも含み、
(b)前記TiとAlの複合炭窒酸化物層は、NaCl型の面心立方構造を有する複合炭窒酸化物層の結晶粒を少なくとも含み、
(c)前記TiとAlの複合炭窒酸化物層を組成式:(Ti(1-x)Al)(C1-y-z)で表した場合(但し、AlのTiとAlの合量に占める平均含有割合xとCのCとNとOの合量に占める平均含有割合y、およびOのCとNとOの合量に占める平均含有割合z、x、y、zはいずれも原子比)、それぞれ、0.60≦x≦0.95、0.010≦y≦0.100、0.060≦z≦0.120を満足し、
(d)前記TiとAlの複合炭窒酸化物層の内には酸化アルミニウムの微小粒が存在し、該酸化アルミニウムの微小粒の平均面積割合が1~20面積%であることを特徴とする表面被覆切削工具。
(2)前記TiとAlの複合炭窒酸化物層内に存在する前記酸化アルミニウムの微小粒を平均組成式:AlOで表した場合、1.4≦u≦1.6を満たし、前記酸化アルミニウムの微小粒の平均粒径は0.010~0.300μmであることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記TiとAlの複合炭窒酸化物層は、NaCl型の面心立方構造を有するTiとAlの複合炭窒酸化物の結晶粒の占める割合が40面積%以上であることを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4)前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合炭窒酸化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする(1)~(3)のいずれかに記載の表面被覆切削工具。」
である。
The present invention has been made based on the above findings.
"(1) A surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body. In
(A) The hard coating layer contains at least a composite carbon dioxide oxide layer of Ti and Al having an average layer thickness of 3.0 to 20.0 μm.
(B) The Ti and Al composite carbon dioxide oxide layer contains at least the crystal grains of the composite carbon dioxide oxide layer having a NaCl-type face-centered cubic structure.
(C) When the composite carbon dioxide oxide layer of Ti and Al is represented by the composition formula: (Ti (1-x) Al x ) (Cy N 1-yz Oz ) (however, Ti of Al). The average content ratio x in the total amount of and Al, the average content ratio y in the total amount of C, N, and O of C, and the average content ratio z, x, y in the total amount of C, N, and O of O. , Z are all atomic ratios), 0.60 ≦ x ≦ 0.95, 0.010 ≦ y ≦ 0.100, 0.060 ≦ z ≦ 0.120, respectively.
(D) Fine particles of aluminum oxide are present in the composite carbon dioxide oxide layer of Ti and Al, and the average area ratio of the fine particles of aluminum oxide is 1 to 20 area%. Surface covering cutting tool.
(2) When the fine particles of aluminum oxide existing in the composite carbon dioxide oxide layer of Ti and Al are represented by the average composition formula: AlO u , 1.4 ≤ u ≤ 1.6 is satisfied and the oxidation is performed. The surface-coated cutting tool according to (1), wherein the average particle size of the fine particles of aluminum is 0.010 to 0.300 μm.
(3) The Ti and Al composite carbon dioxide oxide layer is characterized in that the ratio of crystal grains of the Ti and Al composite carbon dioxide having a NaCl-type face-centered cubic structure is 40 area% or more. The surface-coated cutting tool according to (1) or (2).
(4) Between the tool substrate composed of the tungsten carbide-based cemented carbide, titanium nitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body and the composite carbonitride oxide layer of Ti and Al. It is composed of one or more layers of a carbide layer, a nitride layer, a carbide layer, a carbide layer and a carbon dioxide oxide layer of Ti, and is a total average layer of 0.1 to 20.0 μm. The surface-coated cutting tool according to any one of (1) to (3), wherein a lower layer including a thick Ti compound layer is present. "
Is.

本発明は、合金鋼等の高速断続切削加工に供した場合であっても、優れた耐チッピング性を備えるとともに、長期の使用にわたって優れた耐摩耗性を発揮する。 INDUSTRIAL APPLICABILITY The present invention has excellent chipping resistance and excellent wear resistance over a long period of use even when subjected to high-speed intermittent cutting of alloy steel or the like.

本発明に係る硬質被覆層の模式図であり、層の厚さ、層内組織の形状・寸法は実際の硬質被覆層に則したものではなく、()内の層は必要に応じて設けるものである。It is a schematic diagram of the hard coating layer which concerns on this invention, and the thickness of a layer, the shape and dimension of the structure in a layer are not based on the actual hard coating layer, and the layer in parentheses is provided as necessary. Is.

本発明について、以下に詳細に説明する。なお、本明細書および特許請求の範囲において数値範囲を「~」で表現するとき、その範囲は上限および下限の数値を含んでいる。 The present invention will be described in detail below. When the numerical range is expressed by "-" in the present specification and the claims, the range includes the numerical values of the upper limit and the lower limit.

硬質被覆層に含まれるTiAlCNO層の平均層厚:
本発明の硬質被覆層は、組成式:(Ti1-xAl)(C1-y-z)で表されるTiAlCNO層を少なくとも含む。このTiAlCNO層は、硬さが高く、優れた耐チッピング性、耐摩耗性を有するが、特に平均層厚が3.0~20.0μmのとき、その効果が際立って発揮される。これは、平均層厚が3.0μm未満では、層厚が薄いため長期の使用にわたって耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlCNO層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
したがって、その平均層厚を3.0~20.0μmと定めた。平均層厚は、より好ましくは5.0~15.0μmである。
Average thickness of TiAlCNO layer contained in the hard coating layer:
The hard coating layer of the present invention contains at least a TiAlCNO layer represented by the composition formula: (Ti 1-x Al x ) (Cy N 1-y-z Oz ) . This TiAlCNO layer has high hardness and excellent chipping resistance and wear resistance, but the effect is remarkably exhibited particularly when the average layer thickness is 3.0 to 20.0 μm. This is because if the average layer thickness is less than 3.0 μm, the wear resistance cannot be sufficiently ensured over a long period of use because the layer thickness is thin, while if the average layer thickness exceeds 20.0 μm, the TiAlCNO layer cannot be sufficiently secured. Crystal grains are likely to be coarsened, and chipping is likely to occur.
Therefore, the average layer thickness was set to 3.0 to 20.0 μm. The average layer thickness is more preferably 5.0 to 15.0 μm.

硬質被覆層に含まれるTiAlCNO層の平均組成:
本発明におけるTiAlCNO層の平均組成は、
AlのTiとAlの合量に占める平均含有割合(以下、「Alの平均含有割合」という)xが、
CのC、NとOの合量に占める平均含有割合(以下、「Cの平均含有割合」という)yが、
OのC、NとOの合量に占める平均含有割合(以下、「Oの平均含有割合」という)zが、
それぞれ、0.60≦x≦0.95、0.010≦y≦0.100、0.060≦z≦0.120(ただし、x、y、zはいずれも原子比)を満足するように定める。
その理由は、以下のとおりである。
Alの平均含有割合xが0.60未満であると、TiAlCNO層は硬さが劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でなく、一方、0.95を超えると相対的にTiの平均含有割合が減少するため脆化が起こりやすくなり、耐チッピング性が低下する。したがって、0.60≦x≦0.95としたが、より好ましくは0.70≦x≦0.90である。
また、Cの平均含有割合yを0.010≦y≦0.100と定めたのは、前記範囲において耐チッピング性を保ちつつ硬さを向上させることができるためである。
さらに、Oの平均含有割合zは、0.060未満であると耐酸化性を十分に与えることがなく、0.120を超えると酸化物の偏析が起こり、耐チッピング性が低下するため好ましくない。
Average composition of TiAlCNO layer contained in the hard coating layer:
The average composition of the TiAlCNO layer in the present invention is
The average content ratio (hereinafter referred to as "average content ratio of Al") x in the total amount of Ti and Al of Al is
The average content ratio (hereinafter referred to as "average content ratio of C") y in the total amount of C, N and O of C is
The average content ratio (hereinafter referred to as "the average content ratio of O") z in the total amount of C, N and O of O is
Satisfy 0.60 ≦ x ≦ 0.95, 0.010 ≦ y ≦ 0.100, 0.060 ≦ z ≦ 0.120 (however, x, y, and z are all atomic ratios). stipulate.
The reason is as follows.
When the average content ratio x of Al is less than 0.60, the hardness of the TiAlCNO layer is inferior. Therefore, when the TiAlCNO layer is subjected to high-speed intermittent cutting of alloy steel or the like, the wear resistance is not sufficient, while 0. If it exceeds 95, the average Ti content is relatively reduced, so that embrittlement is likely to occur and the chipping resistance is lowered. Therefore, it is set to 0.60 ≦ x ≦ 0.95, but more preferably 0.70 ≦ x ≦ 0.90.
Further, the reason why the average content ratio y of C is set to 0.010 ≦ y ≦ 0.100 is that the hardness can be improved while maintaining the chipping resistance in the above range.
Further, if the average content ratio z of O is less than 0.060, the oxidation resistance is not sufficiently provided, and if it exceeds 0.120, the oxide segregation occurs and the chipping resistance is lowered, which is not preferable. ..

TiAlCNO層内のNaCl型の面心立方晶構造を有する結晶粒とその面積割合:
前記TiAlCNO層には、NaCl型の面心立方晶構造を有する結晶粒(以下、該結晶粒を立方晶結晶粒と表すことがある)が存在することが必要であり、その存在は、面積割合(面積率)として少なくとも40面積%以上が好ましい。これにより、高硬度であるNaCl型の面心立方晶構造を有する結晶粒の面積率がある程度高い値で存在するため、硬さが向上する。さらに、この面積割合が60面積%以上となると、NaCl型の面心立方晶構造を有する結晶粒が六方晶構造の結晶粒に比べて相対的に高くなり、硬さがより向上するという効果を得ることができる。この面積割合は、より好ましくは75面積%以上である。
ここで、NaCl型の面心立方晶構造を有する結晶粒の面積割合は、測定範囲を、縦断面方向(縦断面に垂直な方向(工具基体表面に平行な方向))に100μm、膜厚方向は膜厚の測定範囲で十分な長さの範囲とし、前記TiAlCNO層の縦断面を研磨し、電子線後方散乱回折像装置を用いて、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、電子線を0.01μm間隔で照射して得られる電子線後方散乱回折像に基づき個々の結晶粒の結晶構造を解析することにより求めた。
Crystal grains having a NaCl-type face-centered cubic structure in the TiAlCNO layer and their area ratio:
The TiAlCNO layer needs to have crystal grains having a NaCl-type face-centered cubic structure (hereinafter, the crystal grains may be referred to as cubic crystal grains), and the presence thereof is an area ratio. The (area ratio) is preferably at least 40 area% or more. As a result, the area ratio of the crystal grains having a NaCl-type face-centered cubic structure with high hardness exists at a value that is somewhat high, so that the hardness is improved. Further, when the area ratio is 60 area% or more, the crystal grains having a NaCl-type face-centered cubic structure are relatively higher than the crystal grains having a hexagonal structure, and the effect of further improving the hardness is obtained. Obtainable. This area ratio is more preferably 75 area% or more.
Here, the area ratio of the crystal grains having a NaCl-type surface-centered cubic crystal structure is 100 μm in the vertical cross-sectional direction (direction perpendicular to the vertical cross-section (direction parallel to the surface of the tool substrate)) and the film thickness direction. Is a sufficient length in the measurement range of the film thickness, the vertical cross section of the TiAlCNO layer is polished, and an acceleration voltage of 15 kV is applied to the polished surface at an incident angle of 70 degrees by using an electron backscatter diffraction image device. The crystal structure of each crystal grain was analyzed based on an electron backscatter diffraction image obtained by irradiating the electron beam with an irradiation current of 1 nA at intervals of 0.01 μm.

TiAlCNO層内の酸化アルミニウムの微小粒の存在:
前記TiAlCNO層内には、酸化アルミニウムの微小粒(平均粒径が0.500μm以下)が平均で1~20面積%で存在することが好ましい。平均面積割合(平均面積率)がこの範囲である理由は、1面積%未満であるとTiAlCNO層の熱的安定性が損なわれ、切削加工時に保護層としての外層の役割を十分に果たすことができず、20面積%を超えると複合炭窒酸化物が有する特性を発揮できず切削性能が低下する。より好ましい範囲は、3~10面積%である。
さらに、酸化アルミニウムの微小粒の平均組成をAlOと表したとき、1.4≦u≦1.6を満たし、さらに、当該粒子の平均粒径は0.010~0.300μmであることが望ましい(uは原子比)。ここで、酸化アルミニウムの微小粒のuと平均粒径は、TiAlCNO層の縦断面(層厚さ方向の断面)を透過型電子顕微鏡で観察し、元素マッピングの結果よりAlとOのみ観察された粒についてAlとOの割合を算出することで、AlOと特定された微小粒の組成を分析することでu値を算出し、AlOと特定された微小粒の平均面積を求め、その平均面積と等しい面積を与える円の直径を平均粒径とする。
酸化アルミニウムの微小粒の平均組成を表すuが上記範囲を満足し、かつ、その平均粒径が前記望ましい範囲にあるとき、TiAlCNO層の熱的安定性がより一層向上する。
Presence of aluminum oxide microparticles in the TiAlCNO layer:
It is preferable that fine particles of aluminum oxide (average particle size of 0.500 μm or less) are present in the TiAlCNO layer in an average amount of 1 to 20 area%. The reason why the average area ratio (average area ratio) is in this range is that if it is less than 1 area%, the thermal stability of the TiAlCNO layer is impaired, and the outer layer as a protective layer can be sufficiently played during cutting. If it exceeds 20 area%, the characteristics of the composite carbon dioxide cannot be exhibited and the cutting performance deteriorates. A more preferable range is 3 to 10 area%.
Further, when the average composition of the fine particles of aluminum oxide is expressed as AlO u , 1.4 ≦ u ≦ 1.6 is satisfied, and the average particle size of the particles is 0.010 to 0.300 μm. Desirable (u is atomic ratio). Here, u and the average particle size of the fine particles of aluminum oxide were observed by observing the vertical cross section (cross section in the layer thickness direction) of the TiAlCNO layer with a transmission electron microscope, and only Al and O were observed from the result of element mapping. By calculating the ratio of Al and O for the grains, the u value is calculated by analyzing the composition of the fine grains specified as AlO u , the average area of the fine grains specified as AlO u is obtained, and the average thereof is obtained. The average particle size is the diameter of a circle that gives an area equal to the area.
When u, which represents the average composition of the fine particles of aluminum oxide, satisfies the above range and the average particle size is within the desired range, the thermal stability of the TiAlCNO layer is further improved.

下部層:
本発明は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層を工具基体に隣接して設けた場合、一層優れた耐摩耗性および熱的安定性を発揮することができる。
ここで、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると下部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
Lower layer:
The present invention comprises one or more layers of a carbide layer, a nitride layer, a carbonic acid nitride layer, a carbonic acid oxide layer and a carbonic acid nitrogen oxide layer of Ti, and has a total average layer of 0.1 to 20.0 μm. When the lower layer including the thick Ti compound layer is provided adjacent to the tool substrate, more excellent wear resistance and thermal stability can be exhibited.
Here, if the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20.0 μm, the crystal grains of the lower layer tend to be coarsened and chipping occurs. It will be easier to do.

製造方法:
次に、本発明のTiAlCNO層を成膜するための条件を示すと、例えば、以下のとおりである。反応ガス組成に関し、以下の%は、ガス群Aおよびガス群Bをあわせた全体に対する容量%である。
・TiAlCNO層
ガス群A: NH:2.0~6.0%、H:65.0~75.0%
ガス群B: AlCl:0.6~0.9%、TiCl:0.2~0.3%、CO:0.4~0.8%、C:0.0~0.5%、N:0.0~10.0%、H:残り
反応雰囲気圧力:4.5~5.0kPa
反応雰囲気温度:700~800℃
供給周期:1.0~5.0秒
1周期当たりのガス供給時間:0.15~0.25秒
ガス群Aとガス群Bの供給の位相差:0.10~0.20秒
ここで、ガス群Bの成分としてCOを添加することが本発明に係る被覆工具を製造するための特徴である。このCOガスは、TiAlCNO層のCおよびOの供給源となる。
・TiAlCNO層の熱処理
TiAlCNO層が形成された後、以下の条件の熱処理を行い、酸化アルミニウムの微小粒を生成させる。
処理雰囲気:ArまたはNガス雰囲気
処理圧力:4.5~5.0kPa
処理温度:700~800℃
処理時間:0.5~3時間
Production method:
Next, the conditions for forming the TiAlCNO layer of the present invention are as follows, for example. Regarding the reaction gas composition, the following% is the volume% of the total of the gas group A and the gas group B.
-TiAlCNO layer Gas group A: NH 3 : 2.0 to 6.0%, H 2 : 65.0 to 75.0%
Gas group B: AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, CO 2 : 0.4 to 0.8%, C 2 H 4 : 0.0 to 0 .5%, N 2 : 0.0 to 10.0%, H 2 : Remaining reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 700-800 ° C
Supply cycle: 1.0 to 5.0 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas group B: 0.10 to 0.20 seconds Here The addition of CO 2 as a component of the gas group B is a feature for manufacturing the covering tool according to the present invention. This CO 2 gas is a source of C and O in the TiAlCNO layer.
-Heat treatment of TiAlCNO layer After the TiAlCNO layer is formed, heat treatment is performed under the following conditions to generate fine particles of aluminum oxide.
Treatment atmosphere: Ar or N 2 gas atmosphere Treatment pressure: 4.5-5.0 kPa
Processing temperature: 700-800 ° C
Processing time: 0.5 to 3 hours

本発明被覆工具において、硬質被覆層の模式図を図1に示す。 FIG. 1 shows a schematic diagram of a hard coating layer in the covering tool of the present invention.

本発明の被覆工具を実施例により具体的に説明する。
なお、以下の実施例では、工具基体として、WC基超硬合金を用いた場合について説明するが、TiCN基サーメットやcBN基超高圧焼結体を工具基体として用いた場合も同様である。
The covering tool of the present invention will be specifically described with reference to Examples.
In the following examples, the case where a WC-based cemented carbide is used as the tool substrate will be described, but the same applies to the case where a TiCN-based cermet or a cBN-based ultrahigh-pressure sintered body is used as the tool substrate.

<実施例1>
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。
<Example 1>
As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3C 2 powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. It was blended into the composition, further added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, press-molded into a green compact having a predetermined shape at a pressure of 98 MPa, and the green powder was pressed into a green compact of a predetermined shape in a vacuum of 5 Pa, 1370. Vacuum sintered at a predetermined temperature within the range of ~ 1470 ° C. under the condition of holding for 1 hour, and after sintering, manufacture tool bases A to C made of WC-based superhard alloy having an insert shape of ISO standard SEEN1203AFSN. did.

次に、これらの工具基体A~Cの表面に、CVD装置を用い、TiAlCNO層を形成した。
CVD法による成膜条件は、次のとおりである。
表3に示される形成条件A~F、すなわち、NHとHからなるガス群Aと、AlCl、TiCl、CO、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bをあわせた全体に対する容量%)を、ガス群AとしてNH:2.0~6.0%、H:65.0~75.0%、ガス群BとしてAlCl:0.6~0.9%、TiCl:0.2~0.3%、CO:0.4~0.8%、C:0.0~0.5%、N:0.0~10.0%、H:残り、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~800℃、供給周期1.0~5.0秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒とし、所定時間、CVDを行い、TiAlCNO層を形成した。
前記の条件でTiAlCNO層を形成した後、表4に示される熱処理条件G~Lで、Nガス雰囲気の4.5~5.0kPaの圧力のもと、温度700~800℃で0.5~3時間の熱処理を行うことにより、酸化アルミニウムの微小粒を生成させ、表6に示す本発明被覆工具1~12を製造した。
なお、本発明被覆工具4~9については、表2に示される形成条件で、表5に示される下部層を形成した。
Next, a TiAlCNO layer was formed on the surfaces of these tool bases A to C by using a CVD device.
The film forming conditions by the CVD method are as follows.
The formation conditions A to F shown in Table 3, that is, the gas group A consisting of NH 3 and H 2 , the gas group B consisting of AlCl 3 , TiCl 4 , CO 2 , N 2 , and H 2 , and the supply of each gas. As a method, the reaction gas composition (volume% of the total of the gas group A and the gas group B) is adjusted to NH 3 : 2.0 to 6.0% and H 2 : 65.0 to 75.0 as the gas group A. %, As gas group B, AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, CO 2 : 0.4 to 0.8%, C 2 H 4 : 0.0. ~ 0.5%, N 2 : 0.0 ~ 10.0%, H 2 : Remaining, reaction atmosphere pressure: 4.5 ~ 5.0 kPa, reaction atmosphere temperature: 700 ~ 800 ° C., supply cycle 1.0 ~ The gas supply time per cycle was set to 5.0 seconds, 0.15 to 0.25 seconds, the phase difference between the supplies of the gas group A and the gas group B was 0.10 to 0.20 seconds, and CVD was performed for a predetermined time. A TiAlCNO layer was formed.
After forming the TiAlCNO layer under the above conditions, the heat treatment conditions G to L shown in Table 4 are 0.5 to 0.5 at a temperature of 700 to 800 ° C. under a pressure of 4.5 to 5.0 kPa in an N2 gas atmosphere. By performing the heat treatment for about 3 hours, fine particles of aluminum oxide were generated, and the covering tools 1 to 12 of the present invention shown in Table 6 were manufactured.
For the covering tools 4 to 9 of the present invention, the lower layer shown in Table 5 was formed under the formation conditions shown in Table 2.

また、比較の目的で、工具基体A~Cの表面に表3に示される形成条件A´~F´でCVD法により成膜を行い、表4に示される熱処理条件G´~L´により熱処理を行って、表7に示す比較被覆工具1~12を製造した。
なお、本発明被覆工具4~9と同様に、比較被覆工具4~9については、表2に示される形成条件で、表5に示される下部層を形成した。
Further, for the purpose of comparison, a film is formed on the surfaces of the tool substrates A to C by the CVD method under the formation conditions A'to F'shown in Table 3, and the heat treatment is performed under the heat treatment conditions G'to L'shown in Table 4. The comparative covering tools 1 to 12 shown in Table 7 were manufactured.
Similar to the covering tools 4 to 9 of the present invention, for the comparative covering tools 4 to 9, the lower layer shown in Table 5 was formed under the formation conditions shown in Table 2.

平均層厚は、本発明被覆工具1~12、比較被覆工具1~12の各構成層の工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡を用いて適切な倍率(例えば倍率5000倍)を選択して観察し、観察視野内の5点の層厚を測って平均して求めた。 The average layer thickness is a cross section (vertical cross section) in the direction perpendicular to the tool substrate of each constituent layer of the covering tools 1 to 12 and the comparative covering tools 1 to 12 of the present invention, and an appropriate magnification (for example, using a scanning electron microscope). (Magnification 5000 times) was selected and observed, and the layer thicknesses of 5 points in the observation field of view were measured and averaged.

TiAlCNO層のAlの平均含有割合xについては、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、縦断面を研磨した試料において、電子線を試料縦断面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合xを求めた。
Cの平均含有割合yについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向にTiAlCNO層の膜中央部まで濃度測定を行った。Cの平均含有割合yはTiAlCNO層についての深さ方向の平均値を示す。
Oの平均含有割合zについては、オージェ電子分光法(Auger Electron Spectroscopy:AES)を用い、試料断面を研磨した試料において、電子線を縦断面側から各層に照射し、得られたオージェ電子の解析結果よりOの平均含有割合zを求めた。
表6、表7に、前記で求めたx、y、zの値を示す(x、y、zは、いずれも原子比)。
The average Al content ratio x of the TiAlCNO layer is obtained by irradiating an electron beam from the sample longitudinal section side in a sample whose longitudinal section has been polished using an electron probe microanalyzer (Electron-Probe-Micro-Analyzer: EPMA). The average content ratio x of Al was obtained from the 10-point average of the analysis results of the characteristic X-rays obtained.
The average content ratio y of C was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopic: SIMS). An ion beam was irradiated in a range of 70 μm × 70 μm from the sample surface side, and the concentration of the component released by the sputtering action was measured up to the center of the TiAlCNO layer in the depth direction. The average content ratio y of C indicates the average value in the depth direction for the TiAlCNO layer.
For the average content ratio z of O, Auger electron spectroscopy (AES) was used to irradiate each layer with an electron beam from the longitudinal section side of the sample with a polished sample cross section, and the obtained Auger electrons were analyzed. From the result, the average content ratio z of O was obtained.
Tables 6 and 7 show the values of x, y, and z obtained above (x, y, and z are all atomic ratios).

また、TiAlCNO層におけるNaCl型の立方晶構造を有する結晶粒の面積割合は、測定範囲を、縦断面方向(縦断面に垂直な方向(工具基体表面に平行な方向))に100μm、膜厚方向は膜厚の測定範囲で十分な長さの範囲とし、前記TiAlCNO層の縦断面を研磨し、電子線後方散乱回折像装置を用いて、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、電子線を0.01μm間隔で照射して得られる電子線後方散乱回折像に基づき個々の結晶粒の結晶構造を解析することにより求めた。その結果を、表6および表7に示す。 Further, the area ratio of the crystal grains having a NaCl-type cubic structure in the TiAlCNO layer is 100 μm in the vertical cross-sectional direction (direction perpendicular to the vertical cross-section (direction parallel to the tool substrate surface)) and the film thickness direction. Is a sufficient length in the measurement range of the film thickness, the vertical cross section of the TiAlCNO layer is polished, and an acceleration voltage of 15 kV is applied to the polished surface at an incident angle of 70 degrees by using an electron backscatter diffraction image device. The crystal structure of each crystal grain was analyzed based on an electron backscatter diffraction image obtained by irradiating the electron beam with an irradiation current of 1 nA at intervals of 0.01 μm. The results are shown in Tables 6 and 7.

また、酸化アルミニウムの微小粒の平均面積割合や平均粒径、酸化アルミニウムの微小粒をAlOと表したときAlに対するOの平均比uは、前記複合炭窒酸化物層の縦断面方向(縦断面に垂直な方向(工具基体表面に平行な方向))に対して透過型電子顕微鏡を用いて、加速電圧200kVで任意の10箇所の微小領域1μm×1μmに対して観察を行い、それぞれの観察領域において、エネルギー分散型X線分光法(EDS)による組成分析を行い、AlとOのみが検出される微小粒を同定した後に、平均面積割合と、その粒子数をカウントして当該微小粒子の平均面積を算出し、その平均面積と等しい面積を与える円の直径より平均粒径を算出した。また、各酸化アルミニウムの微小粒の組成分析の結果から酸化アルミニウムの微小粒中のAlとOの割合を求め、酸化アルミニウムの微小粒におけるAlに対するOの平均比uを求めた。その結果を表6および表7に示す。 Further, the average area ratio and average particle size of the fine particles of aluminum oxide, and the average ratio u of O to Al when the fine particles of aluminum oxide are expressed as AlOu are the longitudinal cross-sectional directions (longitudinal section) of the composite carbon dioxide oxide layer. Using a transmission electron microscope in the direction perpendicular to the surface (direction parallel to the surface of the tool substrate), observation is performed for any 10 minute regions 1 μm × 1 μm at an acceleration voltage of 200 kV, and each observation is performed. In the region, composition analysis by energy dispersion type X-ray spectroscopy (EDS) is performed to identify fine particles in which only Al and O are detected, and then the average area ratio and the number of the fine particles are counted to determine the fine particles. The average area was calculated, and the average particle size was calculated from the diameter of the circle giving the area equal to the average area. Further, the ratio of Al and O in the fine particles of aluminum oxide was obtained from the result of the composition analysis of the fine particles of aluminum oxide, and the average ratio u of O to Al in the fine particles of aluminum oxide was obtained. The results are shown in Tables 6 and 7.

Figure 0007021607000001
Figure 0007021607000001

Figure 0007021607000002
Figure 0007021607000002

Figure 0007021607000003
Figure 0007021607000003

Figure 0007021607000004
Figure 0007021607000004

Figure 0007021607000005
Figure 0007021607000005

Figure 0007021607000006
Figure 0007021607000006

Figure 0007021607000007
Figure 0007021607000007

次に、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~12、比較被覆工具1~12について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Next, with the various covering tools clamped to the tip of the tool steel cutter having a cutter diameter of 125 mm with a fixing jig, the covering tools 1 to 12 of the present invention and the comparative covering tools 1 to 12 are described below. A dry high-speed face milling cutter, which is a type of high-speed intermittent cutting of alloy steel, and a center-cut cutting process test were carried out, and the flank wear width of the cutting edge was measured.

工具基体:WC基超硬合金
切削試験:乾式高速正面フライス、センターカット切削加工
被削材:JIS・SCM440 幅100mm、長さ400mmのブロック材
回転速度:815 min-1
切削速度:320 m/min
切り込み:3.0 mm
一刃送り量:0.25 mm/刃
切削時間:8分
(通常の切削速度:150~200m/min)
表8に、その結果を示す。
Tool base: WC-based cemented carbide Cutting test: Dry high-speed face milling cutter, center cut cutting work Material: JIS / SCM440 Block material with width 100 mm and length 400 mm Rotation speed: 815 min -1
Cutting speed: 320 m / min
Notch: 3.0 mm
Single blade feed amount: 0.25 mm / blade Cutting time: 8 minutes (normal cutting speed: 150 to 200 m / min)
Table 8 shows the results.

Figure 0007021607000008
Figure 0007021607000008

<実施例2>
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γをそれぞれ製造した。
<Example 2>
As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3C 2 powder, TiN powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are used. It was blended into the blending composition shown in Table 9, further added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into a green compact having a predetermined shape at a pressure of 98 MPa, and this green compact was obtained. ISO standard by vacuum sintering in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470 ° C. under the condition of holding for 1 hour, and after sintering, honing processing of R: 0.07 mm is applied to the cutting edge. Tool bases α to γ made of WC-based superhard alloy having an insert shape of CNMG120412 were manufactured.

Figure 0007021607000009
Figure 0007021607000009

次に、これらの工具基体α~γの表面に、CVD装置を用い、表3に示される形成条件A~Fにより、TiAlCNO層を形成した。
前記の条件でTiAlCNO層を形成した後、表4に示される熱処理条件G~Lの熱処理を行うことにより、酸化アルミニウムの微小粒を生成させ、表11に示す本発明被覆工具13~20を製造した。
なお、本発明被覆工具15~18については、表2に示される形成条件で、表10に示される下部層を形成した。
Next, a TiAlCNO layer was formed on the surfaces of these tool substrates α to γ under the formation conditions A to F shown in Table 3 using a CVD device.
After forming the TiAlCNO layer under the above conditions, the heat treatment conditions G to L shown in Table 4 are performed to generate fine particles of aluminum oxide, and the covering tools 13 to 20 of the present invention shown in Table 11 are manufactured. did.
For the covering tools 15 to 18 of the present invention, the lower layer shown in Table 10 was formed under the formation conditions shown in Table 2.

また、比較の目的で、同じく工具基体α~γの表面に、CVD装置を用い、表3および表4に示される条件で本発明被覆工具と同様にTiAlCNO層を蒸着形成し、熱処理を行うことにより、表12に示される比較被覆工具13~20を製造した。
なお、本発明被覆工具15~18と同様に、比較被覆工具15~18については、表2に示される形成条件で、表10に示される下部層を形成した。
Further, for the purpose of comparison, a TiAlCNO layer is vapor-deposited and formed on the surfaces of the tool substrates α to γ in the same manner as the coated tool of the present invention under the conditions shown in Tables 3 and 4, and heat treatment is performed. The comparative covering tools 13 to 20 shown in Table 12 were manufactured.
Similar to the covering tools 15 to 18 of the present invention, for the comparative covering tools 15 to 18, the lower layer shown in Table 10 was formed under the formation conditions shown in Table 2.

また、本発明被覆工具1~12、比較被覆工具1~12と同様に、前記本発明被覆工具13~20、比較被覆工具13~20の平均層厚を求め、TiAlCNO層について、Alの平均含有割合xとCの平均含有割合y、Oの平均含有割合zを測定し、さらに、前記TiAlCNO層における立方晶結晶粒の面積割合と酸化アルミニウムの微小粒の平均面積割合と平均粒子径および酸化アルミニウムの微小粒AlOにおけるAlに対するOの平均比uを求めた。これらの結果を表11、表12に示す。 Further, similarly to the covering tools 1 to 12 and the comparative covering tools 1 to 12 of the present invention, the average layer thickness of the covering tools 13 to 20 and the comparative covering tools 13 to 20 of the present invention was obtained, and the TiAlCNO layer contained an average amount of Al. The average content ratio y of the ratio x and C, and the average content ratio z of O are measured, and further, the area ratio of the cubic crystal grains in the TiAlCNO layer, the average area ratio of the fine particles of aluminum oxide, the average particle size, and the aluminum oxide are measured. The average ratio u of O to Al in the fine grain AlO u was determined. These results are shown in Tables 11 and 12.

Figure 0007021607000010
Figure 0007021607000010

Figure 0007021607000011
Figure 0007021607000011

Figure 0007021607000012
Figure 0007021607000012

次に、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具13~20、比較被覆工具13~20について、以下に示す、炭素鋼の乾式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
工具基体:WC基超硬合金
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:330 m/min
切り込み:3.0 mm
送り:0.25 mm/rev
切削時間:5 分
(通常の切削速度は、220m/min)
表13に、前記切削試験の結果を示す。
Next, with the various covering tools screwed to the tip of the tool steel cutting tool with a fixing jig, the covering tools 13 to 20 of the present invention and the comparative covering tools 13 to 20 are shown below. A dry high-speed intermittent cutting test of carbon steel was carried out, and the flank wear width of the cutting edge was measured in each case.
Tool base: WC-based cemented carbide Work material: JIS / S55C round bar with four vertical grooves at equal intervals in the length direction,
Cutting speed: 330 m / min
Notch: 3.0 mm
Feed: 0.25 mm / rev
Cutting time: 5 minutes (normal cutting speed is 220 m / min)
Table 13 shows the results of the cutting test.

Figure 0007021607000013
Figure 0007021607000013

表8および表13に示される結果から、本発明の被覆工具は、TiAlCNO層がNaCl型の面心立方構造を有する結晶粒を含み、所定のAl、C、および、Oの平均含有割合を有し、さらには、所定の平均面積割合の酸化アルミニウム微小粒が存在しているから高硬度でかつ耐酸化性が高く、その結果、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的高負荷が作用する合金鋼等の高速断続切削加工に用いた場合でも、チッピング、欠損の発生もなく、長期の使用にわたって優れた耐摩耗性を発揮する。 From the results shown in Tables 8 and 13, the coating tool of the present invention contains crystal grains in which the TiAlCNO layer has a NaCl-type surface-centered cubic structure, and has a predetermined average content of Al, C, and O. Furthermore, since aluminum oxide fine particles having a predetermined average area ratio are present, the hardness is high and the oxidation resistance is high. As a result, high heat is generated and the cutting edge is intermittently and shockingly high. Even when used for high-speed intermittent cutting of alloy steel or the like on which a load acts, there is no chipping or chipping, and excellent wear resistance is exhibited over a long period of use.

これに対して、TiAlCNO層において、所定のAl、C、および、Oの平均含有割合、並びに、酸化アルミニウムの微小粒が所定の平均面積割合を満足していない比較被覆工具は、合金鋼等の高速断続切削加工において、チッピング等の異常損傷の発生、あるいは、摩耗進行により、短時間で寿命に至ることが明らかである。 On the other hand, in the TiAlCNO layer, the comparative covering tool in which the predetermined average contents of Al, C, and O and the fine particles of aluminum oxide do not satisfy the predetermined average area ratio is alloy steel or the like. It is clear that in high-speed intermittent cutting, the life is reached in a short time due to the occurrence of abnormal damage such as chipping or the progress of wear.

前述のように、本発明の被覆工具は、合金鋼等の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに、低コスト化に十分に満足する対応ができるものである。 As described above, the covering tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel and the like, but also as a covering tool for various work materials, and exhibits excellent cutting performance over a long period of use. Therefore, it is possible to fully satisfy the improvement of the performance of the cutting device, the labor saving and the energy saving of the cutting process, and the cost reduction.

Claims (4)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚3.0~20.0μmのTiとAlの複合炭窒酸化物層を少なくとも含み、
(b)前記複合炭窒酸化物層は、NaCl型の面心立方構造を有する複合炭窒酸化物層の結晶粒を少なくとも含み、
(c)前記複合炭窒酸化物層を組成式:(Ti(1-x)Al)(C1-y-z)で表した場合(但し、AlのTiとAlの合量に占める平均含有割合xとCのCとNとOの合量に占める平均含有割合y、およびOのCとNとOの合量に占める平均含有割合z、x、y、zはいずれも原子比)、それぞれ、0.60≦x≦0.95、0.010≦y≦0.100、0.060≦z≦0.120を満足し、
(d)前記複合炭窒酸化物層の内には酸化アルミニウムの微小粒が存在し、該酸化アルミニウムの微小粒の平均面積割合が1~20面積%であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body.
(A) The hard coating layer contains at least a composite carbon dioxide oxide layer of Ti and Al having an average layer thickness of 3.0 to 20.0 μm.
(B) The composite carbon dioxide oxide layer contains at least crystal grains of the composite carbon dioxide oxide layer having a NaCl-type face-centered cubic structure.
(C) When the composite carbon dioxide oxide layer is represented by the composition formula: (Ti (1-x) Al x ) (Cy N 1-yz Oz ) (however, the combination of Ti and Al of Al). The average content ratio x and the average content ratio y in the total amount of C, N and O of C, and the average content ratio z, x, y and z in the total amount of C, N and O of O are any of them. Also atomic ratio), 0.60 ≦ x ≦ 0.95, 0.010 ≦ y ≦ 0.100, 0.060 ≦ z ≦ 0.120, respectively.
(D) A surface-coated cutting tool characterized in that fine particles of aluminum oxide are present in the composite carbon dioxide oxide layer, and the average area ratio of the fine particles of aluminum oxide is 1 to 20 area%. ..
前記TiとAlの複合炭窒酸化物層内に存在する前記酸化アルミニウムの微小粒を平均組成式:AlOで表した場合、1.4≦u≦1.6を満たし、前記酸化アルミニウムの微小粒の平均粒径は0.010~0.300μmであることを特徴とする請求項1に記載の表面被覆切削工具。 When the fine particles of aluminum oxide existing in the composite carbon dioxide oxide layer of Ti and Al are represented by the average composition formula: AlO u , 1.4 ≦ u ≦ 1.6 is satisfied, and the fine particles of aluminum oxide are satisfied. The surface-coated cutting tool according to claim 1, wherein the average grain size of the grains is 0.010 to 0.300 μm. 前記TiとAlの複合炭窒酸化物層は、NaCl型の面心立方構造を有するTiとAlの複合炭窒酸化物の結晶粒の占める割合が40面積%以上であることを特徴とする請求項1または2に記載の表面被覆切削工具。 The Ti and Al composite carbon dioxide oxide layer is characterized in that the ratio of crystal grains of the Ti and Al composite carbon dioxide having a NaCl-type face-centered cubic structure is 40 area% or more. Item 2. The surface-coated cutting tool according to Item 1 or 2. 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合炭窒酸化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする請求項1~3のいずれかに記載の表面被覆切削工具。 Between the tool substrate composed of the tungsten carbide-based cemented carbide, titanium nitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body and the composite carbonitride oxide layer of Ti and Al, Ti. It is composed of one or more layers of the carbide layer, the nitride layer, the carbonitride layer, the carbide layer and the carbonitride oxide layer, and has a total average layer thickness of 0.1 to 20.0 μm. The surface-coated cutting tool according to any one of claims 1 to 3, wherein a lower layer including a Ti compound layer is present.
JP2018115561A 2018-06-18 2018-06-18 Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer Active JP7021607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115561A JP7021607B2 (en) 2018-06-18 2018-06-18 Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115561A JP7021607B2 (en) 2018-06-18 2018-06-18 Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer

Publications (2)

Publication Number Publication Date
JP2019217579A JP2019217579A (en) 2019-12-26
JP7021607B2 true JP7021607B2 (en) 2022-02-17

Family

ID=69095275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115561A Active JP7021607B2 (en) 2018-06-18 2018-06-18 Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer

Country Status (1)

Country Link
JP (1) JP7021607B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213264A1 (en) * 2019-04-19 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
JP6780222B1 (en) * 2019-04-19 2020-11-04 住友電工ハードメタル株式会社 Cutting tools
CN111893457A (en) * 2020-08-14 2020-11-06 株洲钻石切削刀具股份有限公司 Coated cutting tool and preparation method thereof
JP7274107B2 (en) * 2021-04-12 2023-05-16 株式会社タンガロイ coated cutting tools

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154248A (en) 2007-12-27 2009-07-16 Mitsubishi Materials Corp Surface coated cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620480B2 (en) * 2001-08-02 2005-02-16 三菱マテリアル神戸ツールズ株式会社 Surface-coated cemented carbide end mill or drill with excellent wear-resistant coating layer for excellent chipping resistance
KR101536462B1 (en) * 2013-12-23 2015-07-24 한국야금 주식회사 Coated film for cutting tools for machining hrsa and cast iron
JP2017047487A (en) * 2015-08-31 2017-03-09 三菱マテリアル株式会社 Surface-coated cutting tool
JP6507457B2 (en) * 2016-01-08 2019-05-08 住友電工ハードメタル株式会社 Method of manufacturing surface coated cutting tool
JPWO2018047735A1 (en) * 2016-09-06 2019-06-24 住友電工ハードメタル株式会社 Cutting tool and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154248A (en) 2007-12-27 2009-07-16 Mitsubishi Materials Corp Surface coated cutting tool

Also Published As

Publication number Publication date
JP2019217579A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
EP3290137B1 (en) Coated cutting tool
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP7021607B2 (en) Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer
JP7063206B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
WO2016047584A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP7098932B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
CN112770858B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP7025727B2 (en) Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP6858346B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6935058B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6761597B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6774649B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
WO2020166683A1 (en) Surface-coated cutting tool
WO2016190332A1 (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
JP6857299B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6957824B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7021607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150