JP6493800B2 - Surface-coated cutting tool exhibits excellent abrasion resistance at high speed cutting - Google Patents

Surface-coated cutting tool exhibits excellent abrasion resistance at high speed cutting Download PDF

Info

Publication number
JP6493800B2
JP6493800B2 JP2015129283A JP2015129283A JP6493800B2 JP 6493800 B2 JP6493800 B2 JP 6493800B2 JP 2015129283 A JP2015129283 A JP 2015129283A JP 2015129283 A JP2015129283 A JP 2015129283A JP 6493800 B2 JP6493800 B2 JP 6493800B2
Authority
JP
Japan
Prior art keywords
surface
crystal
coating layer
hard coating
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015129283A
Other languages
Japanese (ja)
Other versions
JP2017013145A (en
Inventor
峻 佐藤
峻 佐藤
正訓 高橋
正訓 高橋
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2015129283A priority Critical patent/JP6493800B2/en
Publication of JP2017013145A publication Critical patent/JP2017013145A/en
Application granted granted Critical
Publication of JP6493800B2 publication Critical patent/JP6493800B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼や鋳鉄などの高速切削加工に供した場合に、硬質被覆層がすぐれた耐摩耗性を備え、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関する。 The present invention, when subjected to high speed cutting, such as steel or cast iron, provided with a wear resistance hard coating layer has excellent surface-coated cutting tool exhibits superior cutting performance over a long period of use (hereinafter, ) on that coated tools.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。 Generally, the coated tool, the various steel and the insert used in removably attached to the distal end of the bytes in turning or planing of the workpiece such as cast iron, used in such drilling cutting of the workpiece drill or miniature drill further scalping processing and groove processing of the workpiece, include end mills solid type used in such shoulder processing, also performs cutting as with solid type end mill is attached to the insert detachably such as insert type end mill is known.

従来、被覆工具としては、例えば、WC基超硬合金、TiCN基サーメット、cBN焼結体を工具基体とし、これに硬質被覆層を形成した被覆工具が知られており、切削性能の改善を目的として種々の提案がなされている。 As a conventional coated tool, for example, object WC based cemented carbide, TiCN-based cermet, the cBN sintered body and the tool substrate, are known coated tool forming the hard coating layer thereto, the improvement of the cutting performance various proposals have been made as.
例えば、特許文献1には、重切削加工での硬質被覆層の耐欠損性を高めるため、工具基体表面に、組成式(Ti 1−X Al )N(ただし、原子比で、Xは0.4〜0.65)を満足するTiとAlの複合窒化物層からなり、かつ、該層についてEBSDによる結晶方位解析を行った場合、表面研磨面の法線方向から0〜15度の範囲内に結晶方位<100>を有する結晶粒の面積割合が50%以上であり、また、隣り合う結晶粒同士のなす角を測定した場合に、小角粒界(0<θ≦15゜)の割合が50%以上であるような結晶配列を示すTiとAlの複合窒化物層からなる硬質被覆層を被覆した被覆工具が提案されている。 For example, Patent Document 1, to increase the fracture resistance of the hard coating layer with heavy cutting, the tool substrate surface, a composition formula (Ti 1-X Al X) N ( provided that the atomic ratio, X is 0 .4~0.65) a composite nitride layer of Ti and Al satisfying the, and, in the case of performing the crystal orientation analysis by EBSD for the layer, the range from the normal direction of the surface polishing plane of 0-15 degrees area ratio of crystal grains having a crystal orientation <100> within is at least 50%, also in the case of measuring the angle formed between crystal grains adjacent, the proportion of small-angle grain boundaries (0 <θ ≦ 15 °) there coated tool have been proposed coated with a hard layer made of a composite nitride layer of Ti and Al showing a crystal arrangement such that 50% or more.

また、特許文献2には、切刃に高負荷が作用する乾式断続重切削加工での硬質被覆層の耐欠損性、靭性を高めるため、TiN層からなる硬質被覆層のTiN結晶粒を硬質被覆層の層厚と等しい高さを有する柱状晶組織とし、さらに、TiN層の水平断面における結晶粒組織を観察した場合、粒径が10〜100nmの結晶粒が占有する面積を測定面積のうちの90%以上とし、かつ、電子線後方散乱回折装置で表面の結晶粒の結晶方位を測定した場合、隣り合う測定点との結晶方位の差が15度以上となる結晶界面によって囲まれた直径0.2〜4μmの区分が占有する面積を、測定された全体の面積のうち20%以上とした被覆工具が提案されている。 Further, Patent Document 2, fracture resistance of the hard coating layer of a dry interrupted heavy cutting machining high load on the cutting edge acts to enhance the toughness, the TiN grains in the hard coating layer of TiN layer hardcoat a columnar crystal structure having the same height as the layer thickness of the layer, further, when observing the grain structure in the horizontal cross section of the TiN layer having a particle size of 10~100nm crystal grains of the measuring area the area occupied is 90% or more, and, when measuring the crystal orientation of the crystal grains of the surface with an electron backscatter diffraction device, surrounded by crystal interface that difference in crystal orientation between adjacent measurement points is equal to or greater than 15 degrees diameter 0 an area division of .2~4μm occupies, coated tool was 20% or more of the area of ​​the entire measured have been proposed.

特開2009−56540号公報 JP 2009-56540 JP 特開2011−152602号公報 JP 2011-152602 JP

前記従来技術で提案されているTiとAlの複合窒化物層あるいはTiの窒化物層からなる硬質被覆層を備えた被覆工具は、重切削加工条件下では、すぐれた耐欠損性を発揮するが、高速切削加工に供した場合、耐摩耗性が必ずしも十分であるとはいえなかった。 The coated tool having a conventional composite nitride of Ti and Al, which techniques have been proposed in layer or hard layer made of a nitride layer of Ti, In severe cutting conditions, but exhibits excellent chipping resistance , when subjected to high speed cutting, the wear resistance can not be said to be always sufficient.
そこで、高速切削加工条件下でも、長期の使用にわたってすぐれた耐摩耗性を発揮する被覆工具が求められている。 Therefore, even at high cutting conditions, coated tool exhibits excellent abrasion resistance over long-term use has been desired.

そこで、本発明者らは、前記課題を解決すべく硬質被覆層の構造について鋭意検討したところ、次のような知見を得たのである。 Accordingly, the present inventors have made extensive studies on the structure of the hard coating layer in order to solve the above problems, it was obtained the following knowledge.

TiとAlの複合窒化物(以下、「(Ti,Al)N」で示す場合もある)からなる硬質被覆層の結晶組織を制御し、工具基体表面近傍の(Ti,Al)N層を微粒組織とし、一方、硬質被覆層表面側の(Ti,Al)N層を柱状組織として形成するとともに、硬質被覆層表面の柱状組織の少なくとも一部に、複数の結晶粒の集合体からなる結晶方位の近い粒子が集まった領域を形成することによって、隣り合う結晶粒同士の結合を強靭なものとすることで、高速切削加工において、すぐれた耐摩耗性(特に、擦れ摩耗)を発揮する被覆工具が得られることを見出したのである。 Composite nitride of Ti and Al (hereinafter, "(Ti, Al) N" as shown in also) to control the crystal structure of the hard coating layer comprising, in the vicinity of the tool substrate surface (Ti, Al) N layer micronized an organization, whereas, the crystal orientation of the hard coating layer surface side (Ti, Al) to form the N layer as a columnar structure, at least a portion of the columnar structure of the hard coating layer surface, comprising a plurality of crystal grains of the aggregate by forming the region gathered close particles is, by the binding of crystal grains adjacent to one tough, coated tool to exert in high-speed cutting, excellent abrasion resistance (particularly, rubbing wear) it was found that can be obtained.

ここで、前記「結晶方位の近い粒子が集まった領域」とは、以下で定義される複数の結晶粒の集合体からなる領域をいう。 Here, the "region in which the particles gathered near crystal orientation" refers to a region composed of a plurality of crystal grains of the aggregate is defined below.
即ち、結晶方位の近い粒子が集まった領域とは、 That is, the closer the crystal orientation grains gathered regions,
(1)硬質被覆層表面の結晶粒の集合体からなる領域内の各結晶粒の工具基体表面の法線方向に対して最も傾斜角度が少ない結晶方位<100>のベクトルを平均した方位と基体表面の法線方向のなす角度が10度以下である。 (1) The most inclination angle is less orientation and substrate vectors averaged crystal orientation <100> with respect to the normal direction of each crystal grain of the tool substrate surface in the region consisting of crystal grains of the aggregate of the hard coating layer surface normal direction of the angle of the surface is 10 degrees or less.
(2)領域内の各結晶粒の結晶方位の差は2度以上10度以下である。 (2) the difference in crystal orientation of the crystal grains in the region is less than 10 degrees twice.
上記(1)、(2)の条件を同時に満足するような複数の結晶粒の集合体からなる領域を「結晶方位の近い粒子が集まった領域」と定義する。 (1), is defined as "a region near the particle crystal orientation were gathered together" at the same time a plurality of regions comprising an aggregate of crystal grains that satisfy the condition (2).

また、硬質被覆層を構成する前記(Ti,Al)N層について電子線後方散乱回折法(Electoron BackScatter Diffraction:EBSD)による結晶方位解析を行った場合、基体表面の法線方向から0〜10度の範囲内に結晶方位<100>を有する結晶粒の面積割合が40〜90面積%を満足する配向性を有するように結晶組織を制御することによって、硬質被覆層表面側における(Ti,Al)N層の結晶粒の柱状化を促進し得ること、また、その結果として、結晶方位の近い粒子が集まった領域の形成を促進し得ることを見出したのである。 Further, the composing the hard coating layer (Ti, Al) N layer electron backscatter diffraction method for (Electoron BackScatter Diffraction: EBSD) case of performing the crystal orientation analysis by 0-10 degrees from the normal direction of the substrate surface by area ratio of crystal grains in the range of having a crystal orientation <100> is to control the crystal structure so as to have orientation which satisfies the 40-90 area%, the hard coating layer surface side (Ti, Al) it may promote grain pillaring of N layer, as a result, it was found that it is possible to promote the formation of near crystal orientations particles gathered area.
さらに、工具基体である立方晶窒化硼素(以下、「cBN」で示す)焼結体におけるcBN粒子の平均粒径、含有割合が、硬質被覆層表面側における(Ti,Al)N層の結晶粒の柱状化促進、また、結晶方位の近い粒子が集まった領域の形成を促進する上で、重要な要素であることを見出したのである。 Further, cubic boron nitride is a tool substrate (hereinafter indicated by "cBN") average particle diameter of cBN particles in the sintered body, the content is, (Ti, Al) in the hard coating layer surface N layer of grain pillaring promote, also in promoting the formation of close particle crystal orientations gathered area is was found that an important factor.

本発明は、前記知見に基づいてなされたものであって、 The present invention was made based on the findings,
「(1)立方晶窒化硼素焼結体からなる工具基体の表面に、1.0〜4.0μmの平均層厚の硬質被覆層が蒸着形成された表面被覆切削工具において、 To "(1) cubic surface of the tool substrate made of boron nitride sintered body, the surface-coated cutting tool hard coating layer having an average layer thickness of 1.0~4.0μm is vapor deposited,
(a)前記硬質被覆層は、 (A) the hard coating layer,
組成式:(Ti 1−x Al )Nで表した場合、0.4≦x≦0.7(但し、xは原子比)を満足するTiとAlの複合窒化物層であり、 Formula: when expressed in (Ti 1-x Al x) N, 0.4 ≦ x ≦ 0.7 ( where, x is an atomic ratio) is a composite nitride layer of Ti and Al satisfying the,
(b)前記硬質被覆層の結晶組織は、工具基体との界面側では結晶粒の平均幅が0.01〜0.05μmの微粒組織、また、硬質被覆層表面側では結晶粒の平均幅が0.05〜1.0μmの柱状組織であって、該柱状組織の層厚方向の平均厚さは、硬質被覆層の層厚より薄く、かつ、0.3〜1.5μmの平均厚さで形成されており、 (B) the crystal structure of the hard coating layer has an average width of the crystal grains at the interface side 0.01~0.05μm of fine tissue as tool substrate, also, the average grain width is hard layer surface 0.05~1.0μm a columnar structure, an average thickness of the layer thickness direction of the columnar structure is thinner than the layer thickness of the hard coating layer and the average thickness of 0.3~1.5μm is formed,
(c)前記硬質被覆層の表面には、複数の結晶粒の集合体からなり、該集合体の平均幅が0.5〜2.0μmである結晶方位の近い粒子が集まった領域が形成され、該結晶方位の近い粒子が集まった領域が硬質被覆層の表面に占める面積割合は30〜80面積%であり、 The surface of (c) the hard coating layer is composed of a plurality of crystal grains of the aggregate, area average width is gathered close grain crystal orientation is 0.5~2.0μm of the aggregate is formed , the area ratio of a region where particles are gathered near the said crystal orientations occupied on the surface of the hard coating layer is 30 to 80 area%,
(d)前記結晶方位の近い粒子が集まった領域は、該領域内の各結晶粒の結晶方位の差が2度以上10度以下である領域であって、しかも、工具基体表面の法線方向に対する該領域内の各結晶粒の結晶方位の傾斜角度差が最も小さい結晶方位<100>のベクトルを平均した方位と基体表面の法線方向のなす角度が10度以下であることを特徴とする表面被覆切削工具。 (D) a region where the particles gathered near the said crystal orientation is an area difference between the crystal orientation of the crystal grains within the region is less than 10 degrees 2 degrees, moreover, the normal direction of the tool substrate surface wherein the normal direction of the angle of the mean azimuth and the substrate surface vector of each crystal grain in the crystal orientation of the inclination angle difference is smallest crystal orientation <100> within the region is less than 10 degrees with respect to surface-coated cutting tool.
(2)前記硬質被覆層の結晶粒について、電子線後方散乱回折法による結晶方位解析を行ったとき、基体表面の法線方向から0〜10度の範囲内に結晶方位<100>を有する結晶粒の面積割合が40〜90面積%を満足するような結晶配向性を有することを特徴とする(1)に記載の表面被覆切削工具。 (2) the crystal grains of the hard coating layer, when performing the crystal orientation analysis by electron back scattering diffraction method, crystals having a crystal orientation <100> in the range from the normal direction of the substrate surface of 0 ° the surface-coated cutting tool according to the area ratio of the grains and having a crystal orientation that satisfies 40-90 area% (1).
(3)前記(1)または(2)に記載の工具基体は、少なくとも切削に使用する刃先が立方晶窒化硼素焼結体からなり、前記立方晶窒化硼素焼結体は立方晶窒化硼素粒子とTiの窒化物、炭化物、炭窒化物、硼化物およびAlの窒化物、酸化物からなる群から選ばれた少なくとも1種以上の粒子と不可避不純物とを含む結合相とからなり、前記立方晶窒化硼素粒子は平均粒径2.0〜4.0μmかつ立方晶窒化硼素焼結体全体に占める含有割合が50〜80体積%であることを特徴とする(1)または(2)に記載の表面被覆切削工具。 Tool substrate according to (3) above (1) or (2) is made edge to be used for at least cutting the cubic boron nitride sintered body, the cubic boron nitride sintered body and cubic boron nitride particles nitrides of Ti, carbide, carbonitride, nitride boride and Al, consists of a binder phase comprising at least one or more kinds of particles and inevitable impurities selected from the group consisting of oxides, the cubic nitride surface according to the boron particles are characterized by the content of total average particle size 2.0~4.0μm and cubic boron nitride sintered body is 50 to 80 vol% (1) or (2) coated cutting tool. "
に特徴を有するものである。 Those having features to.

次に、本発明の被覆工具について、より詳細に説明する。 Next, the coated tool of the present invention will be described in more detail.

図1に、本発明被覆工具の概略模式図を示す。 Figure 1 shows a schematic view of the present invention coated tools.
図1(a)は、本発明被覆工具の硬質被覆層表面の概略模式図であり、図1(b)は、本発明被覆工具の縦断面の概略模式図である。 1 (a) is a schematic view of a hard coating layer surface of the present invention coated tool, FIG. 1 (b) is a schematic view of a longitudinal section of the present invention coated tools.
図1(b)に示すように、本発明の被覆工具は、立方晶窒化硼素焼結体からなる工具基体(以下、「cBN工具基体」で示す)の表面に、(Ti,Al)N層からなる硬質被覆層が形成されており、しかも、該(Ti,Al)N層の結晶組織は、工具基体との界面側では微粒組織、また、硬質被覆層表面側では柱状組織であり、該柱状組織は、層厚方向に0.3〜1.5μmの平均厚みで形成されている。 As shown in FIG. 1 (b), coated tool of the present invention, a tool substrate made of cubic boron nitride sintered body (hereinafter, indicated as "cBN tool substrate") on the surface of, (Ti, Al) N layer hard layer is formed consisting, moreover, the (Ti, Al) N-layer crystal structure, fine tissue at the interface side of the tool base body, also in the hard coating layer surface side a columnar structure, the columnar structure is formed with an average thickness of 0.3~1.5μm in the layer thickness direction.
また、図1(a)に示すように、本発明の被覆工具の硬質被覆層をその表面から観察したとき、硬質被覆層表面には、結晶方位の近い複数の結晶粒の集合体からなる結晶方位の近い粒子が集まった領域が形成されている。 Further, as shown in FIG. 1 (a), when the hard coating layer of the coated tool of the present invention was observed from the surface, the hard coating layer surface, comprising a plurality of crystal grains of the aggregate near crystal oriented crystal area particles gathered near the orientation is formed. そして、「結晶方位の近い粒子が集まった領域」をより厳密に言えば、領域内の各結晶粒の結晶方位の差が2度以上10度以下である領域であって、しかも、工具基体表面の法線方向に対する該領域内の各結晶粒の結晶方位の傾斜角度差が最も小さい結晶方位<100>のベクトルを平均した方位と基体表面の法線方向のなす角度が10度以下である領域をいう。 Then, speaking "region in which the particles gathered near crystal orientation" more strictly, the difference in crystal orientation of the crystal grains in the region is an area less than 10 degrees 2 degrees, moreover, the tool substrate surface area normal to the direction of the angle of the averaged orientation and the substrate surface vectors within the region of the smallest crystal orientation inclination angle difference of crystal orientations of the crystal grains <100> with respect to the normal direction of 10 degrees or less the say.

硬質被覆層の組成および平均層厚: The composition and average layer thickness of the hard coating layer:
本発明の被覆工具の硬質被覆層は、 Hard layer of the coated tool of the present invention,
組成式:(Ti 1−x Al )N Formula: (Ti 1-x Al x ) N
で表した場合、0.4≦x≦0.7(但し、xは原子比)を満足する組成のTiとAlの複合窒化物層からなる。 When expressed in, 0.4 ≦ x ≦ 0.7 (where, x is the atomic ratio) made of a composite nitride layer of Ti and Al having the composition satisfying the.
上記組成式において、xの値を0.4(原子比)以上とすることによって、(Ti,Al)N層における高温硬さと高温耐酸化性が向上するが、一方、xの値が0.7(原子比)を超えると、岩塩型結晶構造を維持することが困難になるばかりか、アモルファス化し易くなり、硬さが低下してくることから、TiとAlの合量に占めるAlの含有割合(但し、原子比)は、0.4≦x≦0.7と定めた。 In the above composition formula, by making the value of x 0.4 (atomic ratio) or more, (Ti, Al) is high-temperature hardness and high-temperature oxidation resistance in the N layer is improved, whereas, the value of x is 0. it exceeds 7 (atomic ratio), not only it is difficult to maintain a rock-salt crystal structure, since the easily amorphized, the hardness comes to decrease, the inclusion of Al occupying the total amount of Ti and Al ratio (provided that the atomic ratio) was defined as 0.4 ≦ x ≦ 0.7.
なお、上記組成式では、TiとAlからなる金属元素とNからなる非金属元素が、恰も、原子比で1:1であるかのような形式で記載しているが、大事なのは、TiとAlとの比率であって、金属元素[Ti、Al]と非金属元素[N]の割合は1:1に限定されるものではなく、1:1の場合と同一の結晶構造が維持されるのであれば金属元素[Ti、Al]と非金属元素[N]の割合は1:1を外れていてもよい。 In the above composition formula, non-metallic elements consisting of Ti and a metal element consisting of Al N is as if, in atomic ratio of 1: has been described in a format as if it were 1, What matters, and Ti a ratio of Al, the ratio of metal elements [Ti, Al] and non-metal elements [N] is 1: not limited to 1, 1: same crystal structure is maintained in the case of 1 proportion of if the metal elements [Ti, Al] and non-metal elements [N] is 1: 1 may be outside the.
また、上記(Ti,Al)N層は、その平均層厚が1.0μm未満であると、硬質被覆層の表面における結晶方位の近い粒子が集まった領域を十分な面積割合で形成することができず、一方、(Ti,Al)N層の平均層厚が4.0μmを超えると、高速切削加工においてチッピング、欠損を発生しやすくなるので、(Ti,Al)N層からなる硬質被覆層の平均層厚は、1.0〜4.0μmと定めた。 Further, the (Ti, Al) N layer, when the average layer thickness is less than 1.0 .mu.m, to form a region where particles are gathered near the crystal orientation in the surface of the hard coating layer with a sufficient area ratio can not, on the other hand, (Ti, Al) the average layer thickness of the N layer is greater than 4.0 .mu.m, chipping in high-speed cutting, because the defect is likely to occur, a hard coating layer made of (Ti, Al) N layer the average layer thickness of, was defined as 1.0-4.0.
硬質被覆層の組成および層厚は工具基体表面に垂直な硬質被覆層の縦断面について、工具基体表面に平行な方向の幅が10μmであり、硬質被覆層の厚み領域が全て含まれるよう設定された視野について、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)、エネルギー分散型X線分光法(Energy Dispersive X−ray Spectroscopy:EDS)、オージェ電子分光法(Auger electron spectroscopy:AES)を用いた断面測定により、測定する。 The composition and thickness of the hard coating layer for longitudinal sectional vertical hard layer on the tool substrate surface, is 10μm is parallel width the tool substrate surface, it is set to include all thickness regions of the hard coating layer for viewing, scanning electron microscope (scanning electron microscopy: SEM), transmission electron microscope (transmission electron microscope: TEM), energy dispersive X-ray spectroscopy (energy dispersive X-ray spectroscopy: EDS), Auger electron spectroscopy (Auger electron spectroscopy: AES) by cross-sectional measurements using measured. 層厚を複数箇所で測定し、これを平均することにより、平均層厚を算出した。 Measuring the thickness at a plurality of locations, by averaging it, was calculated average layer thickness. なお、工具基体表面とは、基体の硬質被覆層と接する面の面方向に垂直な断面の観察像における、基体と硬質被覆層の界面粗さの基準線とする。 Note that the tool substrate surface, in the observation image of a cross-section perpendicular to the surface direction of the surface in contact with the hard coating layer of the substrate, and the reference line of the interface roughness of the substrate and the hard coating layer.

硬質被覆層の結晶組織および柱状組織の平均厚さ: The average thickness of the crystal structure and the columnar structure of the hard coating layer:
図1(b)の模式図に示すように、本発明の被覆工具の硬質被覆層を構成する(Ti,Al)N層の結晶組織は、工具基体との界面側(工具基体との界面近傍)で結晶粒の平均幅が0.01〜0.05μmの微粒組織、また、硬質被覆層表面側では結晶粒の平均幅が0.05〜1.0μmの柱状組織である。 As shown in the schematic view of FIG. 1 (b), constituting the hard layer of the coated tool of the present invention (Ti, Al) N-layer crystal structure, the vicinity of the interface between the interface side (tool substrate of the tool body ) by the average width of the crystal grains 0.01~0.05μm of fine tissue, also in the hard coating layer surface average width of the crystal grains are columnar structure of 0.05 to 1.0 [mu] m.
工具基体との界面側の結晶組織を微粒組織としたのは、工具基体と硬質被覆層との密着強度を高めるためであり、また、硬質被覆層表面側で柱状組織としたのは、結晶粒界を少なくすることで粒界を起点とする破壊を抑制すると同時に、硬質被覆層表面に前記結晶方位の近い粒子が集まった領域を形成し、隣り合う結晶粒同士の結合を強固なものとして、耐チッピング性、耐欠損性を高めるとともに、より一段と耐摩耗性(特に、耐擦れ摩耗性)を高めるためである。 The interface side of the crystal structure of the tool substrate and the fine structure is for increasing the adhesion strength between the tool substrate and a hard coating layer, also had a columnar structure in the hard coating layer surface side, grain at the same time to suppress the fracture starting from the intergranular by reducing the field, to form a region gathered near particles of said crystalline orientation to the hard coating layer surface, the binding of crystal grains adjacent as strong, chipping resistance, to increase the chipping resistance, in order to enhance the further abrasion resistance (especially abrasion Re wear resistance).
ここで、工具基体との界面側(工具基体との界面近傍)に形成される微粒組織において、結晶粒の平均幅が0.01μm未満であると、硬質被覆層表面側に所定の平均幅の柱状組織が形成されず、一方、平均幅が0.05μmを超えると、結晶粒の粗大化が進行し粗粒が形成され、結晶粒界が少なくなることで皮膜-基体界面で生じたクラックが分散されにくくなり、所望の密着強度を得られなくなることから、工具基体との界面側(工具基体との界面近傍)に形成される微粒組織における結晶粒の平均幅は0.01〜0.05μmと定めた。 Here, (the tool substrate interface vicinity) interface with the tool substrate in the fine tissue formed, the average width of the crystal grains is less than 0.01 [mu] m, the predetermined average width hard layer surface not columnar structure is formed, whereas, when the average width exceeds 0.05 .mu.m, coarse grain coarsening progresses is formed, coating by grain boundaries is reduced - cracks caused by substrate interface dispersed hardly, since not be obtained the desired adhesion strength, the average width of the crystal grains at the interface side fine tissue formed in (the vicinity of the interface between the tool substrate) of the tool substrate 0.01~0.05μm It was defined as.
また、硬質被覆層表面側においては、結晶粒の平均幅が0.05μm以上の柱状組織を形成することによって、切削加工時の負荷による粒界からの破壊に起因するチッピング、欠損、剥離等の発生が抑制されるとともに耐摩耗性の向上が図られるが、結晶粒の平均幅が1.0μmを超えると、粗大な柱状組織の形成により硬さが低下し、耐摩耗性が低下することから、硬質被覆層表面側に形成される柱状組織における結晶粒の平均幅は0.05〜1.0μmと定めた。 In the hard coating layer surface, by the average width of the crystal grains to form a 0.05μm or more columnar structures, chipping due to disruption of the grain boundaries due to the load at the time of cutting, defects, such as peeling Although occurrence improvement in wear resistance can be achieved while being suppressed, since the average width of the crystal grains exceeds 1.0 .mu.m, the hardness decreases due to formation of coarse columnar structure, the wear resistance is lowered , the average width of the crystal grains in the columnar structure formed on the hard coating layer surface is defined as 0.05 to 1.0 [mu] m.

前記工具基体との界面側に存在する微粒組織を構成する結晶粒の幅、また、硬質被覆層表面側で柱状組織を構成する結晶粒の幅は、以下の方法によって測定することができ、また、その測定値を平均化することによって、微粒組織あるいは柱状組織の結晶粒の平均幅を求めることができる。 It said crystal grains having a width constituting the fine structure at the interface side between the tool substrate addition, the width of the crystal grains constituting the columnar structure in the hard layer surface may be measured by the following methods, also , by averaging the measured values, it is possible to determine the average width of the crystal grains of fine tissues or columnar structure.
具体的には、まず、工具基体表面に垂直な縦断面のSEMを用いた断面観察により得られた縦断面画像について、EBSDを用いて層を形成する各粒子の形状を決定し、一つ一つの結晶粒子について最大結晶粒長さLを決定する。 Specifically, first, the longitudinal sectional image obtained by cross-sectional observation using SEM perpendicular longitudinal section on the tool substrate surface, to determine the shape of each particle to form a layer using EBSD, one one One of the determining maximum grain length L the crystal grains. そして、最大結晶粒長さLを対角線とし、工具基体表面に垂直な縦断面における断面積が等価となるように結晶粒子の形状を長方形近似し、得られた長方形の短辺をそれぞれの結晶粒の幅とした。 Then, the maximum crystal grain of the length L and the diagonal, the shape of the crystal grains so that the cross-sectional area becomes equivalent to a rectangle approximated in a vertical longitudinal section to the tool substrate surface, of the respective short sides of the resulting rectangular grain It was of width.

以上のように、硬質被覆層を構成する(Ti,Al)N層の結晶組織は、工具基体との界面側では所定平均幅の微粒組織、また、硬質被覆層表面側では所定平均幅の柱状組織からなるが、硬質被覆層表面に、所定面積割合の結晶方位の近い粒子が集まった領域を形成するためには、柱状組織の層厚方向の平均厚さは、0.3〜1.5μm(但し、硬質被覆層の層厚より当然に薄い)の範囲内の平均厚さで形成することが必要である。 As described above, constitute the hard coating layer (Ti, Al) crystal structure of the N layer, fine tissue of the predetermined average width at the interface side of the tool base body, also, columnar predetermined average width is hard layer surface consists tissue, the hard coating layer surface, in order to form a region crystal orientation of near particles gathered in a predetermined area ratio, the average thickness of the thickness direction of the columnar structure is 0.3 to 1.5 .mu.m (However, of course thinner than the thickness of the hard layer) it is necessary to form an average thickness within the range of.
柱状組織の層厚方向の平均厚さが0.3μm未満である場合には、平均幅が0.5〜2.0μmであり、かつ、硬質被覆層表面に占める面積割合が30〜80面積%となる結晶方位の近い粒子が集まった領域を形成することができず、一方、柱状組織の層厚方向の平均厚さが1.5μmを超えると、粗大柱状晶の形成による耐摩耗性の低下が生じるからである。 If the average thickness of the thickness direction of the columnar structure is less than 0.3μm is the average width of 0.5 to 2.0 [mu] m, and the area percentage of the hard coating layer surface 30 to 80 area% can not be formed a region crystal orientation of near particles gathered to be, on the other hand, if the average thickness of the thickness direction of the columnar structure is greater than 1.5 [mu] m, reduction of the wear resistance due to the formation of coarse columnar crystals This is because occurs.

前記柱状組織の層厚方向の厚さは、以下の方法によって測定することができ、その測定値を平均化することによって、層厚方向の平均厚さを求めることができる。 The thickness of the thickness direction of the columnar structure may be measured by the following method, by averaging the measured values, it is possible to determine the average thickness of the layer thickness direction. まず、工具基体表面に垂直な硬質被覆層の縦断面について、各結晶粒の形状を決定し、それぞれの結晶幅を決定する。 First, the longitudinal section of the vertical hard layer on the tool substrate surface, to determine the respective grain shape to determine their crystal width. 縦断面画像において、工具基体表面に平行な直線を引き、直線にかかる結晶の結晶幅の平均値をaとしたとき、aが0.05μm以上となる直線のうち、最も基材の表面側に近い直線を、本願における柱状組織と粒状組織の境界とする。 In longitudinal section image, draw a line parallel to the tool substrate surface, the average value of the crystal width in a straight line in such a crystal when formed into a a, among the straight lines a is equal to or greater than 0.05 .mu.m, most substrate surface side of the close straight lines, and the boundary of the columnar structure and the grain structure in the present application. この境界から硬質被覆層表面までの長さを前記柱状組織の層厚とし、複数視野において測定した層厚を平均することで、前記柱状組織の平均厚さを求める。 The length from the boundary to the hard coating layer surface and the layer thickness of the columnar structure, by averaging the thickness measured at multiple field-of-view, an average thickness of the columnar structure.

硬質被覆層表面の結晶方位の近い粒子が集まった領域: Regions near grain crystal orientation of the hard coating layer surface is gathered:
硬質被覆層表面には、前述したように、複数の結晶粒の集合体からなり、領域内の各結晶粒の結晶方位の差が2度以上10度以下である領域であって、しかも、工具基体表面の法線方向に対する該領域内の各結晶粒の結晶方位の傾斜角度差が最も小さい結晶方位<100>のベクトルを平均した方位と基体表面の法線方向のなす角度が10度以下である結晶方位の近い粒子が集まった領域を形成する。 The hard coating layer surface, as described above, a plurality of crystal grains of the aggregate differences in crystal orientation of the crystal grains in the region is an area less than 10 degrees 2 degrees, moreover, the tool in the normal direction of the angle of the mean azimuth and the substrate surface vectors within the region of the smallest crystal orientation inclination angle difference of crystal orientations of the crystal grains <100> with respect to the normal direction of the substrate surface 10 degrees or less forming a region in which the particles gathered near a certain crystal orientation.
前記結晶方位の近い粒子が集まった領域は、その平均幅が0.5μm未満であると耐擦れ摩耗性を向上させる効果が十分でなく、一方、その平均幅が2.0μmを超えると結晶方位が広範囲で揃うため、結晶粒界を起点にしたクラックが進展しやすくなり、耐チッピング性が低下する。 Area particles gathered near the said crystal orientation effects its average width improves abrasion Re abrasion resistance is less than 0.5μm is not sufficient, whereas, the crystal orientation and the average width exceeds 2.0μm There since aligned in a wide range, cracks were starting from the crystal grain boundary tends to progress, chipping resistance decreases.
このため、前記結晶方位の近い粒子が集まった領域の平均幅は、0.5〜2.0μmとする。 Therefore, the average width of the crystal orientation of near particles gathered region, and 0.5 to 2.0 [mu] m.
また、硬質被覆層表面に占める前記結晶方位の近い粒子が集まった領域の面積割合が30面積%未満であると耐摩耗性を向上させる効果が十分でなく、一方、80面積%を超えると結晶方位が広範囲で揃うため、結晶粒界を起点にしたクラックが進展しやすくなり、耐チッピング性が低下する。 Moreover, the effect of area ratio of a region near the particles of said crystal orientation occupied in the hard coating layer surface is gathered to improve the abrasion resistance is less than 30 area% is not sufficient, whereas more than 80 area% and crystalline since orientation aligned in a wide range, cracks were starting from the crystal grain boundary tends to progress, chipping resistance decreases.
このため、前記結晶方位の近い粒子が集まった領域が硬質被覆層表面に占める面積割合は、30〜80面積%とする。 Therefore, the area ratio of the region where particles are gathered near the said crystal orientations occupy the hard coating layer surface, 30 to 80 area%.
また、前記結晶方位の近い粒子が集まった領域について、工具基体表面に垂直な断面方向の該領域内の結晶粒の結晶方位を平均したとき、隣り合う領域同士の平均した結晶方位の差が15度以下あるいは75度以上であると、隣り合う領域同士の結晶粒界の向きが近くなるため、隣り合う領域間において結晶粒界を起点としたクラックが進展しやすくなり、突発的なチッピングが生じやすくなる。 Moreover, it will gathered area particles close in the crystal orientation, when the average crystal orientation of the crystal grains of a cross section perpendicular direction within the region on the tool substrate surface, the difference in crystal orientation averaged region between the adjacent 15 If it is degrees or 75 degrees or more, the orientation of the crystal grain boundary regions between the adjacent close, cracks starting from the crystal grain boundary between adjacent regions is likely to progress, cause sudden chipping It becomes easier. このため、隣り合う領域同士の結晶方位の差は15度を超え、75度未満であることがより好ましい。 Therefore, the difference in crystal orientations of domains adjacent to each other than 15 degrees, more preferably less than 75 degrees.

硬質被覆層表面の結晶方位の近い粒子が集まった領域の特定: Specific areas near grain crystal orientation gathered the hard coating layer surface:
前記結晶方位の近い粒子が集まった領域の特定、また、結晶方位の近い粒子が集まった領域の幅、面積割合は、例えば、以下の方法で測定し、測定値の平均を算出することによって、結晶方位の近い粒子が集まった領域の平均幅、面積割合を求めることができる。 Particular, the area close to the particles of said crystal orientations gathered The width of close particle crystal orientations gathered area, area ratio, for example, by measured by the following method to calculate the average of the measured values, the average width of the near crystal orientations particles gathered region can be obtained area ratio.
具体的には、まず、工具基体表面の法線方向からEBSDを用いて分析を行い、硬質被覆層を形成する各粒子を決定し、一つ一つの結晶粒子の工具基体表面に垂直な方向の結晶方位を決定する。 Specifically, first, the direction normal to the tool substrate surface was analyzed using EBSD, to determine the respective particles forming the hard layer, each one of the perpendicular direction to the tool substrate surface of the crystal grains to determine the crystal orientation. 次に隣り合う結晶粒同士の結晶方位の差が2度以上10度以下である領域を決定する。 Then the difference in crystal orientation of crystal grains adjacent to determine a region that is less than 10 degrees twice. そして、ここで決定した各領域内の各々の結晶粒に対して、工具基体表面の法線方向に対する結晶方位の傾斜角度差が最も小さい結晶方位<100>のベクトルを求め、各領域のうち、これらのベクトルを平均した方位と基体表面の法線方向のなす角度が10度以下である領域を定める。 Then, the crystal grains of each of the respective region determined here obtains a vector of the smallest crystal orientation <100> tilt angle difference in the crystal orientation with respect to the normal direction of the tool substrate surface, among the regions, normal direction of angle between these vectors averaged orientation and the substrate surface defines an area equal to or less than 10 degrees. こうして決定した領域が本発明における、結晶方位の近い粒子が集まった領域、である。 Determined area in the present invention thus is an area, where the particles gathered near crystal orientation. 該領域に対して、面積が等価になるような円形状近似を行い、こうして決定した円の直径および面積を該領域の幅および面積とする。 Against the region, it performs a circular approximation such area is equivalent, thus the diameter and area of ​​the determined circle to the width and area of ​​the region. 測定視野内の結晶方位の近い粒子が集まった領域それぞれに対する幅を平均した値を平均幅、それぞれの面積を合計したものを測定視野の面積で除した値を面積割合とし、複数視野で測定した値を平均し、本発明品における、結晶方位の近い粒子が集まった領域の平均幅、面積割合を求める。 The average value obtained by averaging widths for each particle is gathered region near the crystal orientations in the measurement field width, the value obtained by dividing the the sum of the respective areas by the area of ​​the measuring field and area ratio, was measured at multiple field-of-view It averaged value, in the present invention product, the average width of the region in which the particles gathered near crystal orientation, determine the area ratio.

硬質被覆層の結晶配向性: The crystal orientation of the hard coating layer:
本発明では、硬質被覆層表面近傍の柱状組織の形成および硬質被覆層表面の結晶方位の近い粒子が集まった領域の形成を促進するため、硬質被覆層の結晶配向性を制御することが望ましい。 In the present invention, to facilitate the formation of a region where the crystal orientation of near particles gathered in the formation of columnar structures in the vicinity of the surface hard layer and the hard coating layer surface, it is desirable to control the crystal orientation of the hard layer.
即ち、成膜パラメータの調整により成膜速度を低減することで表面エネルギーの小さい(100)面が優先的に成長するように操作し、EBSDによる結晶方位解析を行ったとき、基体表面の法線方向から0〜10度の範囲内に結晶方位<100>を有する結晶粒の面積割合を40面積%以上とすることで、柱状組織が形成されやすくなり、その結果、硬質被覆層表面における結晶方位の近い粒子が集まった領域の形成が促進される。 In other words, a small surface energy by reducing the deposition rate (100) plane is engineered to grow preferentially by adjusting deposition parameters, when performing the crystal orientation analysis by EBSD, the normal of the substrate surface the area ratio of crystal grains having a crystal orientation <100> in the range of 0 degrees from the direction by 40 area% or more, the columnar structure is easily formed, as a result, the crystal orientation in the hard coating layer surface particles gathered region formation is promoted close in. しかし、基体表面の法線方向から0〜10度の範囲内に結晶方位<100>を有する結晶粒の面積割合が90面積%を超えると結晶方位が広範囲で揃うため、結晶粒界を起点にしたクラックが進展しやすくなり、高負荷切削における耐欠損性が低下する。 However, since the crystal orientation and the area ratio of crystal grains is more than 90 area% from the normal direction with a crystal orientation <100> in the range of 0 degrees on the substrate surface are aligned in a wide range, starting from the crystal grain boundary cracks that are likely to progress, chipping resistance in high-load cutting is reduced.
したがって、基体表面の法線方向から0〜10度の範囲内に結晶方位<100>を有する結晶粒の面積割合は40面積%以上90面積%以下とすることが望ましい。 Therefore, the area ratio of crystal grains having a crystal orientation <100> in the range from the normal direction of the substrate surface of 0 degree is preferably set to 40 area% or more 90 area% or less.

工具基体: Tool substrate:
硬質被覆層表面の結晶方位の近い粒子が集まった領域の形成を促進する上で、基体表面の法線方向から0〜10度の範囲内に結晶方位<100>を有する結晶粒の面積割合が重要であることは前記のとおりであるが、cBN焼結体からなる工具基体におけるcBN粒子の平均粒径、含有割合も、工具基体表面近傍の微粒組織、硬質被覆層表面近傍の柱状組織および硬質被覆層表面の結晶方位の近い粒子が集まった領域の形成に影響を及ぼす。 In promoting the formation of a region near the particle crystal orientations gathered the hard coating layer surface, the area ratio of crystal grains having a crystal orientation <100> in the range from the normal direction of the substrate surface of 0 ° Although it is important is as defined above, the average particle diameter of cBN particles in the tool substrate made of cBN sintered body, the content is also fine tissue near the tool substrate surface, columnar structure and rigid near the surface hard layer It affects the formation of the near crystal orientations of the coating layer surface particles gathered area.
即ち、cBN粒子を起点として(Ti,Al)N結晶粒が成長する場合は、cBNと(Ti,Al)Nは化学結合の種類が異なるため、(Ti,Al)N結晶粒が成長する際の結晶方位はcBN粒子から受ける影響が少なく、成膜条件に応じた方位に優先的に成長し、しかも、ランダムに形成された微細な結晶核が結晶成長の初期から競合しながら成長するため、結晶方位の近い結晶粒がまとまって成長しやすくなる。 That is, the cBN particles as a starting point (Ti, Al) if N crystal grains are grown, cBN and (Ti, Al) N is for the type of chemical bond is different, (Ti, Al) when N crystal grains grow crystal orientation less influence from the cBN particles, preferentially grown azimuth corresponding to deposition conditions, moreover, since the randomly formed the fine crystal nuclei grow while competing from the initial crystal growth, crystal grains is likely to grow together close to that of the crystal orientation.
一方、cBN焼結体の結合相として用いられるTiNなどは(Ti,Al)N結晶粒と同じ化学結合であるため、cBN粒子上ではなくcBN焼結体の結合相上の成長核から成長した場合には、(Ti,Al)N結晶粒の成長は、起点となる結合相の結晶サイズおよび結晶方位に強く影響される。 On the other hand, such as TiN used as binder phase of the cBN sintered body was grown from (Ti, Al) is the same chemical bond between N crystal grains, bonded phase on the growth nucleus of the cBN sintered body and not on the cBN particles If the (Ti, Al) N grain growth is strongly influenced by the crystal size and the crystal orientation of the binding phase as a starting point. このため、成膜条件に応じた方位と結合相の影響を受けた方位でそれぞれ結晶粒が成長し、その後成長した結晶粒同士が競合しながら成長するため、本発明品のような層厚の範囲内では、結晶方位の近い結晶粒が成長しにくくなる。 Therefore, crystal grains are grown in orientation affected the orientation and binding phase in accordance with the film formation conditions, then because the grown crystal grains grow while competing, the layer thickness as in the present invention product within, the crystal grains are less likely to grow closer crystal orientation. したがって、工具基体表面近傍の微粒組織、硬質被覆層表面近傍の柱状組織および硬質被覆層表面の結晶方位の近い粒子が集まった領域を適正に形成するためには、工具基体として、平均粒径が2.0〜4.0μmのcBN粒子が50〜80体積%存在し、かつcBN粒子とTiの窒化物、炭化物、炭窒化物、硼化物およびAlの窒化物、酸化物からなる群から選ばれた少なくとも1種以上の粒子と不可避不純物とを含む結合相とからなるcBN焼結体を用いることが望ましく、cBN粒子の平均粒径、体積割合、ひいては成膜時の基体表面におけるcBN粒子と結合相の露出状態を操作することで、結晶方位の近い粒子が集まった領域の形成を制御することができる。 Therefore, fine tissue in the vicinity of the tool substrate surface, in order to properly form a nearly particles gathered region crystal orientation of the columnar structure and the hard layer surface of the hard layer near the surface, as tool substrate, average particle size cBN particles 2.0~4.0μm are present 50 to 80 vol%, and nitrides of the cBN particles and Ti, carbides, carbonitrides, nitrides of boride and Al, selected from the group consisting of oxides it is desirable to use a cBN sintered body composed of a binder phase comprising at least one or more kinds of particles and inevitable impurities, an average particle diameter, volume fraction of the cBN particles, thus binding the cBN particles in the substrate surface during film formation by operating the exposure state of the phase, it is possible to control the formation of near crystal orientations particles gathered area.
なお、cBN焼結体中のcBN粒子の粒径およびcBN粒子の含有割合(体積%)は、以下の方法で測定することができ、得られた測定値を平均化することにより、cBN粒子の平均粒径およびcBN粒子の含有割合(体積%)求めることができる。 The content ratio of the particle diameter and the cBN particles of the cBN particles in the cBN sintered body (% by volume) can be measured by the following method, by averaging the measurements obtained, the cBN particles it can be determined content of average particle diameter and the cBN particles (vol%). 具体的には、作製したcBN焼結体の断面組織を走査型電子顕微鏡(Scanning Electron Microscopy:SEM)にて観察して得られた二次電子画像内のcBN粒子の部分を画像処理にて抜き出し、画像解析によって各cBN粒子の最大長を求め、それを各cBN粒子の直径とし、1画像におけるcBN粒子の直径の平均値を求め、少なくとも3画像について求めた平均値の平均をcBNの平均粒径[μm]とした。 Specifically, the produced cBN sintered body of the cross-sectional structure of a scanning electron microscope: extracting a portion of the cBN particles in the secondary electron image obtained by observing at (Scanning Electron Microscopy SEM) in the image processing , determine the maximum length of each cBN particle by image analysis, and it and the diameter of each cBN particles, 1 the average value of the diameter of the cBN particles in the image, mean an average grain cBN average values ​​obtained for at least 3 images and the diameter [μm]. また同様に、画像解析によって観察領域におけるcBN焼結体の全体の面積に対するcBN粒子が占める面積を算出し、少なくとも3画像を処理し求めた値の平均値をcBN粒子の含有割合(体積%)とした。 Similarly, to calculate the area occupied by the cBN particles to the entire area of ​​the cBN sintered compact in the observation area by image analysis, the content of cBN particles an average value of values ​​obtained by processing at least 3 images (vol%) and the. 画像処理に用いる観察領域は予備観察を行うことによって定めたが、cBN粒子の平均粒径が2.0〜4.0μmであることをかんがみ、15μm×15μm程度の視野領域とすることが望ましい。 Observation area used for the image processing is determined by performing a preliminary observation, light of the average particle diameter of the cBN particles is 2.0~4.0Myuemu, it is desirable that the 15 [mu] m × 15 [mu] m about the viewing area.

本発明の被覆工具は、工具基体表面近傍の(Ti,Al)N層を微粒組織とし、一方、硬質被覆層表面側の(Ti,Al)N層を柱状組織として形成するとともに、硬質被覆層表面の柱状組織の少なくとも一部に、複数の結晶粒の集合体からなり、該集合体の平均幅が0.5〜2.0μmであり、硬質被覆層の表面に占める面積割合が30〜80面積%である結晶方位の近い粒子が集まった領域を形成することによって、隣り合う結晶粒同士の結合が強靭になるため、切れ刃に高負荷が作用する高速切削加工に供された場合においても、チッピング、欠損等の発生もなく長期の使用にわたってすぐれた耐摩耗性を発揮する。 Coated tool of the present invention, (Ti, Al) in the vicinity of the tool substrate surface N layer as a fine tissue, whereas, in the hard coating layer surface side (Ti, Al) to form the N layer as a columnar structure, the hard coating layer at least a portion of the columnar structure of the surface, a plurality of crystal grains of aggregate, the average width of the aggregate is 0.5 to 2.0 [mu] m, the area percentage of the surface of the hard coat layer is 30 to 80 by forming a close grain gathered region crystal orientation is area%, since the coupling between the crystal grains adjacent become tough, even when the high load to the cutting edge is subjected to high speed cutting acting , exhibits chipping, excellent wear resistance over a long term use without generation of defects such as.

本発明被覆工具の概略模式図を示し、(a)は、本発明被覆工具の硬質被覆層表面の概略模式図であり、(b)は、本発明被覆工具の縦断面の概略模式図である。 Shows the schematic view of the present invention coated tool, (a) is a schematic view of a hard coating layer surface of the present invention coated tool, (b) is a schematic view of a longitudinal section of the present invention coated tool . 硬質被覆層を形成するためのアークイオンプレーティング装置の概略図を示し、(a)は平面図、(b)は側面図である。 Shows a schematic diagram of an arc ion plating apparatus for forming a hard coating layer, (a) shows the plan view, (b) a side view.

つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, specifically described by the coated tool of the present invention embodiment.

工具基体の作製: Preparation of the tool substrate:
原料粉末として、2.0〜4.0μmの平均粒径を有するcBN粒子を硬質相形成用原料粉末として用意するとともに、いずれも2.0μm以下の平均粒径を有するTiN粉末、TiC粉末、TiCN粉末、Al粉末、AlN粉末、Al 粉末を結合相形成用原料粉末として用意した。 As raw material powders, the cBN particles having an average particle size of 2.0~4.0μm with prepared as raw material powder for the hard phase forming, TiN powder, TiC powder having an average particle size of either 2.0μm or less, TiCN powder, Al powder, AlN powder, were prepared as raw material powder for binder phase forming the Al 2 O 3 powder.
次いで、所定の表1に示す配合組成となるように配合したこの原料粉末を、ボールミルで72時間湿式混合し、乾燥した後、成形圧100MPaで直径:50mm×厚さ:1.5mmの寸法にプレス成形し、ついでこの成形体を、圧力:1Pa以下の真空雰囲気中、900〜1300℃の範囲内の所定温度に保持して仮焼結し、その後、超高圧焼結装置に装入して、圧力:5GPa、温度:1200〜1400℃の範囲内の所定の温度で焼結することにより、cBN焼結体1〜9を作製した。 Subsequently, the raw material powder was blended so that compounding composition shown in prescribed Table 1, 72 hour wet mixing in a ball mill, dried, diameter forming pressure 100 MPa: 50 mm × thickness: the dimension of 1.5mm press-molded and then the molded body, pressure: 1 Pa in a vacuum of the atmosphere, and preliminary sintering and held at a predetermined temperature in the range of 900 to 1300 ° C., then charged in an ultra high pressure sintering apparatus pressure: 5 GPa, temperature: 1200 to 1400 by sintering at a predetermined temperature in the range of ° C., to produce a cBN sintered body 1-9.

上記で得られたcBN焼結体をワイヤー放電加工機で所定寸法に切断し、Co:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120408のインサート形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ag:残りからなる組成を有するAg系ろう材を用いてろう付けし、上下面および外周研磨、ホーニング処理を施すことによりISO規格CNGA120408のインサート形状をもった工具基体1〜9を製造した。 The cBN sintered body obtained above was cut into a predetermined size by a wire electric discharge machine, Co: 5 wt%, TaC: 5 wt%, WC: WC group having the insert shape of the remainder of the composition and ISO standards CNGA120408 to braze cemented carbide insert body (corner portion), by mass%, Cu: 26%, Ti: 5%, Ag: brazed with Ag-based brazing material having a composition consisting of the remaining, upper the lower surface and the outer polishing, to produce a tool substrate 1-9 having the insert shape of ISO standard CNGA120408 by performing honing process.


硬質被覆層の成膜: The formation of the hard coating layer:
前述の工程によって作製した工具基体1〜9に対して、図2に示すアークイオンプレーティング装置を用いて、硬質被覆層を形成した。 The tool body 1 to 9 produced by the aforementioned process, by using the arc ion plating apparatus shown in FIG. 2, to form a hard layer.
(a)まず、工具基体1〜9を、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着する。 (A) First, the tool substrate 1-9, was subjected to ultrasonic cleaning in acetone, in a dry state, the outer peripheral portion at a predetermined distance in a radial direction from the center axis of the rotary table in arc ion in plating device mounted along. また、カソード電極(蒸発源)として、所定組成のTi−Al合金ターゲットを配置した。 Further, as the cathode electrode (vapor source), it was placed Ti-Al alloy target of a predetermined composition.
(b)次に、装置内を排気して10 −2 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、0.5〜4.0PaのArガス雰囲気に設定し、前記回転テーブル上で自転しながら回転する工具基体に−400〜−1000Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによって5〜30分間ボンバード処理した。 (B) Next, while holding the evacuating the apparatus to 10 -2 Pa or less of vacuum, after heating the inside of the apparatus to 500 ° C. by the heater, set to Ar gas atmosphere 0.5~4.0Pa the application of a DC bias voltage of -400 to-1000V to a tool substrate rotates while rotating on a rotary table, a tool substrate surface was bombarded 5-30 minutes by argon ions with.
(c)次に、工具基体表面に、まず、粒状組織の(Ti,Al)N層の成膜を、次のとおり行った。 (C) Next, the tool substrate surface, firstly, the grain structure (Ti, Al) the formation of the N layer, was performed as follows.
装置内に反応ガスとして窒素ガスを導入して表2に示す0.5〜6Paの所定の反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に表2に示す−10〜−100Vの所定の直流バイアス電圧を印加し、かつ、前記Tiターゲットからなるカソード電極(蒸発源)および前記所定組成のTi−Al合金ターゲットからなるカソード電極(蒸発源)とアノード電極との間に表2に示す90〜200Aの所定の電流を同時に所定時間流してアーク放電を発生させ、前記工具基体の表面に、表4に示される目標平均層厚の粒状組織からなる(Ti,Al)N層を蒸着形成した。 By introduction of nitrogen gas with a predetermined reaction atmosphere 0.5~6Pa shown in Table 2 as a reaction gas into the apparatus, -10 shown in Table 2 in the tool base body that rotates while rotating on the turntable applying a predetermined DC bias voltage of -100 V, and, between the Ti cathode electrode (vapor source) made of the target and the cathode electrode (vapor source) made of Ti-Al alloy target having the predetermined composition as the anode electrode of 90~200A shown in Table 2 given current flowing simultaneously a predetermined time to generate arc discharge on the surface of the tool substrate, made of the target average layer thickness of the grain structure shown in Table 4 (Ti, Al) N the layer was deposited formation.
(d)次いで、上記粒状組織の(Ti,Al)N層の上に、成膜条件を変更して柱状組織の(Ti,Al)N層の成膜を、次のとおり行った。 (D) Then, the grain structure (Ti, Al) on the N layer, the columnar texture by changing the film formation conditions (Ti, Al) the formation of the N layer, was performed as follows.
装置内に反応ガスとして窒素ガスを導入して表2に示す4〜10Paの範囲内の所定の反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に表2に示す−10〜−75Vの範囲内の所定の直流バイアス電圧を印加し、かつ、前記Ti−Al合金ターゲットからなるカソード電極(蒸発源)とアノード電極との間に表2に示す90〜140Aの範囲内の所定の電流を流してアーク放電を発生させ、前記粒状組織の(Ti,Al)N層の上に、表4に示される目標平均層厚の柱状組織からなる(Ti,Al)Nを蒸着形成した。 By introduction of nitrogen gas as a reaction gas into the apparatus with a predetermined reaction atmosphere within the 4~10Pa shown in Table 2, -10 shown in Table 2 in the tool base body that rotates while rotating on the turntable applying a predetermined DC bias voltage in the range of ~-75V, and, within the range of 90~140A shown in Table 2 between the cathode electrode (vapor source) made of Ti-Al alloy target and the anode electrode by supplying a predetermined current to generate arc discharge, on the grain structure (Ti, Al) N layer, consisting of the target average layer thickness of the columnar structures shown in Table 4 (Ti, Al) N deposition formation did.
上記(a)〜(d)の工程により、本発明被覆工具(以下、「本発明工具」という)1〜9を作製した。 By the above described process (a) ~ (d), the present invention coated tool (hereinafter, referred to as "the invention Tool") was prepared 1-9.
なお、本発明の皮膜組織の形成に関して、cBN粒子の平均粒径、体積割合が重要な役割を果たすことは前述の通りであるが、成膜時の基体表面におけるcBN粒子と結合相の露出状態を制御するために、工具刃先を形成するcBN焼結体部分の研削後の表面粗度に関して、算術平均粗さRaを0.01〜1.0μmの範囲となるようにすることがより好ましい。 Incidentally, for the formation of the film structure of the present invention, the average particle diameter, although the volume rate play an important role is as described above, the exposure condition of the binder phase and the cBN particles in the substrate surface during the formation of cBN particles in order to control the, relative to the surface roughness after grinding of the cBN sintered body portion forming a tool cutting edge, it is more preferable that the arithmetic average roughness Ra to be in the range of 0.01 to 1.0 [mu] m. 工具基体を作製する際、表面を研削することで硬さの小さい結合相が優先的に除去され、表面にcBN粒子が露出する。 Making the tool substrate, small binding phase having a hardness grinding the surface are preferentially removed, cBN particles are exposed on the surface. さらに、前記(b)のように成膜前にボンバード処理を施すことで、表面のcBN粒子の露出状態を制御することができ、その結果、より本発明の皮膜組織を形成しやすくすることができる。 Furthermore, the (b) by applying the bombardment treatment before the formation as can control the exposure state of the cBN particles in the surface, so that is possible to easily form a more film structure of the present invention it can. 本発明工具においては、レーザー顕微鏡によって研削後のcBN焼結体部分の表面粗度を確認した。 In the present invention the tool to confirm the surface roughness of the cBN sintered body portion after grinding by a laser microscope.

比較のため、工具基体1〜9に対して、表3に示す条件で前記(a)〜(d)の工程を行うことによって、表5に示す比較例被覆工具(以下、「比較例工具」という)1〜9を作製した。 For comparison, with respect to the tool base body 1 to 9, by performing the under the conditions shown in Table 3 (a) ~ (d) step, Comparative Example coating tool shown in Table 5 (hereinafter, "Comparative Tool" a) 1-9 that were produced.



上記で作製した本発明工具1〜9および比較例工具1〜9について、オージェ電子分光法(AES)を用いた硬質被覆層の断面測定により、硬質被覆層の組成を複数箇所で測定し、これを平均することにより、硬質被覆層の組成を求めた。 The present invention tools 1 to 9 and Comparative Examples tool 1-9 produced above, a sectional measurement of the hard coating layer using Auger electron spectroscopy (AES), measures the composition of the hard coating layer at a plurality of positions, which by averaging it was determined the composition of the hard layer.
また、得られたcBN焼結体中のcBN粒子の含有割合(体積%)およびcBN粒子の平均粒径は、以下の測定法で測定することにより求めた。 The average particle diameter of the obtained content (% by volume) of the cBN particles of the cBN sintered body and cBN particles was determined by measuring the following measurement method.
本発明切削工具1〜9、比較切削工具1〜9の逃げ面を集束イオンビーム(Focused Ion Beam:FIB)を用いて断面加工し、刃先稜線に垂直な断面を形成し、断面組織を走査型電子顕微鏡(Scanning Electron Microscopy:SEM)により観察し、二次電子画像を取得する。 The present invention cutting tool 1 to 9, Comparative cutting focused ion beam flank of the tool 1 to 9: cross section processed using (Focused Ion Beam FIB), to form a cross-section perpendicular to the cutting edge, the cross-sectional tissue scanning electron microscope (Scanning electron microscopy: SEM) was observed by obtains the secondary electron image.
観察領域は、15μm×15μm程度であって、cBN焼結体中のcBN粒子および硬質被覆層の全体が観察できる倍率とする。 Observation region is an approximately 15 [mu] m × 15 [mu] m, and the magnification of the whole of the cBN particles and hard coated layer in the cBN sintered body can be observed.
この二次電子画像から前述したような方法を用いて、cBN粒子の平均粒径およびcBN粒子の含有割合(体積%)を測定した。 Using the method described above from the secondary electron image was measured content of average particle diameter and the cBN particles of the cBN particles (vol%).

また、硬質被覆層の微粒組織あるいは柱状組織の結晶粒の平均幅、柱状組織の層厚方向の厚さ及び硬質被覆層の平均層厚を以下の測定法で測定することにより求めた。 Moreover, it was determined by measuring the crystal grains having an average width of fine tissues or columnar structure of the hard coating layer, the average layer thickness of the layer thickness direction of the columnar tissue thickness and the hard coating layer with the following measurement methods.
本発明切削工具1〜9、比較切削工具1〜9の逃げ面をFIBを用いて断面加工し、刃先稜線に垂直な断面を形成し、断面組織をSEMにより観察し、二次電子画像を取得するとともにEBSDを用いて結晶方位の解析を行った。 The present invention cutting tool 1 to 9, and the cross section processing using a FIB flank comparison cutting tool 1 to 9, to form a cross-section perpendicular to the cutting edge was observed by SEM cross-sectional structure, obtains the secondary electron image It was analyzed crystal orientation using EBSD while.
観察領域は、15μm×15μm程度であって、cBN焼結体中のcBN粒子および硬質被覆層の全体が観察できる倍率とする。 Observation region is an approximately 15 [mu] m × 15 [mu] m, and the magnification of the whole of the cBN particles and hard coated layer in the cBN sintered body can be observed. EBSDによる測定・解析は、観察領域に対してステップ間隔0.02μmの条件で実施し、測定点のうち、隣り合う点で結晶方位が2°以上異なる境目を結晶粒界として判断し、各結晶の形状を決定した。 The measurement and analysis by EBSD, carried out in the conditions of step interval 0.02μm to the viewing area, among the measurement points, different boundary crystal orientation 2 ° or more in that adjacent judged as a crystal grain boundary, the crystal shape were determined of. また、0.02μm以下の結晶粒については観察領域をFIB加工によって薄片化し、透過型電子顕微鏡(TEM)によって結晶粒の形状を直接観察し、画像のコントラストから結晶粒界を定めた。 Further, it sliced ​​by FIB processing the observation area for the following grain 0.02 [mu] m, the crystal grain shape directly observed by a transmission electron microscope (TEM), defining a grain boundary from the image of the contrast. なお、EBSD測定を実施した視野と同じ画像視野において、0.02μm以上の結晶粒形状についても透過型電子顕微鏡(TEM)を用いた測定によって結晶形状を確認し、いずれの手法でも同等の結果が得られることを確認している。 Incidentally, in the same image field as the field of view it was carried out EBSD measurement, it was confirmed the crystalline form by measurement using a transmission electron microscope (TEM) for more grain shape 0.02 [mu] m, equivalent results in either technique it has been confirmed that the obtained. また、工具基体表面については、硬質被覆層の工具基体表面に垂直な縦断面においてAESを用いた元素マッピングを実施することによって硬質被覆層と工具基体の界面を定め、こうして得られた硬質被覆層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体表面とした。 As for the tool substrate surface, it defines a surface of the hard coating layer and the tool substrate by performing elemental mapping using AES in vertical longitudinal section on the tool substrate surface of the hard coating layer, thus resulting hard layer and the roughness curve of the interface between the tool substrate, an average line arithmetically, was this the tool substrate surface.
この二次電子画像およびEBSD解析の結果から、前述したような方法を用いて、硬質被覆層の微粒組織あるいは柱状組織の結晶粒の平均幅、柱状組織の層厚方向の厚さ及び硬質被覆層の平均層厚を測定した。 The results of this secondary electron image and the EBSD analysis, using the method described above, the crystal grains having an average width of fine tissues or columnar structure of the hard coating layer, the thickness direction of the columnar tissue thickness and the hard coating layer the average layer thickness of was measured.

硬質被覆層表面の結晶方位の近い粒子が集まった領域について、結晶方位の近い粒子が集まった領域の平均幅、面積割合を以下の測定によって求めた。 The region crystal orientation of near particles gathered hard coating layer surface, the average width of the near grain crystal orientations gathered regions, the area ratio was determined by the following measurement.
本発明切削工具1〜9、比較切削工具1〜9の逃げ面に対して、硬質被覆層表面をFIBを用いて加工し、工具基体表面に平行な面を作製し、加工面に対してEBSD解析を行い、前述した方法を用いて、結晶方位の近い粒子が集まった領域の平均幅、面積割合を求めた。 The present invention cutting tool 1-9, with respect to flank the comparative cutting tools 1 to 9, the hard coating layer surface was processed using FIB, to prepare a plane parallel to the tool substrate surface, EBSD against working surface analyzes, using the method described above, the average width of the near crystal orientations particles gathered region was determined area ratio. 測定領域は、結晶方位の近い粒子が集まった領域の平均幅が0.5〜2.0μmであることを鑑み、15μm×15μm程度とし、それぞれの工具について3視野ずつ測定した平均値を該工具の測定値とした。 Measurement area, in view of the average width of the near crystal orientations particles gathered area is 0.5 to 2.0 [mu] m, and 15 [mu] m × 15 [mu] m approximately, the tool an average value measured by 3 field for each of the tool It was of the measured values.

硬質被覆層について、Cu管球を用いたX線回折により、(200)面の回折ピーク強度I(200)と、(111)面の回折ピーク強度I(111)を測定し、I(200)/I(111)から回折ピーク強度比を算出した。 For hard layer by X-ray diffraction using a Cu tube, and the measured (200) diffraction peak intensity I (200) of the plane, the (111) plane of the diffraction peak intensity I (111), I (200) / was calculated diffraction peak intensity ratio of I (111).
表4、表5に、上記で求めた各種の値を示す。 Table 4, Table 5 shows the various values ​​obtained above.



次いで、本発明工具1〜9および比較例工具1〜9について、以下の条件で切削試験を実施した。 Next, the present invention tools 1 to 9 and Comparative Examples tool 1-9 was carried out cutting test under the following conditions.
切削条件A: Cutting Conditions A:
被削材:JIS・SCM415の浸炭焼入れ材(HRC60)の丸棒、 Workpiece: round bar of carburizing hardening material of the JIS · SCM415 (HRC60),
切削速度:275 m/min. Cutting speed: 275 m / min. ,
切り込み:0.15 mm、 Cut: 0.15 mm,
送り:0.1 mm、 Feed: 0.1 mm,
の乾式連続切削条件で切削試験を行い、切削長2750mまで切削し、逃げ面摩耗幅を測定した。 Perform cutting test under dry continuous cutting conditions, and cutting to the cutting length 2750M, it was measured flank wear width.
切削条件B: Cutting Conditions B:
被削材:JIS・SCr420の浸炭焼入れ材(HRC60)の丸棒、 Workpiece: round bar of carburizing hardening material of the JIS · SCr420 (HRC60),
切削速度:190 m/min. Cutting speed: 190 m / min. ,
切り込み:0.20 mm、 Cut: 0.20 mm,
送り:0.20 mm、 Feed: 0.20 mm,
の乾式連続切削条件で切削試験を行い、切削長2850mまで切削し、逃げ面摩耗幅を測定した。 Perform cutting test under dry continuous cutting conditions, and cutting to the cutting length 2850M, it was measured flank wear width.
表6に、その結果を示す。 Table 6 shows the results.


表6の結果によれば、本発明工具は、逃げ面摩耗幅の平均は切削条件Aで約0.12mm、また、切削条件Bで約0.08mmあるのに対して、比較例工具は逃げ面摩耗が進行し、あるいは、短時間でチッピング、欠損、剥離等による寿命となるものも生じた。 According to the results of Table 6, the present invention the tool has an average flank wear width of about the cutting condition A 0.12 mm Furthermore, for there to about 0.08mm in cutting conditions B, Comparative Example tool relief surface wear progresses, or to a short time occurred chipping, defective, others a lifetime due to peeling.
この結果から、切れ刃に高負荷が作用する高速切削加工において、本発明工具は、比較例工具に比して、耐摩耗性にすぐれていることが分かる。 This result in high-speed cutting of high load on the cutting edge acts, the present invention the tool is different from the comparative example the tool, it is seen that excellent properties abrasion.

本発明の表面被覆切削工具は、切刃部に大きな負荷がかかる鋼や鋳鉄の高速切削加工においても、すぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 Surface-coated cutting tool of the present invention, even in high-speed cutting of steel and cast iron according large load on the cutting edge, it exhibits excellent wear resistance, but to indicate the superior cutting performance over a long period of time , high performance of the cutting device, as well as labor saving of cutting and energy saving, but can respond to satisfactory further cost reduction.

Claims (3)

  1. 立方晶窒化硼素焼結体からなる工具基体の表面に、1.0〜4.0μmの平均層厚の硬質被覆層が蒸着形成された表面被覆切削工具において、 On the surface of the tool substrate made of a cubic boron nitride sintered body, the surface-coated cutting tool hard coating layer having an average layer thickness of 1.0~4.0μm is vapor deposited,
    (a)前記硬質被覆層は、 (A) the hard coating layer,
    組成式:(Ti 1−x Al )Nで表した場合、0.4≦x≦0.7(但し、xは原子比)を満足するTiとAlの複合窒化物層であり、 Formula: when expressed in (Ti 1-x Al x) N, 0.4 ≦ x ≦ 0.7 ( where, x is an atomic ratio) is a composite nitride layer of Ti and Al satisfying the,
    (b)前記硬質被覆層の結晶組織は、工具基体との界面側では結晶粒の平均幅が0.01〜0.05μmの微粒組織、また、硬質被覆層表面側では結晶粒の平均幅が0.05〜1.0μmの柱状組織であって、該柱状組織の層厚方向の平均厚さは、硬質被覆層の層厚より薄く、かつ、0.3〜1.5μmの平均厚さで形成されており、 (B) the crystal structure of the hard coating layer has an average width of the crystal grains at the interface side 0.01~0.05μm of fine tissue as tool substrate, also, the average grain width is hard layer surface 0.05~1.0μm a columnar structure, an average thickness of the layer thickness direction of the columnar structure is thinner than the layer thickness of the hard coating layer and the average thickness of 0.3~1.5μm is formed,
    (c)前記硬質被覆層の表面には、複数の結晶粒の集合体からなり、該集合体の平均幅が0.5〜2.0μmである結晶方位の近い粒子が集まった領域が形成され、該結晶方位の近い粒子が集まった領域が硬質被覆層の表面に占める面積割合は30〜80面積%であり、 The surface of (c) the hard coating layer is composed of a plurality of crystal grains of the aggregate, area average width is gathered close grain crystal orientation is 0.5~2.0μm of the aggregate is formed , the area ratio of a region where particles are gathered near the said crystal orientations occupied on the surface of the hard coating layer is 30 to 80 area%,
    (d)前記結晶方位の近い粒子が集まった領域は、該領域内の各結晶粒の結晶方位の差が2度以上10度以下である領域であって、しかも、工具基体表面の法線方向に対する該領域内の各結晶粒の結晶方位の傾斜角度差が最も小さい結晶方位<100>のベクトルを平均した方位と基体表面の法線方向のなす角度が10度以下であることを特徴とする表面被覆切削工具。 (D) a region where the particles gathered near the said crystal orientation is an area difference between the crystal orientation of the crystal grains within the region is less than 10 degrees 2 degrees, moreover, the normal direction of the tool substrate surface wherein the normal direction of the angle of the mean azimuth and the substrate surface vector of each crystal grain in the crystal orientation of the inclination angle difference is smallest crystal orientation <100> within the region is less than 10 degrees with respect to surface-coated cutting tool.
  2. 前記硬質被覆層の結晶粒について、電子線後方散乱回折法による結晶方位解析を行った場合、基体表面の法線方向から0〜10度の範囲内に結晶方位<100>を有する結晶粒の面積割合が40〜90面積%を満足するような結晶配向性を有することを特徴とする請求項1に記載の表面被覆切削工具。 The crystal grains of the hard coating layer, the area of ​​crystal grains having a case of performing the crystal orientation analysis by electron back scattering diffraction method, the crystal orientation <100> in the range from the normal direction of the substrate surface of 0 ° the surface-coated cutting tool according to claim 1 ratio and having a crystal orientation that satisfies 40-90 area%.
  3. 請求項1または2に記載の工具基体は、少なくとも切削に使用する刃先が立方晶窒化硼素焼結体からなり、前記立方晶窒化硼素焼結体は立方晶窒化硼素粒子とTiの窒化物、炭化物、炭窒化物、硼化物およびAlの窒化物、酸化物からなる群から選ばれた少なくとも1種以上の粒子と不可避不純物とを含む結合相とからなり、前記立方晶窒化硼素粒子は平均粒径2.0〜4.0μmかつ立方晶窒化硼素焼結体全体に占める含有割合が50〜80体積%であることを特徴とする請求項1または2に記載の表面被覆切削工具。 Tool substrate according to claim 1 or 2, at least the cutting edge used for cutting consists of cubic boron nitride sintered body, the cubic boron nitride sintered body nitride cubic boron nitride particles and Ti, carbides , carbonitrides, borides and nitrides of Al, consists of a binder phase comprising at least one or more kinds of particles and inevitable impurities selected from the group consisting of oxides, the cubic boron nitride particles have an average particle size the surface-coated cutting tool according to claim 1 or 2 2.0~4.0Myuemu and content percentage of the total cubic boron nitride sintered body, characterized in that 50 to 80 vol%.
JP2015129283A 2015-06-26 2015-06-26 Surface-coated cutting tool exhibits excellent abrasion resistance at high speed cutting Active JP6493800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129283A JP6493800B2 (en) 2015-06-26 2015-06-26 Surface-coated cutting tool exhibits excellent abrasion resistance at high speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129283A JP6493800B2 (en) 2015-06-26 2015-06-26 Surface-coated cutting tool exhibits excellent abrasion resistance at high speed cutting

Publications (2)

Publication Number Publication Date
JP2017013145A JP2017013145A (en) 2017-01-19
JP6493800B2 true JP6493800B2 (en) 2019-04-03

Family

ID=57828913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129283A Active JP6493800B2 (en) 2015-06-26 2015-06-26 Surface-coated cutting tool exhibits excellent abrasion resistance at high speed cutting

Country Status (1)

Country Link
JP (1) JP6493800B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047735A1 (en) * 2016-09-06 2019-06-24 住友電工ハードメタル株式会社 Cutting tool and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960149B2 (en) * 2007-05-29 2012-06-27 京セラ株式会社 Surface-coated cutting tool
JP5207109B2 (en) * 2007-08-31 2013-06-12 三菱マテリアル株式会社 Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent
JP2011152602A (en) * 2010-01-27 2011-08-11 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP5594575B2 (en) * 2010-04-20 2014-09-24 三菱マテリアル株式会社 Surface-coated cutting tool which exhibits abrasion resistance hard coating layer has excellent
JP5124793B2 (en) * 2010-07-16 2013-01-23 住友電工ハードメタル株式会社 Surface-coated cutting tool
CN103249869B (en) * 2010-11-23 2016-05-18 山高刀具公司 Coated cutting tool insert
JP6459391B2 (en) * 2013-10-31 2019-01-30 三菱マテリアル株式会社 Excellent chipping resistance was surface-coated cutting tool
EP3000913A1 (en) * 2014-09-26 2016-03-30 Walter Ag Coated cutting tool insert with MT-CVD TiCN on TiAI(C,N)

Also Published As

Publication number Publication date
JP2017013145A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP2009172748A (en) Surface-coated cutting tool with hard coating layer having excellent wear resistance
JP5005262B2 (en) Hardened steel high-speed cutting with exceptional boric surface-coated cubic nitride surface finish to exhibit long term containing group ultrahigh pressure sintered material cutting tool made of
US8017225B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultrahigh pressure sintered material
JP2008168421A (en) Coated cemented carbide end mill
JP2006326729A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent high-temperature strength
WO2013133441A1 (en) Surface-coated cutting tool having therein hard coating layer capable of exhibiting excellent chipping resistance during high-speed intermittent cutting work
JP5939508B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed intermittent cutting work
JP5594575B2 (en) Surface-coated cutting tool which exhibits abrasion resistance hard coating layer has excellent
KR20130006667A (en) Cutting tool
JP2014210333A (en) Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance
JP4748450B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed intermittent cutting work
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP5946017B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed intermittent cutting work
JP5939509B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed intermittent cutting work
EP3127637A1 (en) Surface-coated cutting tool and production method therefor
JP4725774B2 (en) Surface-coated cubic boron nitride-based hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting machining hardened steel sintered material cutting tool made
CN101970156B (en) Sintered cubic boron nitride tool
JP5035956B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent
EP2823920A1 (en) Surface coating cutting tool
JP6417959B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent
JP5036338B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent
WO2015163391A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP4883475B2 (en) Hardened steel high-speed machining surface coating cubic boron nitride exhibits abrasion resistance hard coating layer has excellent originally ultrahigh pressure sintered material cutting tool made of
WO2016047581A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP5207109B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190221

R150 Certificate of patent or registration of utility model

Ref document number: 6493800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150