WO2008050384A1 - Hard laminated coating, tool covered with hard laminated coating, and method of forming coating - Google Patents

Hard laminated coating, tool covered with hard laminated coating, and method of forming coating Download PDF

Info

Publication number
WO2008050384A1
WO2008050384A1 PCT/JP2006/321053 JP2006321053W WO2008050384A1 WO 2008050384 A1 WO2008050384 A1 WO 2008050384A1 JP 2006321053 W JP2006321053 W JP 2006321053W WO 2008050384 A1 WO2008050384 A1 WO 2008050384A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
target
film
hard
alloy
Prior art date
Application number
PCT/JP2006/321053
Other languages
French (fr)
Japanese (ja)
Inventor
Takaomi Toihara
Mei Wang
Masatoshi Sakurai
Original Assignee
Osg Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osg Corporation filed Critical Osg Corporation
Priority to PCT/JP2006/321053 priority Critical patent/WO2008050384A1/en
Priority to JP2008540815A priority patent/JPWO2008050384A1/en
Publication of WO2008050384A1 publication Critical patent/WO2008050384A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating

Definitions

  • the present invention relates to a hard laminated film, and more particularly to an improvement in a hard laminated film having excellent wear resistance in which a large number of two kinds of films having different compositions are alternately laminated.
  • a wear-resistant hard coating on the surface of a predetermined member such as a tool base material such as high-speed tool steel or cemented carbide
  • a large number of alternating two types of first and second coatings with different compositions have been proposed.
  • the hard laminated film described in Patent Documents 1 and 2 is an example.
  • There are two types of elements such as IVa group, Va group, Via group metal elements in the periodic table of elements, or nitrides and carbides such as A1.
  • the coating is repeatedly laminated with a lamination period of several nm to several hundred nm. That is, the hardness of the coating is improved by various means such as thinning and multilayering of the first coating and the second coating, and alloying of metal elements.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-205361
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-256081
  • the first and second coating layers of such a hard multilayer coating have an appropriate stacking period (film thickness), or the first coating and the second coating contain the same metal element.
  • film thickness film thickness
  • the effect of improving the film hardness could not be sufficiently obtained.
  • the first and second coatings contain two types of metal elements, if those metal elements are evaporated from different targets, the alloy of the two types of metal elements will be used as the target. The hardness may be lower than that, and there is still room for improvement.
  • the present invention has been made in the background of the above circumstances, and the object of the present invention is to form metal elements in an alloy layer in a hard laminated film in which a large number of two kinds of films containing a metal element are alternately laminated. To improve the film hardness by thinning and multilayering more appropriately Thus, the wear resistance is further improved.
  • the first invention is a hard material having excellent wear resistance in which a large number of two types of first coatings and second coatings having different compositions are laminated alternately on the surface of a predetermined member.
  • the first coating is MX (BCON), where M and X are abc 1 a- b-c
  • Two different metal elements selected from groups IVa, Va, Via, Al, Si, and Y in the periodic table of each element, a, b, c are atomic ratios, 0 ⁇ a ⁇ 0.2, 0 ⁇ b ⁇ 0.3, 0 ⁇ c ⁇ 0.1) and formed by PVD method using MX alloy as the target, while (b)
  • the coating is ZQ (BCON) [However, both Z and Q are def 1 d-e-1
  • Two different metal elements, d, e, and f, selected from groups IVa, Va, Via, Al, Si, and Y of the periodic table of the elements are different from M and X. 0 ⁇ d ⁇ 0.2, 0 ⁇ e ⁇ 0.3, 0 ⁇ f ⁇ 0.1), formed by PVD method using ZQ alloy as a target, and (C)
  • the stacking period t, which combines the thickness of the first coating and the thickness of the second coating, is 0.2 ⁇ ! It is characterized by being in the range of ⁇ lOOnm.
  • a second invention is the hard multilayer coating of the first invention, wherein the total thickness D of the hard multilayer coating in which the first coating and the second coating are repeatedly laminated at the lamination cycle t is 0.2. It is in the range of m to 10 m.
  • a third invention is characterized in that in the hard laminated film of the first invention or the second invention, the component compositions of the BCON in the first film and the second film are equal to each other.
  • the fourth invention relates to a hard laminated coating-coated tool, characterized in that the surface is coated with the hard laminated coating of any of the first to third inventions.
  • a fifth invention is a film forming method for forming the hard laminated film of the third invention on a predetermined member by a PVD method, and (a) holding the member on an outer peripheral portion in the processing vessel.
  • a rotary table that is driven to rotate around a center line; and (b) a first target made of the MX alloy and a ZQ alloy cover, etc. that are spaced apart from each other in the circumferential direction around the rotary table.
  • a film forming apparatus comprising: a second target comprising: (c) a reaction gas supply device configured to supply a predetermined reaction gas determined according to the component composition of the BCON into the processing container.
  • a sixth invention is the film forming method of the fifth invention, wherein a plurality of the first targets are arranged at equiangular intervals around the rotary table, and the second target is the first target.
  • the same number of targets as the target are disposed around the rotary table at equal angular intervals, and the first coating and the second coating are laminated on the surface of the member a plurality of periods by one rotation of the rotary table.
  • the hard laminated coating of the first invention includes a first coating composed of MX (B C O N), and a b c 1 a— b-c
  • the first film is formed using MX alloy as the target
  • the second film is formed using ZQ alloy as the target. Therefore, the first film and the second film are formed using M, X, Z, and Q as single metal targets. Compared to the case, higher wear resistance can be obtained.
  • the laminating period t of the first and second films is in the range of 0.2 nm to 100 nm, the film hardness (wear resistance) is improved by the thin film while enjoying the characteristics of both films. Can be obtained stably.
  • the hard laminated film of the first invention the effect of improving the film hardness by alloying, thinning, and multilayering of two kinds of metal elements can be obtained more suitably, and overall wear resistance is improved. The property is further improved.
  • the hard laminated film-coated tool of the fourth invention coated with the hard laminated film, and the film-forming method of the fifth and sixth inventions for forming a hard laminated film having the same BCON component composition By continuously rotating the member around one center line by the rolling table, the first coating and the second coating are alternately and continuously laminated, so that a hard laminated coating can be efficiently formed in a short time.
  • a plurality of first targets and second targets are arranged around the turntable, and a plurality of cycles of the first coat and the second coat can be laminated by one turn of the turntable. Therefore, it is possible to obtain higher efficiency, and there is no possibility that the coating film is damaged by vibration or the like due to a high-speed rotating shaft that does not need to increase the rotation speed of the rotary table in order to reduce the film thickness of each coating film.
  • the total film thickness D of the hard laminated film is in the range of 0.2 m to 10 m, excellent wear resistance can be obtained while suppressing peeling of the film.
  • the BCON component compositions of the first film and the second film are equal to each other, it is not necessary to switch the reaction gas for each film, for example, by using the film forming method of the fifth invention in a short time. A hard laminated film can be formed efficiently.
  • FIG. 1 is a view showing an end mill to which the present invention is applied, in which (a) is a front view seen from a direction perpendicular to the shaft center, and (b) is a surface of a blade portion provided with a hard laminated film. It is sectional drawing of a part.
  • FIG. 2 is a diagram for explaining an example of an arc ion plating apparatus that can suitably form the hard multilayer coating of FIG. 1 by the PVD method, where (a) is a schematic configuration diagram, and (b) is a rotary table and target. It is a top view which shows these positional relationships.
  • FIG. 3 is a diagram for explaining a specific example of the hard multilayer coating of the present invention, comparing the difference in wear resistance between the case where the alloy target is formed and the case where the single metal target is used.
  • FIG. 4 A diagram for explaining a specific example of the hard laminated film of the present invention, comparing the difference in wear resistance when the metal elements of the first film and the second film are all different from each other and containing the same metal element.
  • FIG. 4 A diagram for explaining a specific example of the hard laminated film of the present invention, comparing the difference in wear resistance when the metal elements of the first film and the second film are all different from each other and containing the same metal element.
  • FIG. 5 is a diagram for explaining a specific example of the hard laminated film of the present invention, where the lamination period t, which is the total film thickness of the first film and the second film, is 0.2 ⁇ !
  • FIG. 5 is a diagram showing a comparison of the difference in wear resistance depending on whether or not it is within the range of ⁇ lOOnm.
  • FIG. 6 is a diagram for explaining a specific example of the hard laminated film of the present invention, in which the total film thickness D is 0.2; ⁇ ⁇ ⁇ 10 It is the figure which compared and showed the difference in abrasion resistance by whether the force is in the range of m.
  • FIG. 7 is a diagram for explaining a specific example of the hard laminated film of the present invention. It shows resistance depending on whether the atomic ratios a to c and d to f of the BCON in the first film and the second film are within a predetermined range, respectively.
  • FIG. 6 is a diagram showing a comparison of wear differences.
  • FIG. 8 is a diagram for explaining still another specific example of the hard laminated film of the present invention, and also shows the flank wear width when cutting is performed according to predetermined processing conditions.
  • FIG. 9 is a view for explaining still another specific example of the hard laminated film of the present invention, and also shows the flank wear width when cutting is performed in accordance with predetermined processing conditions.
  • the present invention provides a hard layer coating provided on the surface of various processing tools such as a rotating cutting tool such as an end mill, a tap, and a drill, a non-rotating cutting tool such as a bite, or a rolling tool.
  • a rotating cutting tool such as an end mill, a tap, and a drill
  • a non-rotating cutting tool such as a bite
  • a rolling tool preferably a rotating tool
  • the present invention can also be applied to a hard laminated coating provided on the surface of a member other than a processing tool such as a surface protective film of a semiconductor device or the like.
  • Cemented carbide or high-speed tool steel is preferably used as the material of the member on which the hard multilayer coating is provided, such as a tool base material, but other metal materials may be used.
  • the PVD method physical vapor deposition method for forming the hard laminated film of the present invention
  • an arc ion plating method or a sputtering method is preferably used.
  • the film thicknesses of the first film and the second film can be appropriately set according to the amount of power input to the target, the rotation speed of the rotary table, and the like.
  • the atomic ratio of MX in the first coating and the atomic ratio of ZQ in the second coating are set appropriately according to the type of metal element, required characteristics, etc., which can be 1: 1, 3: 1, 1: 3, etc. it can.
  • BCO N contains at least N (nitrogen) at least 0.6 as a whole, and 0.2 for B (boron). In the following, C (carbon) is 0.3 or less, 0 (oxygen) is 0.1 or less, and N (nitrogen) alone may be included.
  • it is not always necessary to set the same.
  • BCON it does not affect inevitable impurity elements and properties! ⁇
  • Other elements may be included! / ⁇ .
  • the lamination period t which is the sum of the thickness of the first coating and the thickness of the second coating, is less than 0.2 nm, the original properties of the coating (hardness, heat resistance, oxidation resistance, lubricity, etc.) If it is thicker than lOOnm, the effect of improving the film hardness by thin film may not be obtained sufficiently, so it is necessary to set it within the range of 0.2nm to 100nm. And 0.5 ⁇ ! Considering the variation (error) in the film thickness! It is desirable to form a nerai value within a range of ⁇ 50 nm. In addition, since the film thickness of each film varies from film to film or partially, the stack period t may be set so that the average film thickness is within the above range.
  • first film or the second film may be formed first on the surface of a member (such as a tool base material).
  • a member such as a tool base material
  • first film and the second film are laminated as a pair, but the total number of layers can be an odd number, and when the first film is formed first, the uppermost layer is also the first film, When the second film is formed first, the uppermost layer may also be the second film. It is also possible to interpose another hard coating between the hard laminated coating of the present invention and the member surface, or to provide another coating on the uppermost layer as necessary.
  • the lowermost layer or the uppermost layer in contact with the surface of the tool base material is regarded as a film different from the laminated film. It is also possible to increase or decrease the film thickness regardless of the stacking period t.
  • the total film thickness D of the hard laminated coating varies depending on the object (member) on which the coating is to be applied and the required characteristics. For example, when a relatively large impact load such as a rotary cutting tool is applied, the coating is peeled off. 10 ⁇ m or less is desirable for suppression, and 0.2 ⁇ m or more is desirable for ensuring sufficient wear resistance. If the sliding member is hardly subjected to impact load, the total film thickness D should be 10 For example, it can be set to about 20 m, which may be larger than ⁇ m.
  • the member is held on the outer peripheral portion of the rotary table that is rotated around one center line, and the rotary table is continuously rotated in one direction, thereby fixing the circumferential position of the rotary table.
  • the first and second targets disposed on the first and second targets are alternately and periodically passed, and the first and second coatings are alternately and continuously laminated.
  • the rotary table may be intermittently rotated while being stopped in the vicinity of the target, or the first target and the second target may be moved relative to a member held at a fixed position.
  • Various film forming methods can be employed.
  • the reaction gas is switched for each of the first and second coatings, and the target to be evaporated is switched to change the first and second coatings. It is also possible to laminate them separately and intermittently.
  • the rotary table is continuously rotated in one direction, and is preferably driven to rotate at a constant speed for ease of control, but the arrangement of the first target and the second target is preferable.
  • the rotational speed can be periodically increased or decreased according to the installation position.
  • the rotary table may hold a member directly in a constant posture on the outer peripheral portion thereof, but has a second rotary table that rotates around a second center line different from the one center line. If the film is formed while the member is held by the second turntable and continuously rotated around the second center line, the film can be uniformly formed on the outer peripheral surface of the member. .
  • the member is a tool base material of a rotary cutting tool
  • the tool base material is attached to the second rotary table in a posture where the axis of the tool base material is concentric or parallel to the second center line. It is desirable to form the coating while continuously rotating the tool base material around the center line.
  • the second rotary table is arranged in a posture in which the second center line is parallel to the one center line, but can be arranged in a posture orthogonal to the one center line. Is possible.
  • a total of two first targets and second targets are alternately arranged at 90 ° intervals around one center line of the rotary table, but three or more are arranged in a staggered manner. You can also.
  • the plurality of first targets and second targets are each equiangularly spaced. However, the interval between the first target and the second target is not necessarily an equiangular interval.
  • the interval from the first target to the second target in the rotation direction of the rotary table and the second target are not necessarily required.
  • the interval from the target to the next first target may be different.
  • FIG. 1 is a view for explaining an end mill 10 which is an example of a hard laminated coating-coated tool according to the present invention.
  • FIG. 1 (a) is a front view seen from a direction perpendicular to the axis and is made of cemented carbide.
  • the tool base 12 is provided with a shank and a blade 14 on the body.
  • the blade portion 14 is provided with an outer peripheral edge 16 and a bottom edge 18 as cutting edges, and is driven to rotate by the outer peripheral edge 16 and the bottom edge 18 when rotated around the axis.
  • the surface of the blade portion 14 is coated with a hard laminated film 20.
  • the hatched portion in FIG. 1 (a) represents the hard laminate film 20, and FIG.
  • the end mill 10 is a rotary cutting tool, and the tool base material 12 corresponds to a predetermined member on which a hard laminated coating 20 is provided.
  • the hard laminated film 20 is obtained by alternately laminating a number of first films 22 and second films 24 on the surface of the tool base material 12.
  • the first coating 22 is MX (B C a b
  • the second film 24 is composed of ZQ (BCON) (however, Z and Q are both different from M and X and defid -e -f
  • Two different metal elements selected from groups IVa, Va, Via, Al, Si, and Y, d, e, and f, respectively, are atomic ratios, 0 ⁇ d ⁇ 0. 2, 0 ⁇ e ⁇ 0. 3, 0 ⁇ f ⁇ 0. 1].
  • the stacking period t which combines the thickness of the first coating 22 and the thickness of the second coating 24, is 0.2 ⁇ ! Within the range of ⁇ lOOnm, the total film thickness D of the hard laminate coating 20 is within the range of 0.2111 to 10111. Note that the number of stacks in which the stacking period t is one layer is appropriately determined according to the stacking period t and the total film thickness D. For example, a range of 10 to 1000 layers is appropriate.
  • the atomic ratio of MX in the first coating 22 and the atomic ratio of ZQ in the second coating 24 can be 1: 1, 3: 1, 1: 3, etc. Is set as appropriate.
  • BCON contains at least N (nitrogen) at least 0.6 with 1 as a whole, B (boron) 0.2 or less, C (carbon) 0.3 or less, 0 (oxygen) 0.1 In the following, each can be contained, and only N (nitrogen) may be contained.
  • FIG. 2 is a diagram for explaining an arc ion plating apparatus 30 that is preferably used for forming the hard laminated film 20, and (a) is a schematic configuration diagram (schematic diagram) in (b). It is a figure corresponding to the A—A cross section, and (b) is a plan view.
  • the arc ion plating device 30 includes a first rotary table 32 that is substantially horizontal, a rotary drive device 33 that rotates the first rotary table 32 around a substantially vertical center line O, and an outer peripheral portion of the first rotary table 32.
  • the second rotary table 34 is arranged in parallel with the first rotary table 32, and is around its own center line (second center line) parallel to one center line O of the first rotary table 32. And a plurality of tool base materials 12 are held in a vertical posture in which the axis is parallel to the second center line and the blade portion 14 faces upward. Therefore, the plurality of tool base materials 12 are rotated around the center line (second center line) of the second rotary table 34, and are rotated around the center line O by the first rotary table 32. become.
  • the first target 48 and the second target around one center line O.
  • the target 52 are alternately fixed at 90 ° intervals, and the tool base 12 is moved together with the second rotary table 34 by the continuous rotation of the first rotary table 32.
  • the target 52 can be passed alternately and periodically.
  • the first target 48 and the second target 52 are arranged around the center line O at intervals of 180 °.
  • the plurality of second rotary tables 34 are configured to be driven to rotate independently by, for example, a unique rotary drive device, but mechanically interlocked with the rotation of the first rotary table 32 by a gear mechanism or the like. It can also be driven to rotate.
  • the reaction gas supply device 40 includes nitrogen gas (N) and hydrocarbon gas (CH
  • nitride only nitrogen gas is supplied, and in the case of carbonitride, nitrogen gas and hydrocarbon gas are supplied according to the atomic ratios a to f.
  • nitrogen gas and hydrocarbon gas are supplied according to the atomic ratios a to f.
  • Each of the two first targets 48 arranged in a symmetrical position with the one center line O in between is made of MX alloy which is a constituent material of the first coating 22, while the same
  • the two second targets 52 arranged at symmetrical positions with the one center line O in between are both made of a ZQ alloy that is a constituent material of the second coating 24.
  • the first arc power source 44 evaporates the MX alloy from the first target 48 by causing a predetermined arc current to flow between the anode 50 and the anode 50 using the first target 48 as a force sword.
  • the evaporated MX alloy becomes positive (+) metal ions and adheres to the tool base 12 to which a negative (one) bias voltage is applied.
  • the first coating 22 made of the MX (B C O N) is formed by reacting with the supplied reaction gas.
  • the second arc power supply 46 has an upper a b c 1 a— b-c
  • the ZQ alloy is evaporated from the second target 52 by passing a predetermined arc current between the anode 54 and the second target 52 as a force sword and causing arc discharge.
  • the evaporated ZQ alloy is positive (+ ) And adheres to the tool base 12 to which a negative (one) bias voltage is applied. At that time, it reacts with the supplied reaction gas, and the ZQ (B C d e
  • a second coating 24 made of O N) is formed.
  • the reactive gas supply device 40 is configured so that the inside of the chamber 38 is maintained at a predetermined pressure (for example, about 1.33 Pa to 3.99 Pa) while being evacuated by the exhaust device 42 in advance.
  • a predetermined reaction gas is supplied from the power source, and a predetermined bias voltage (for example, about ⁇ 50 V to ⁇ 150 V) is applied to the tool base 12 by a bias power source 36.
  • the first rotary table 32 is continuously rotated around the center line O in one direction at a constant speed, so that the tool base material 12 is moved to the second rotary table. While rotating around the second center line together with the bull 34, the first target 48 and the second target 52 are alternately passed periodically.
  • the second target 52 is evaporated by supplying an arc current by 46.
  • the evaporated metals of the targets 48 and 52 react with the reaction gas, respectively, to form the first coating 22 and the second coating 24, and are attached to the surface of the tool base material 12.
  • the first force that also has an MX (B C O N) force is obtained.
  • the second coating 24 which also has a ZQ (B C O N) force, is attached to the surface of the tool base 12.
  • the first coating 22 and the second coating 24 are alternately and continuously laminated on the surface of the tool base material 12 to form the hard laminated coating 20.
  • the first coating 22 and the second target 52 are rotated by one rotation of the first rotating table 32.
  • the second coating 24 is stacked for two cycles.
  • the current value of the arc current of each arc power source 44, 46 is determined according to the film thickness of the first coating 22 and the second coating 24, and the rotation speed of the first rotary table 32 is determined by the first coating 22 and the second coating. It is determined according to the stacking period t with the thickness of 24 combined.
  • Such a hard laminated film 20 can be automatically formed by a control device including a computer.
  • the tool base material 12 for which the coating forming process has started in the vicinity of the first target 48 is the first coating 22 or
  • the first coating 22 can be formed first for all the tool base materials 12.
  • the second coating 24 can be formed first for all the tool base materials 12.
  • the first coating 22 and the second coating 24 need to be formed separately, and are supplied from the reaction gas supply device 40.
  • the reaction gas to be used is switched, and the first arc power supply 44 and the second arc power supply 46 are turned on and off respectively to switch between the first target 48 and the second target 52.
  • the product of the present invention in which the tool base material 12 is made of cemented carbide, has a diameter of 10 mm, and a 6-blade square end mill is provided with the hard laminated coating 20, and the target and coating composition during coating formation.
  • a comparative product with different stacking cycle t, total film thickness D, etc. was prepared, and after cutting under the following processing conditions, the flank wear width (mm) of the outer peripheral edge 16 after 25 m cutting was investigated. explain.
  • the flank wear width (mm) is an average value of the six peripheral blades 16.
  • the allowable wear width is 0.15 mm. Since the film hardness (HV0.025) is not always easy to measure, only a part of the laminated film was examined, and the measurement was omitted for those not described. (Processing conditions)
  • Fig. 3 shows the case where the hard multilayer coating 20 is formed using the alloy target, that is, the first target 48 with MX alloy force and the second target 52 with ZQ alloy force.
  • the first coating 22 and the second coating 24 are formed using a single metal target of M, X, Z, and Q, and the hard laminated coating 20 is provided.
  • the coating 22 and the second coating 24 are both nitrides containing only nitrogen (N) in BCON.
  • the film hardness (HVO. 025) is 3000 or more and the flank wear width is also acceptable.
  • the wear width (0.15mm or less) is satisfied.
  • the lower four types of hard laminated coatings using a single metal target have a coating hardness (HVO. 025) of around 2000 and a flank wear width of more than 0.3 mm. 0.1.15 mm or less), and it is possible to obtain excellent film hardness and wear resistance by using an alloy target.
  • FIG. 4 is a comparison with the case where the first coating 22 and the second coating 24 have the same metal element.
  • the upper part of each test article Nol to 8 is the product of the present invention, that is, the metal element of the first coating 22.
  • M and X do not overlap with the metal elements Z and Q of the second coating 24, and the lower part of each test article Nol to 8 is a comparative product containing the same metal element.
  • all the products of the present invention in the upper stage satisfy the allowable wear width (0.15 mm or less) in the flank wear width, but the lower stage containing the same metal element. All products have flank wear widths exceeding 0.2 mm and do not satisfy the allowable wear width (0.15 mm or less), and avoid overlapping of metal elements in the first coating 22 and the second coating 24. It can be seen that excellent wear resistance can be obtained.
  • FIG. 5 shows that the stacking period t, which is the total film thickness of the first film 22 and the second film 24, is 0.2 ⁇ ! Comparison of differences in wear resistance depending on whether it is within the range of ⁇ 1 OOnm.
  • Each test product No 1 ⁇ The upper part of L 1 is the product of the present invention, that is, the stacking period t is 0.2 ⁇ ! This is a case in the range of ⁇ lOOnm, and each test product Nol ⁇ :
  • the lower part of L1 is a comparative product in which the lamination period t is out of the range of 0.2nm to 100nm.
  • FIG. 6 shows whether or not the total film thickness D of the hard laminate film 20 is in the range of 0.2 m to 10 m.
  • the upper part of each test product Nol to 8 is the product of the present invention (claim 2), that is, the total film thickness D is in the range of 0.2 m to 10 m.
  • the lower part of each test product Nol to 8 is a comparative product in which the total film thickness D is out of the range of 0.2 / ⁇ ⁇ to 10 / zm.
  • Fig. 7 compares the effects of wear resistance due to the difference in the atomic ratios a to c and d to f of BCON in the first coating 22 and the second coating 24.
  • Invention ie 3 ⁇ 40 ⁇ a ⁇ 0. 2, 0 ⁇ b ⁇ 0. 3, 0 ⁇ c ⁇ 0. 1, 0 ⁇ d ⁇ 0. 2, 0 ⁇ e ⁇ 0. 3, 0 ⁇ f ⁇ 0
  • the test samples Nol 1 to 20 satisfy at least one of the BCON atomic ratios a to c and d to f SO ⁇ a ⁇ 0. 2, 0 ⁇ b ⁇ 0. 3, 0 ⁇ c ⁇ 0. 1, 0 ⁇ d ⁇ 0. 2, 0 ⁇ e ⁇ 0. 3, 0 ⁇ f ⁇ 0.
  • Fig. 7 compares the effects of wear resistance due to the difference in the atomic ratios a to c and d to f of BCON in the first coating 22 and the second coating 24.
  • Invention ie 3 ⁇ 40 ⁇ a ⁇ 0. 2, 0 ⁇ b ⁇ 0. 3, 0
  • the test products Nol to l0 of the present invention products all satisfy the allowable wear width (0.15mm or less) in the flank wear width, whereas the test products Nol to l0 In all 20 comparative products, the flank wear width exceeds 0.2 mm and does not satisfy the allowable wear width (0.15 mm or less).
  • BCON atomic ratio a to c, d to f force 0 ⁇ a ⁇ 0. 2, 0 ⁇ b ⁇ 0. 3, 0 ⁇ c ⁇ 0. 1, 0 ⁇ d ⁇ 0. 2, 0 ⁇ e ⁇ 0. 3, 0 ⁇ f ⁇ 0. It can be seen that excellent wear resistance can be obtained by setting the component composition to.
  • FIG. 8 and FIG. 9 show the results of examining the flank wear width by performing cutting under the same processing conditions as described above for still another example of the present invention.
  • the wear width (0.15mm or less) is satisfied.
  • the hard laminated film 20 of the end mill 10 of the present embodiment is composed of MX (BCON) ac 1 a-b-c, and is composed of the first film 22 and ZQ (BCON). Consists of second covered aef 1 d— e ⁇ f
  • the two metal elements MX and ZQ are different from each other, they have excellent wear resistance compared to the case of containing the same metal element! can get.
  • MX alloy is used as the first target 48 to form the first coating 22 and ZQ alloy
  • the wear resistance is higher than when the first film 22 and the second film 24 are formed using a single metal of M, X, Z, and Q as the target. Is obtained.
  • the lamination period t of the first coating 22 and the second coating 24 is in the range of 0.2 nm to 100 nm, the coating hardness (abrasion resistance) of the thin film is obtained while enjoying the characteristics of both coatings 22 and 24. ) Can be stably obtained. That is, according to the hard laminated film 20 of the present example, the effect of improving the film hardness by alloying, thinning, and multilayering of two kinds of metal elements can be obtained more suitably, and comprehensively withstanding resistance. Abrasion is further improved.
  • the total film thickness D of the hard multilayer coating 20 is 0.2 ⁇ ! Since it is within the range of ⁇ 10 m, excellent wear resistance can be obtained while suppressing the peeling of the hard laminated film 20.
  • the other invention products excluding the test products No1 to 9 in Fig. 7 have the same BCON component composition in the first coating 22 and the second coating 24.
  • the arc ion plating apparatus 30 of FIG. 2 that does not require switching of the reaction gas for each coating, the hard laminated coating 20 can be efficiently formed in a short time.
  • the first coating 22 and the second coating 24 are alternately and continuously rotated while the first rotary table 32 is continuously rotated in one direction at a constant speed. Since it can be laminated, the hard laminated film 20 can be efficiently formed in a short time.
  • two first targets 48 and two second targets 52 are arranged around the first rotary table 32, and the first coating 22 and the second target 52 are rotated by one rotation of the first rotary table 32.
  • the coating 24 can be laminated for two cycles, so it is possible to obtain higher efficiency, and it is necessary to increase the rotation speed of the first rotary table 32 in order to reduce the film thickness of each film 22, 24. There is no risk of damage to the coating due to vibration or the like.
  • the tool base material 12 is driven to rotate about a center line parallel to the axis by the second rotary table 34, the first target 48 and the second target 52 are passed by the first rotary table 32. Therefore, the hard laminated film 20 is uniformly formed on the outer peripheral surface of the tool base material 12, and excellent film performance can be stably obtained.
  • the hard laminated film of the present invention can suitably obtain the effect of improving the film hardness by alloying, thinning, and multilayering of two kinds of metal elements, and the wear resistance is further improved.

Abstract

Hard laminated coating (20) provided on blade part (14) of end mill (10), as shown in Fig. 1, comprising a laminate of, alternately superimposed one upon another, first coatings (22) of MX(BaCbOcN1-a-b-c) and second coatings (24) of ZQ(BdCeOfN1-d-e-f). As the two metal elements MX and ZQ are different from each other, there can be obtained an abrasion resistance higher than when the same metal elements are contained. Further, as the first coatings (22) are formed with the use of MX alloy as the first target and the second coatings with the use of ZQ alloy as the second target, there can be obtained an abrasion resistance much higher than when the first coatings (22) and second coatings (24) are formed with the use of M, X, Z and Q elemental metals as the targets. Still further, as the lamination cycle (t) of first coatings (22) and second coatings (24) is within the range of 0.2 to 100 nm, there can be stably obtained an effect of enhancing of coating hardness (abrasion resistance) by reduction of coating film thickness while receiving the full benefit of properties of the coatings (22,24). Thus, comprehensive abrasion resistance enhancement can be attained through optimum exertion of coating hardness enhancing effects by alloying of two types of metal elements, reduction of coating film thickness and layer multiplication.

Description

明 細 書  Specification
硬質積層被膜、硬質積層被膜被覆工具、および被膜形成方法  Hard laminate coating, hard laminate coating tool, and method for forming coating
技術分野  Technical field
[0001] 本発明は硬質積層被膜に係り、特に、組成が異なる 2種類の被膜を交互に多数積 層した耐摩耗性に優れた硬質積層被膜の改良に関するものである。  [0001] The present invention relates to a hard laminated film, and more particularly to an improvement in a hard laminated film having excellent wear resistance in which a large number of two kinds of films having different compositions are alternately laminated.
背景技術  Background art
[0002] 高速度工具鋼や超硬合金等の工具母材などの所定の部材の表面に設ける耐摩耗 性の硬質被膜として、組成が異なる 2種類の第 1被膜および第 2被膜を交互に多数 積層した種々の硬質積層被膜が提案されている。特許文献 1、 2に記載の硬質積層 被膜はその一例で、元素の周期律表の IVa族、 Va族、 Via族の金属元素、或いは A1 などの窒化物や炭化物等カゝら成る 2種類の被膜が数 nm〜数百 nm程度の積層周期 で繰り返し積層されている。すなわち、第 1被膜および第 2被膜の薄膜化や多層化、 金属元素の合金化等の種々の手段により、被膜硬さゃ耐摩耗性の向上が図られて いる。  [0002] As a wear-resistant hard coating on the surface of a predetermined member such as a tool base material such as high-speed tool steel or cemented carbide, a large number of alternating two types of first and second coatings with different compositions Various hard laminate coatings have been proposed. The hard laminated film described in Patent Documents 1 and 2 is an example. There are two types of elements such as IVa group, Va group, Via group metal elements in the periodic table of elements, or nitrides and carbides such as A1. The coating is repeatedly laminated with a lamination period of several nm to several hundred nm. That is, the hardness of the coating is improved by various means such as thinning and multilayering of the first coating and the second coating, and alloying of metal elements.
特許文献 1 :特開平 7— 205361号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-205361
特許文献 2:特開 2005— 256081号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-256081
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、このような硬質積層被膜の第 1被膜および第 2被膜の積層周期 (膜厚 )が適当でな力つたり、それ等の第 1被膜および第 2被膜が同じ金属元素を含んでい たりすると、被膜硬さの向上効果が十分に得られない場合があった。また、第 1被膜 や第 2被膜が 2種類の金属元素を含む場合に、それ等の金属元素を別々のターゲッ トから蒸発させると、 2種類の金属元素の合金をターゲットとして蒸発させた場合に比 較して硬さが低くなることがあり、未だ改善の余地があった。  [0003] However, the first and second coating layers of such a hard multilayer coating have an appropriate stacking period (film thickness), or the first coating and the second coating contain the same metal element. However, there was a case where the effect of improving the film hardness could not be sufficiently obtained. In addition, when the first and second coatings contain two types of metal elements, if those metal elements are evaporated from different targets, the alloy of the two types of metal elements will be used as the target. The hardness may be lower than that, and there is still room for improvement.
[0004] 本発明は以上の事情を背景として為されたもので、その目的とするところは、金属 元素を含む 2種類の被膜を交互に多数積層した硬質積層被膜において、金属元素 の合金化や薄膜化、多層化による被膜硬さの向上効果が一層好適に得られるように して、耐摩耗性を一層向上させることにある。 [0004] The present invention has been made in the background of the above circumstances, and the object of the present invention is to form metal elements in an alloy layer in a hard laminated film in which a large number of two kinds of films containing a metal element are alternately laminated. To improve the film hardness by thinning and multilayering more appropriately Thus, the wear resistance is further improved.
課題を解決するための手段  Means for solving the problem
[0005] かかる目的を達成するために、第 1発明は、組成が異なる 2種類の第 1被膜および 第 2被膜が所定の部材の表面上に交互に多数積層された耐摩耗性に優れた硬質積 層被膜であって、(a)前記第 1被膜は、 MX(B C O N )〔但し、 Mおよび Xはそ a b c 1 a— b - c  [0005] In order to achieve such an object, the first invention is a hard material having excellent wear resistance in which a large number of two types of first coatings and second coatings having different compositions are laminated alternately on the surface of a predetermined member. (A) the first coating is MX (BCON), where M and X are abc 1 a- b-c
れぞれ元素の周期律表の IVa族、 Va族、 Via族、 Al、 Si、および Yから選択される 2種 類の異なる金属元素、 a、 b、 cはそれぞれ原子比で、 0≤a≤0. 2, 0≤b≤0. 3, 0≤ c≤0. 1の範囲内〕にて構成され、 MX合金をターゲットとして PVD法により形成され て 、る一方、(b)前記第 2被膜は、 ZQ (B C O N )〔但し、 Zおよび Qは何れも前 d e f 1 d - e - 1  Two different metal elements selected from groups IVa, Va, Via, Al, Si, and Y in the periodic table of each element, a, b, c are atomic ratios, 0≤a ≤0.2, 0≤b≤0.3, 0≤c≤0.1) and formed by PVD method using MX alloy as the target, while (b) The coating is ZQ (BCON) [However, both Z and Q are def 1 d-e-1
記 M、 Xと異なるとともにそれぞれ元素の周期律表の IVa族、 Va族、 Via族、 Al、 Si、 および Yから選択される 2種類の異なる金属元素、 d、 e、 fはそれぞれ原子比で、 0≤ d≤0. 2, 0≤e≤0. 3, 0≤f≤0. 1の範囲内〕にて構成され、 ZQ合金をターゲットと して PVD法により形成されており、且つ、(c)その第 1被膜の膜厚と第 2被膜の膜厚を 合わせた積層周期 tは 0. 2ηπ!〜 lOOnmの範囲内であることを特徴とする。  Two different metal elements, d, e, and f, selected from groups IVa, Va, Via, Al, Si, and Y of the periodic table of the elements are different from M and X. 0≤d≤0.2, 0≤e≤0.3, 0≤f≤0.1), formed by PVD method using ZQ alloy as a target, and (C) The stacking period t, which combines the thickness of the first coating and the thickness of the second coating, is 0.2ηπ! It is characterized by being in the range of ~ lOOnm.
[0006] 第 2発明は、第 1発明の硬質積層被膜において、前記第 1被膜および前記第 2被 膜が前記積層周期 tで繰り返し積層された前記硬質積層被膜の総膜厚 Dは 0. 2 m 〜10 mの範囲内であることを特徴とする。  [0006] A second invention is the hard multilayer coating of the first invention, wherein the total thickness D of the hard multilayer coating in which the first coating and the second coating are repeatedly laminated at the lamination cycle t is 0.2. It is in the range of m to 10 m.
[0007] 第 3発明は、第 1発明または第 2発明の硬質積層被膜において、前記第 1被膜およ び前記第 2被膜における前記 BCONの成分組成は互いに等 U、ことを特徴とする。  [0007] A third invention is characterized in that in the hard laminated film of the first invention or the second invention, the component compositions of the BCON in the first film and the second film are equal to each other.
[0008] 第 4発明は、硬質積層被膜被覆工具に関するもので、第 1発明〜第 3発明の何れ 力の硬質積層被膜で表面が被覆されていることを特徴とする。  [0008] The fourth invention relates to a hard laminated coating-coated tool, characterized in that the surface is coated with the hard laminated coating of any of the first to third inventions.
[0009] 第 5発明は、第 3発明の硬質積層被膜を PVD法により所定の部材に形成する被膜 形成方法であって、 (a)前記処理容器内において、外周部に前記部材を保持して一 中心線まわりに回転駆動される回転テーブルと、 (b)その回転テーブルの周囲に互 いに周方向に離間して配設された前記 MX合金から成る第 1ターゲットおよび前記 Z Q合金カゝら成る第 2ターゲットと、 (c)前記 BCONの成分組成に応じて定められた所 定の反応ガスを前記処理容器内に供給する反応ガス供給装置と、を有する被膜形 成装置を用いて、 (d)前記回転テーブルを前記一中心線まわりに一方向へ連続回転 させることにより、前記部材が前記第 1ターゲットおよび前記第 2ターゲットの前を交互 に周期的に通過させられる一方、前記反応ガスを前記処理容器内に供給するととも に、前記第 1ターゲットおよび前記第 2ターゲットからそれぞれ前記 MX合金および前 記 ZQ合金を蒸発させることにより、それ等の MX合金および ZQ合金をそれぞれ前記 反応ガスと反応させ、前記部材が第 1ターゲット前を通過する際にはその部材の表面 に前記第 1被膜が形成され、第 2ターゲット前を通過する際にはその部材の表面に前 記第 2被膜が形成されることにより、その部材の表面に第 1被膜と第 2被膜とを交互に 連続的に積層することを特徴とする。 [0009] A fifth invention is a film forming method for forming the hard laminated film of the third invention on a predetermined member by a PVD method, and (a) holding the member on an outer peripheral portion in the processing vessel. A rotary table that is driven to rotate around a center line; and (b) a first target made of the MX alloy and a ZQ alloy cover, etc. that are spaced apart from each other in the circumferential direction around the rotary table. A film forming apparatus comprising: a second target comprising: (c) a reaction gas supply device configured to supply a predetermined reaction gas determined according to the component composition of the BCON into the processing container. d) Continuous rotation of the rotary table in one direction around the center line By doing so, the member is periodically passed in front of the first target and the second target, while the reactive gas is supplied into the processing vessel, and the first target and the second target are supplied. (2) When the MX alloy and the ZQ alloy are evaporated from the target, the MX alloy and the ZQ alloy react with the reaction gas, respectively, and when the member passes in front of the first target, the member. The first coating is formed on the surface of the member, and when passing through the front of the second target, the second coating is formed on the surface of the member, whereby the first coating and the second coating are formed on the surface of the member. It is characterized by alternately and continuously laminating.
[0010] 第 6発明は、第 5発明の被膜形成方法において、前記第 1ターゲットは、前記回転 テーブルの周囲に等角度間隔で複数配設されているとともに、前記第 2ターゲットは 、その第 1ターゲットと同じ数だけ前記回転テーブルの周囲に等角度間隔で配設され ており、その回転テーブルの 1回転で前記第 1被膜および前記第 2被膜を前記部材 の表面に複数周期積層することを特徴とする。 [0010] A sixth invention is the film forming method of the fifth invention, wherein a plurality of the first targets are arranged at equiangular intervals around the rotary table, and the second target is the first target. The same number of targets as the target are disposed around the rotary table at equal angular intervals, and the first coating and the second coating are laminated on the surface of the member a plurality of periods by one rotation of the rotary table. And
発明の効果  The invention's effect
[0011] 第 1発明の硬質積層被膜は、 MX(B C O N )にて構成されている第 1被膜と a b c 1 a— b - c  [0011] The hard laminated coating of the first invention includes a first coating composed of MX (B C O N), and a b c 1 a— b-c
、 ZQ (B C O N )にて構成されている第 2被膜とが交互に積層されたもので、 2 d e f 1 d— e~f  2 d e f 1 d— e ~ f
種類の金属元素 MXおよび ZQは互いに相違しているため、同じ金属元素を含んで いる場合に比較して優れた耐摩耗性が得られる。また、 MX合金をターゲットとして第 1被膜を形成するとともに ZQ合金をターゲットとして第 2被膜を形成するため、 M、 X 、 Z、 Qの単体金属をターゲットとして第 1被膜、第 2被膜を形成する場合に比較して、 一層高い耐摩耗性が得られる。更に、第 1被膜および第 2被膜の積層周期 tが 0. 2n m〜100nmの範囲内であるため、両被膜の特性を享受しつつ薄膜ィ匕による被膜硬 さ (耐摩耗性)の向上効果が安定して得られる。すなわち、この第 1発明の硬質積層 被膜によれば、 2種類の金属元素の合金化や薄膜化、多層化による被膜硬さの向上 効果が一層好適に得られるようになり、総合的に耐摩耗性が一層向上するのである。  Since the types of metal elements MX and ZQ are different from each other, superior wear resistance is obtained compared to the case where the same metal elements are contained. In addition, the first film is formed using MX alloy as the target, and the second film is formed using ZQ alloy as the target. Therefore, the first film and the second film are formed using M, X, Z, and Q as single metal targets. Compared to the case, higher wear resistance can be obtained. Furthermore, since the laminating period t of the first and second films is in the range of 0.2 nm to 100 nm, the film hardness (wear resistance) is improved by the thin film while enjoying the characteristics of both films. Can be obtained stably. In other words, according to the hard laminated film of the first invention, the effect of improving the film hardness by alloying, thinning, and multilayering of two kinds of metal elements can be obtained more suitably, and overall wear resistance is improved. The property is further improved.
[0012] 上記硬質積層被膜で被覆された第 4発明の硬質積層被膜被覆工具や、 BCONの 成分組成が等しい硬質積層被膜を形成する第 5発明、第 6発明の被膜形成方法に おいても、実質的に上記と同様の作用効果が得られる。第 5発明、第 6発明では、回 転テーブルによって部材を一中心線まわりに連続回転させることにより、第 1被膜お よび第 2被膜を交互に連続的に積層するため、短時間で効率良く硬質積層被膜を形 成することができる。特に、第 6発明では、回転テーブルの周囲に第 1ターゲットおよ び第 2ターゲットが複数ずっ配設されており、回転テーブルの 1回転で第 1被膜およ び第 2被膜を複数周期積層できるため、一層高い効率が得られるとともに、各被膜の 膜厚を薄くするために回転テーブルの回転速度を速くする必要がなぐ高速回転ィ匕 による振動等で被膜が損なわれる恐れがな 、。 [0012] In the hard laminated film-coated tool of the fourth invention coated with the hard laminated film, and the film-forming method of the fifth and sixth inventions for forming a hard laminated film having the same BCON component composition, The effect similar to the above is acquired substantially. In the fifth invention and the sixth invention, By continuously rotating the member around one center line by the rolling table, the first coating and the second coating are alternately and continuously laminated, so that a hard laminated coating can be efficiently formed in a short time. In particular, in the sixth invention, a plurality of first targets and second targets are arranged around the turntable, and a plurality of cycles of the first coat and the second coat can be laminated by one turn of the turntable. Therefore, it is possible to obtain higher efficiency, and there is no possibility that the coating film is damaged by vibration or the like due to a high-speed rotating shaft that does not need to increase the rotation speed of the rotary table in order to reduce the film thickness of each coating film.
[0013] 第 2発明では、硬質積層被膜の総膜厚 Dが 0. 2 m〜10 mの範囲内であるため 、被膜の剥離を抑制しつつ優れた耐摩耗性が得られる。また、第 3発明では第 1被膜 および第 2被膜の BCONの成分組成は互いに等 、ため、被膜毎に反応ガスを切り 換える必要がなぐ例えば第 5発明の被膜形成方法を用いることにより短時間で効率 良く硬質積層被膜を形成することができる。 [0013] In the second invention, since the total film thickness D of the hard laminated film is in the range of 0.2 m to 10 m, excellent wear resistance can be obtained while suppressing peeling of the film. In the third invention, since the BCON component compositions of the first film and the second film are equal to each other, it is not necessary to switch the reaction gas for each film, for example, by using the film forming method of the fifth invention in a short time. A hard laminated film can be formed efficiently.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本発明が適用されたエンドミルを示す図で、(a)は軸心と直角方向から見た正 面図、 (b)は硬質積層被膜が設けられた刃部の表面部分の断面図である。  FIG. 1 is a view showing an end mill to which the present invention is applied, in which (a) is a front view seen from a direction perpendicular to the shaft center, and (b) is a surface of a blade portion provided with a hard laminated film. It is sectional drawing of a part.
[図 2]図 1の硬質積層被膜を PVD法によって好適に形成できるアークイオンプレーテ イング装置の一例を説明する図で、 (a)は概略構成図、 (b)は回転テーブルおよびタ 一ゲットの位置関係を示す平面図である。  FIG. 2 is a diagram for explaining an example of an arc ion plating apparatus that can suitably form the hard multilayer coating of FIG. 1 by the PVD method, where (a) is a schematic configuration diagram, and (b) is a rotary table and target. It is a top view which shows these positional relationships.
[図 3]本発明の硬質積層被膜の具体例を説明する図で、合金ターゲットを用いて形 成した場合と単体金属のターゲットを用いて形成した場合の耐摩耗性の違!、を比較 して示した図である。  FIG. 3 is a diagram for explaining a specific example of the hard multilayer coating of the present invention, comparing the difference in wear resistance between the case where the alloy target is formed and the case where the single metal target is used. FIG.
圆 4]本発明の硬質積層被膜の具体例を説明する図で、第 1被膜および第 2被膜の 金属元素が総て異なる場合と同じ金属元素を含む場合の耐摩耗性の違いを比較し て示した図である。  圆 4] A diagram for explaining a specific example of the hard laminated film of the present invention, comparing the difference in wear resistance when the metal elements of the first film and the second film are all different from each other and containing the same metal element. FIG.
[図 5]本発明の硬質積層被膜の具体例を説明する図で、第 1被膜および第 2被膜の 合計膜厚である積層周期 tが 0. 2ηπ!〜 lOOnmの範囲内であるか否かによる耐摩耗 性の違 、を比較して示した図である。  FIG. 5 is a diagram for explaining a specific example of the hard laminated film of the present invention, where the lamination period t, which is the total film thickness of the first film and the second film, is 0.2ηπ! FIG. 5 is a diagram showing a comparison of the difference in wear resistance depending on whether or not it is within the range of ~ lOOnm.
[図 6]本発明の硬質積層被膜の具体例を説明する図で、総膜厚 Dが 0. 2 ;ζ ΐη〜10 mの範囲内である力否かによる耐摩耗性の違いを比較して示した図である。 FIG. 6 is a diagram for explaining a specific example of the hard laminated film of the present invention, in which the total film thickness D is 0.2; ζ ΐη˜10 It is the figure which compared and showed the difference in abrasion resistance by whether the force is in the range of m.
[図 7]本発明の硬質積層被膜の具体例を説明する図で、第 1被膜および第 2被膜に おける BCONの原子比 a〜c、d〜fがそれぞれ所定の範囲内か否かによる耐摩耗性 の違 、を比較して示した図である。  FIG. 7 is a diagram for explaining a specific example of the hard laminated film of the present invention. It shows resistance depending on whether the atomic ratios a to c and d to f of the BCON in the first film and the second film are within a predetermined range, respectively. FIG. 6 is a diagram showing a comparison of wear differences.
[図 8]本発明の硬質積層被膜の更に別の具体例を説明する図で、所定の加工条件 に従って切削加工を行った場合の逃げ面摩耗幅を併せて示した図である。  FIG. 8 is a diagram for explaining still another specific example of the hard laminated film of the present invention, and also shows the flank wear width when cutting is performed according to predetermined processing conditions.
[図 9]本発明の硬質積層被膜の更に別の具体例を説明する図で、所定の加工条件 に従って切削加工を行った場合の逃げ面摩耗幅を併せて示した図である。  FIG. 9 is a view for explaining still another specific example of the hard laminated film of the present invention, and also shows the flank wear width when cutting is performed in accordance with predetermined processing conditions.
符号の説明  Explanation of symbols
[0015] 10 :エンドミル (硬質積層被膜被覆工具) 12:工具母材 (所定の部材) 20:硬 質積層被膜 22 :第 1被膜 24 :第 2被膜 30 :アークイオンプレーティング装置 (被膜形成装置) 32:第 1回転テーブル(回転テーブル) 38:チャンバ (処理容 器) 40 :反応ガス供給装置 48 :第 1ターゲット 52 :第 2ターゲット O :—中 心線  [0015] 10: End mill (hard multi-layer coating tool) 12: Tool base material (predetermined member) 20: Hard multi-layer coating 22: First coating 24: Second coating 30: Arc ion plating device (coating device) ) 32: First rotary table (rotary table) 38: Chamber (processing vessel) 40: Reaction gas supply device 48: First target 52: Second target O: Center wire
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明は、エンドミルやタップ、ドリルなどの回転切削工具の他、バイト等の非回転 式の切削工具、或いは転造工具など、種々の加工工具の表面に設けられる硬質積 層被膜に好適に適用されるが、半導体装置等の表面保護膜など加工工具以外の部 材の表面に設けられる硬質積層被膜にも適用できる。工具母材など硬質積層被膜が 設けられる部材の材質としては、超硬合金や高速度工具鋼が好適に用いられるが、 他の金属材料であっても良 ヽ。  [0016] The present invention provides a hard layer coating provided on the surface of various processing tools such as a rotating cutting tool such as an end mill, a tap, and a drill, a non-rotating cutting tool such as a bite, or a rolling tool. Although preferably applied, the present invention can also be applied to a hard laminated coating provided on the surface of a member other than a processing tool such as a surface protective film of a semiconductor device or the like. Cemented carbide or high-speed tool steel is preferably used as the material of the member on which the hard multilayer coating is provided, such as a tool base material, but other metal materials may be used.
[0017] 本発明の硬質積層被膜を形成する PVD法 (物理蒸着法)としては、アークイオンプ レーティング法やスパッタリング法が好適に用いられる。第 1被膜および第 2被膜の膜 厚は、ターゲットに対する投入電力量や回転テーブルの回転速度等により適宜設定 することができる。  [0017] As the PVD method (physical vapor deposition method) for forming the hard laminated film of the present invention, an arc ion plating method or a sputtering method is preferably used. The film thicknesses of the first film and the second film can be appropriately set according to the amount of power input to the target, the rotation speed of the rotary table, and the like.
[0018] 第 1被膜における MXの原子比や第 2被膜における ZQの原子比は、 1: 1でも 3: 1 や 1 : 3などでも良ぐ金属元素の種類や要求特性等に応じて適宜設定できる。 BCO Nは、全体を 1として少なくとも N (窒素)を 0. 6以上含み、 B (硼素)については 0. 2 以下、 C (炭素)については 0. 3以下、 0 (酸素)については 0. 1以下で、それぞれ含 有させることができ、 N (窒素)だけでも良い。 [0018] The atomic ratio of MX in the first coating and the atomic ratio of ZQ in the second coating are set appropriately according to the type of metal element, required characteristics, etc., which can be 1: 1, 3: 1, 1: 3, etc. it can. BCO N contains at least N (nitrogen) at least 0.6 as a whole, and 0.2 for B (boron). In the following, C (carbon) is 0.3 or less, 0 (oxygen) is 0.1 or less, and N (nitrogen) alone may be included.
[0019] 第 3発明では、第 1被膜および第 2被膜における BCONの成分組成は同じ、すなわ ち原子比 a = d、 b = e、且つ c = fであるが、第 1発明や第 2発明の実施に際しては必 ずしも同じである必要はなぐ別々に設定することもできる。また、 BCONの他に不可 避的な不純物元素や性質に影響しな!ヽ他の元素を含んでも差し支えな!/ヽ。  [0019] In the third invention, the component composition of BCON in the first film and the second film is the same, that is, the atomic ratios a = d, b = e, and c = f. In carrying out the invention, it is not always necessary to set the same. In addition to BCON, it does not affect inevitable impurity elements and properties! な Other elements may be included! / ヽ.
[0020] 第 1被膜の膜厚と第 2被膜の膜厚を合わせた積層周期 tは、 0. 2nmよりも薄いと被 膜本来の特性 (硬さや耐熱性、耐酸化性、潤滑性など)が十分に得られなくなる恐れ があり、 lOOnmよりも厚いと、薄膜ィ匕による被膜硬さの向上効果が十分に得られなく なる恐れがあるため、 0. 2nm〜100nmの範囲内で設定する必要があり、膜厚のば らつき (誤差)を考慮すると 0. 5ηπ!〜 50nmの範囲内をネライ値として形成することが 望ましい。なお、各被膜の膜厚は、被膜毎に或いは部分的にばらつきがあるため、積 層周期 tは、その平均膜厚が上記範囲内となるようにすれば良い。  [0020] If the lamination period t, which is the sum of the thickness of the first coating and the thickness of the second coating, is less than 0.2 nm, the original properties of the coating (hardness, heat resistance, oxidation resistance, lubricity, etc.) If it is thicker than lOOnm, the effect of improving the film hardness by thin film may not be obtained sufficiently, so it is necessary to set it within the range of 0.2nm to 100nm. And 0.5 ηπ! Considering the variation (error) in the film thickness! It is desirable to form a nerai value within a range of ˜50 nm. In addition, since the film thickness of each film varies from film to film or partially, the stack period t may be set so that the average film thickness is within the above range.
[0021] 第 1被膜および第 2被膜は、何れを先に部材 (工具母材など)の表面上に形成して も良ぐ被膜の組成に応じて例えば密着性に優れた方を先に設けることが望ましいが 、特に限定することなく形成することも可能である。また、第 1被膜および第 2被膜を ペアとして積層されるが、合計の層数を奇数とすることも可能で、第 1被膜を先に形成 した場合に最上層も第 1被膜であったり、第 2被膜を先に形成した場合に最上層も第 2被膜であったりしても良い。なお、本発明の硬質積層被膜と部材表面との間に、必 要に応じて他の硬質被膜を介在させたり、最上層に別の被膜を設けたりすることも可 能である。硬質積層被膜を第 1被膜および第 2被膜のみ力 構成する場合でも、ェ 具母材の表面に接する最下層や最上層の被膜を積層被膜とは別の被膜と見做して 、それ等の膜厚を前記積層周期 tと無関係に大きくした小さくしたりすることも可能で ある。  [0021] Either the first film or the second film may be formed first on the surface of a member (such as a tool base material). However, it is also possible to form without limitation. In addition, the first film and the second film are laminated as a pair, but the total number of layers can be an odd number, and when the first film is formed first, the uppermost layer is also the first film, When the second film is formed first, the uppermost layer may also be the second film. It is also possible to interpose another hard coating between the hard laminated coating of the present invention and the member surface, or to provide another coating on the uppermost layer as necessary. Even when the hard laminated film is composed of only the first and second films, the lowermost layer or the uppermost layer in contact with the surface of the tool base material is regarded as a film different from the laminated film. It is also possible to increase or decrease the film thickness regardless of the stacking period t.
[0022] 硬質積層被膜の総膜厚 Dは、被膜を設ける対象物 (部材)や要求特性によっても異 なるが、例えば回転切削工具など比較的大きな衝撃荷重を受ける場合には、被膜の 剥離を抑制する上で 10 m以下が望ましぐ十分な耐摩耗性を確保する上で 0. 2 μ m以上が望ましい。摺動部材など衝撃荷重を殆ど受けない場合には、総膜厚 Dを 10 μ mより大きくしても差し支えなぐ例えば 20 m程度とすることも可能である。 [0022] The total film thickness D of the hard laminated coating varies depending on the object (member) on which the coating is to be applied and the required characteristics. For example, when a relatively large impact load such as a rotary cutting tool is applied, the coating is peeled off. 10 μm or less is desirable for suppression, and 0.2 μm or more is desirable for ensuring sufficient wear resistance. If the sliding member is hardly subjected to impact load, the total film thickness D should be 10 For example, it can be set to about 20 m, which may be larger than μm.
[0023] 第 5発明では、一中心線まわりに回転させられる回転テーブルの外周部に部材を 保持してその回転テーブルを一方向へ連続回転させることにより、その回転テープ ルの周隨こ位置固定に配設された第 1ターゲットおよび第 2ターゲットの前を部材が 交互に周期的に通過させられ、第 1被膜および第 2被膜が交互に連続的に積層され るが、第 1発明〜第 4発明の実施に際しては、ターゲットの近傍で回転テーブルを停 止させながら間欠回転させるようにしても良いし、一定位置に保持されている部材に 対して第 1ターゲットおよび第 2ターゲットを移動させるようにしても良いなど、種々の 被膜形成方法を採用できる。また、第 1被膜および第 2被膜の BCONの成分組成が 異なる場合など、第 1被膜、第 2被膜毎に反応ガスを切り換えたり蒸発させるターゲッ トを切り換えたりして、第 1被膜および第 2被膜を別々に断続的に積層することも可能 である。 [0023] In the fifth aspect of the invention, the member is held on the outer peripheral portion of the rotary table that is rotated around one center line, and the rotary table is continuously rotated in one direction, thereby fixing the circumferential position of the rotary table. The first and second targets disposed on the first and second targets are alternately and periodically passed, and the first and second coatings are alternately and continuously laminated. In carrying out the invention, the rotary table may be intermittently rotated while being stopped in the vicinity of the target, or the first target and the second target may be moved relative to a member held at a fixed position. Various film forming methods can be employed. Also, when the BCON component composition of the first and second coatings is different, the reaction gas is switched for each of the first and second coatings, and the target to be evaporated is switched to change the first and second coatings. It is also possible to laminate them separately and intermittently.
[0024] 第 5発明では、回転テーブルは一方向へ連続回転させられるようになっており、制 御の容易さから一定速度で回転駆動することが望ましいが、第 1ターゲットおよび第 2 ターゲットの配設位置に対応させて回転速度を周期的に増減させることもできる。  [0024] In the fifth invention, the rotary table is continuously rotated in one direction, and is preferably driven to rotate at a constant speed for ease of control, but the arrangement of the first target and the second target is preferable. The rotational speed can be periodically increased or decreased according to the installation position.
[0025] 上記回転テーブルは、その外周部分に部材を直接一定の姿勢で保持するものでも 良いが、前記一中心線とは異なる第 2の中心線まわりに回転する第 2の回転テープ ルを有し、その第 2の回転テーブルにより部材を保持してその第 2の中心線まわりに 連続回転させながら被膜を形成するようにすれば、部材の外周面に均一に被膜を形 成することができる。例えば、その部材が回転切削工具の工具母材の場合、工具母 材の軸心が第 2の中心線と同心または平行となる姿勢で第 2の回転テーブルに工具 母材を取り付け、その第 2の中心線まわりに工具母材を連続回転させながら被膜を形 成することが望ましい。第 2の回転テーブルは、例えば第 2の中心線が前記一中心線 と平行となる姿勢で配設されるが、一中心線と直交する姿勢で配設することもできる など、種々の態様が可能である。  [0025] The rotary table may hold a member directly in a constant posture on the outer peripheral portion thereof, but has a second rotary table that rotates around a second center line different from the one center line. If the film is formed while the member is held by the second turntable and continuously rotated around the second center line, the film can be uniformly formed on the outer peripheral surface of the member. . For example, when the member is a tool base material of a rotary cutting tool, the tool base material is attached to the second rotary table in a posture where the axis of the tool base material is concentric or parallel to the second center line. It is desirable to form the coating while continuously rotating the tool base material around the center line. For example, the second rotary table is arranged in a posture in which the second center line is parallel to the one center line, but can be arranged in a posture orthogonal to the one center line. Is possible.
[0026] 第 6発明では、例えば回転テーブルの一中心線まわりに第 1ターゲットおよび第 2タ 一ゲットが 90° 間隔で交互に計 2個ずっ配設されるが、 3個以上ずっ配設することも できる。また、複数の第 1ターゲットおよび第 2ターゲットは、それぞれ等角度間隔で 配設されるが、第 1ターゲットと第 2ターゲットとの間隔は必ずしも等角度間隔である必 要はなぐ回転テーブルの回転方向において、第 1ターゲットから第 2ターゲットに達 する間隔と、その第 2ターゲットから次の第 1ターゲットに達する間隔とを相違させても 良い。 [0026] In the sixth invention, for example, a total of two first targets and second targets are alternately arranged at 90 ° intervals around one center line of the rotary table, but three or more are arranged in a staggered manner. You can also. The plurality of first targets and second targets are each equiangularly spaced. However, the interval between the first target and the second target is not necessarily an equiangular interval. The interval from the first target to the second target in the rotation direction of the rotary table and the second target are not necessarily required. The interval from the target to the next first target may be different.
実施例  Example
[0027] 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 1は、本発明の硬質積層被膜被覆工具の一例であるエンドミル 10を説明する図 で、(a)は軸心と直角方向から見た正面図であり、超硬合金にて構成されている工具 母材 12にはシャンクおよび刃部 14がー体に設けられている。刃部 14には、切れ刃と して外周刃 16および底刃 18が設けられており、軸心まわりに回転駆動されることによ りそれ等の外周刃 16および底刃 18によって切削加工が行われるとともに、その刃部 14の表面には硬質積層被膜 20がコーティングされている。図 1(a)の斜線部は硬質 積層被膜 20を表しており、図 1の (b)は、硬質積層被膜 20がコーティングされた刃部 14の表面部分の断面図である。エンドミル 10は回転切削工具で、工具母材 12は硬 質積層被膜 20が設けられる所定の部材に相当する。  FIG. 1 is a view for explaining an end mill 10 which is an example of a hard laminated coating-coated tool according to the present invention. FIG. 1 (a) is a front view seen from a direction perpendicular to the axis and is made of cemented carbide. The tool base 12 is provided with a shank and a blade 14 on the body. The blade portion 14 is provided with an outer peripheral edge 16 and a bottom edge 18 as cutting edges, and is driven to rotate by the outer peripheral edge 16 and the bottom edge 18 when rotated around the axis. At the same time, the surface of the blade portion 14 is coated with a hard laminated film 20. The hatched portion in FIG. 1 (a) represents the hard laminate film 20, and FIG. 1 (b) is a cross-sectional view of the surface portion of the blade portion 14 coated with the hard laminate film 20. The end mill 10 is a rotary cutting tool, and the tool base material 12 corresponds to a predetermined member on which a hard laminated coating 20 is provided.
[0028] 図 1(b)力も明らかなように、硬質積層被膜 20は第 1被膜 22および第 2被膜 24を、 工具母材 12の表面上に交互に多数積層したものである。第 1被膜 22は、 MX(B C a b As is clear from the force in FIG. 1 (b), the hard laminated film 20 is obtained by alternately laminating a number of first films 22 and second films 24 on the surface of the tool base material 12. The first coating 22 is MX (B C a b
O N )〔但し、 Mおよび Xはそれぞれ元素の周期律表の IVa族、 Va族、 Via族、 c 1— a— b— c O N) (where M and X are groups IVa, Va, Via, c 1— a— b— c in the periodic table of the elements, respectively.
Al、 Si、および Yから選択される 2種類の異なる金属元素、 a、 b、 cはそれぞれ原子比 で、 0≤a≤0. 2, 0≤b≤0. 3, 0≤c≤0. 1の範囲内〕にて構成されており、第 2被 膜 24は、 ZQ (B C O N )〔但し、 Zおよび Qは何れも前記 M、 Xと異なるとともに d e f i d - e - f  Two different metal elements selected from Al, Si, and Y, a, b, c are atomic ratios, 0≤a≤0. 2, 0≤b≤0. 3, 0≤c≤0. The second film 24 is composed of ZQ (BCON) (however, Z and Q are both different from M and X and defid -e -f
それぞれ元素の周期律表の IVa族、 Va族、 Via族、 Al、 Si、および Yから選択される 2 種類の異なる金属元素、 d、 e、 fはそれぞれ原子比で、 0≤d≤0. 2、 0≤e≤0. 3、 0 ≤f≤0. 1の範囲内〕にて構成されている。また、第 1被膜 22の膜厚と第 2被膜 24の 膜厚を合わせた積層周期 tは 0. 2ηπ!〜 lOOnmの範囲内で、硬質積層被膜 20の総 膜厚 Dは 0. 2 111〜10 111の範囲内でぁる。なお、積層周期 tを 1層とする積層数は 、積層周期 tおよび総膜厚 Dに応じて適宜定められるが、例えば 10層〜 1000層の 範囲内が適当である。 [0029] 上記第 1被膜 22における MXの原子比や第 2被膜 24における ZQの原子比は、 1 : 1でも 3: 1や 1: 3などでも良ぐ金属元素の種類や要求特性等に応じて適宜設定され る。 BCONは、全体を 1として少なくとも N (窒素)を 0. 6以上含み、 B (硼素)について は 0. 2以下、 C (炭素)については 0. 3以下、 0 (酸素)については 0. 1以下で、それ ぞれ含有させることができ、 N (窒素)だけでも良い。また、第 1被膜 22および第 2被 膜 24における BCONの成分組成は同じ、すなわち原子比 a = d、 b = e、且つ c = fで あっても良いが、別々に設定することもできる。 BCONの他に不可避的な不純物元 素や性質に影響しな!ヽ他の元素を含んでも差し支えな!/、。 Two different metal elements selected from groups IVa, Va, Via, Al, Si, and Y, d, e, and f, respectively, are atomic ratios, 0≤d≤0. 2, 0≤e≤0. 3, 0 ≤f≤0. 1]. In addition, the stacking period t, which combines the thickness of the first coating 22 and the thickness of the second coating 24, is 0.2ηπ! Within the range of ~ lOOnm, the total film thickness D of the hard laminate coating 20 is within the range of 0.2111 to 10111. Note that the number of stacks in which the stacking period t is one layer is appropriately determined according to the stacking period t and the total film thickness D. For example, a range of 10 to 1000 layers is appropriate. [0029] The atomic ratio of MX in the first coating 22 and the atomic ratio of ZQ in the second coating 24 can be 1: 1, 3: 1, 1: 3, etc. Is set as appropriate. BCON contains at least N (nitrogen) at least 0.6 with 1 as a whole, B (boron) 0.2 or less, C (carbon) 0.3 or less, 0 (oxygen) 0.1 In the following, each can be contained, and only N (nitrogen) may be contained. Further, the BCON component composition in the first coating 22 and the second coating 24 may be the same, that is, the atomic ratios a = d, b = e, and c = f, but may be set separately. In addition to BCON, inevitable impurity elements and properties are not affected! ヽ Other elements may be included!
[0030] 図 2は、上記硬質積層被膜 20を形成する際に好適に用いられるアークイオンプレ 一ティング装置 30を説明する図で、 (a)は概略構成図 (模式図)で (b)における A— A 断面に相当する図であり、 (b)は平面図である。このアークイオンプレーティング装置 30は、略水平な第 1回転テーブル 32、その第 1回転テーブル 32を略垂直な一中心 線 Oまわりに回転駆動する回転駆動装置 33、第 1回転テーブル 32の外周部に複数 (図 2の (b)では 4個)配設されるとともに多数のワークすなわち硬質積層被膜 20を被 覆する前の切れ刃 16、 18等が形成された工具母材 12を保持する第 2回転テーブル 34、工具母材 12に負のバイアス電圧を印加するバイアス電源 36、工具母材 12など を内部に収容している処理容器としてのチャンバ 38、チャンバ 38内に所定の反応ガ スを供給する反応ガス供給装置 40、チャンバ 38内の気体を真空ポンプなどで排出し て減圧する排気装置 42、第 1アーク電源 44、第 2アーク電源 46等を備えている。こ のアークイオンプレーティング装置 30は被膜形成装置に相当する。なお、図 2の (b) では、第 2回転テーブル 34に取り付けられる工具母材 12が省略されている。  FIG. 2 is a diagram for explaining an arc ion plating apparatus 30 that is preferably used for forming the hard laminated film 20, and (a) is a schematic configuration diagram (schematic diagram) in (b). It is a figure corresponding to the A—A cross section, and (b) is a plan view. The arc ion plating device 30 includes a first rotary table 32 that is substantially horizontal, a rotary drive device 33 that rotates the first rotary table 32 around a substantially vertical center line O, and an outer peripheral portion of the first rotary table 32. A plurality of (four in FIG. 2 (b)) and a tool base 12 that holds the tool base 12 on which a large number of workpieces, that is, the cutting edges 16 and 18 before covering the hard laminated coating 20, are formed. (2) Rotary table 34, bias power source 36 for applying a negative bias voltage to the tool base material 12, chamber 38 as a processing container containing the tool base material 12, etc., and a predetermined reaction gas in the chamber 38 A reaction gas supply device 40 to be supplied, an exhaust device 42 for discharging the gas in the chamber 38 with a vacuum pump or the like to reduce the pressure, a first arc power source 44, a second arc power source 46, and the like are provided. The arc ion plating apparatus 30 corresponds to a film forming apparatus. In FIG. 2B, the tool base material 12 attached to the second rotary table 34 is omitted.
[0031] 上記第 2回転テーブル 34は第 1回転テーブル 32と平行に配設されており、その第 1回転テーブル 32の一中心線 Oと平行な自身の中心線 (第 2の中心線)まわりに回 転させられるとともに、複数の工具母材 12を、その軸心が第 2の中心線と平行で刃部 14が上向きとなる垂直な姿勢で保持するようになっている。したがって、複数の工具 母材 12は、第 2回転テーブル 34の中心線 (第 2の中心線)まわりに回転駆動されつ つ、第 1回転テーブル 32により一中心線 Oまわりに回転駆動されることになる。第 1回 転テーブル 32の周囲には、一中心線 Oまわりに第 1ターゲット 48および第 2ターゲッ ト 52が 90° 間隔で交互に位置固定に配設されており、第 1回転テーブル 32の連続 回転により、工具母材 12は第 2回転テーブル 34と共にそれ等の第 1ターゲット 48お よび第 2ターゲット 52の前を交互に周期的に通過させられる。本実施例では、第 1タ 一ゲット 48および第 2ターゲット 52は、それぞれ一中心線 Oまわりに 180° 間隔で 2 個ずっ配設されていることになる。なお、複数の第 2回転テーブル 34は、例えば独自 の回転駆動装置によって独立に回転駆動されるように構成されるが、歯車機構等に より第 1回転テーブル 32の回転に連動して機械的に回転駆動されるようにすることも できる。 [0031] The second rotary table 34 is arranged in parallel with the first rotary table 32, and is around its own center line (second center line) parallel to one center line O of the first rotary table 32. And a plurality of tool base materials 12 are held in a vertical posture in which the axis is parallel to the second center line and the blade portion 14 faces upward. Therefore, the plurality of tool base materials 12 are rotated around the center line (second center line) of the second rotary table 34, and are rotated around the center line O by the first rotary table 32. become. Around the first rotary table 32, the first target 48 and the second target around one center line O. 52 are alternately fixed at 90 ° intervals, and the tool base 12 is moved together with the second rotary table 34 by the continuous rotation of the first rotary table 32. The target 52 can be passed alternately and periodically. In the present embodiment, the first target 48 and the second target 52 are arranged around the center line O at intervals of 180 °. The plurality of second rotary tables 34 are configured to be driven to rotate independently by, for example, a unique rotary drive device, but mechanically interlocked with the rotation of the first rotary table 32 by a gear mechanism or the like. It can also be driven to rotate.
[0032] 前記反応ガス供給装置 40は、窒素ガス (N )や炭化水素ガス (CH  [0032] The reaction gas supply device 40 includes nitrogen gas (N) and hydrocarbon gas (CH
2 4、 C Hなど)、  2 4, C H, etc.),
2 2 酸素ガス (O )等のタンクを備えており、第 1被膜 22、第 2被膜 24の組成に応じて、  2 2 Equipped with a tank of oxygen gas (O), etc., depending on the composition of the first coating 22 and the second coating 24,
2  2
例えば窒化物の場合は窒素ガスのみを供給し、炭窒化物の場合は窒素ガスおよび 炭化水素ガスを前記原子比 a〜fに応じて供給する。酸窒化物ゃ硼窒化物など他の 化合物を形成する場合も、同様にして所定の反応ガスを供給すれば良 ヽ。  For example, in the case of nitride, only nitrogen gas is supplied, and in the case of carbonitride, nitrogen gas and hydrocarbon gas are supplied according to the atomic ratios a to f. In the case of forming other compounds such as oxynitride and boron nitride, it is also possible to supply a predetermined reaction gas in the same manner.
[0033] 前記一中心線 Oを挟んで対称位置に配設された 2個の第 1ターゲット 48は、何れも 前記第 1被膜 22の構成物質である MX合金にて構成されている一方、同じく一中心 線 Oを挟んで対称位置に配設された 2個の第 2ターゲット 52は、何れも前記第 2被膜 24の構成物質である ZQ合金にて構成されている。そして、前記第 1アーク電源 44は 、上記第 1ターゲット 48を力ソードとしてアノード 50との間に所定のアーク電流を通電 してアーク放電させることにより、第 1ターゲット 48から MX合金を蒸発させるもので、 蒸発した MX合金は正(+ )の金属イオンになって負(一)のバイアス電圧が印加され ている工具母材 12に付着する。その際、供給された反応ガスと反応して、前記 MX( B C O N )から成る第 1被膜 22が形成される。また、第 2アーク電源 46は、上 a b c 1 a— b - c [0033] Each of the two first targets 48 arranged in a symmetrical position with the one center line O in between is made of MX alloy which is a constituent material of the first coating 22, while the same The two second targets 52 arranged at symmetrical positions with the one center line O in between are both made of a ZQ alloy that is a constituent material of the second coating 24. The first arc power source 44 evaporates the MX alloy from the first target 48 by causing a predetermined arc current to flow between the anode 50 and the anode 50 using the first target 48 as a force sword. The evaporated MX alloy becomes positive (+) metal ions and adheres to the tool base 12 to which a negative (one) bias voltage is applied. At that time, the first coating 22 made of the MX (B C O N) is formed by reacting with the supplied reaction gas. In addition, the second arc power supply 46 has an upper a b c 1 a— b-c
記第 2ターゲット 52を力ソードとしてアノード 54との間に所定のアーク電流を通電して アーク放電させることにより、第 2ターゲット 52から ZQ合金を蒸発させるもので、蒸発 した ZQ合金は正(+ )の金属イオンになって負(一)のバイアス電圧が印加されてい る工具母材 12に付着する。その際、供給された反応ガスと反応して、前記 ZQ (B C d e The ZQ alloy is evaporated from the second target 52 by passing a predetermined arc current between the anode 54 and the second target 52 as a force sword and causing arc discharge. The evaporated ZQ alloy is positive (+ ) And adheres to the tool base 12 to which a negative (one) bias voltage is applied. At that time, it reacts with the supplied reaction gas, and the ZQ (B C d e
O N )から成る第 2被膜 24が形成される。 A second coating 24 made of O N) is formed.
f 1-d-e-f  f 1-d-e-f
[0034] このようなアークイオンプレーティング装置 30を用いて工具母材 12の刃部 14の表 面に硬質積層被膜 20を形成する際には、予め排気装置 42で排気しながらチャンバ 38内が所定の圧力(例えば 1. 33Pa〜3. 99Pa程度)に保持されるように反応ガス 供給装置 40から所定の反応ガスを供給するとともに、バイアス電源 36により工具母 材 12に所定のバイアス電圧 (例えば— 50V〜― 150V程度)を印加する。また、第 2 回転テーブル 34を中心線まわりに回転駆動しつつ第 1回転テーブル 32を一中心線 Oまわりに一方向へ一定速度で連続回転させることにより、工具母材 12を第 2回転テ 一ブル 34と共に第 2の中心線まわりに回転させつつ、第 1ターゲット 48および第 2タ 一ゲット 52の前を交互に周期的に通過させる。 [0034] Using such an arc ion plating apparatus 30, a table of the blade portion 14 of the tool base material 12 is provided. When the hard multilayer coating 20 is formed on the surface, the reactive gas supply device 40 is configured so that the inside of the chamber 38 is maintained at a predetermined pressure (for example, about 1.33 Pa to 3.99 Pa) while being evacuated by the exhaust device 42 in advance. A predetermined reaction gas is supplied from the power source, and a predetermined bias voltage (for example, about −50 V to −150 V) is applied to the tool base 12 by a bias power source 36. In addition, while rotating the second rotary table 34 around the center line, the first rotary table 32 is continuously rotated around the center line O in one direction at a constant speed, so that the tool base material 12 is moved to the second rotary table. While rotating around the second center line together with the bull 34, the first target 48 and the second target 52 are alternately passed periodically.
[0035] 一方、例えば第 1被膜 22および第 2被膜 24における BCONの成分糸且成が互いに 等しい場合、すなわち原子比 a = d、 b = e、且つ c = fである場合には、その成分組成 に応じて上記反応ガス供給装置 40から所定の反応ガスを供給するとともに、第 1ァー ク電源 44によりアーク電流を通電して第 1ターゲット 48を蒸発させると同時に、第 2ァ ーク電源 46によりアーク電流を通電して第 2ターゲット 52を蒸発させる。これにより、 それ等のターゲット 48、 52の蒸発金属がそれぞれ反応ガスと反応して第 1被膜 22、 第 2被膜 24が形成され、工具母材 12の表面に付着させられる。具体的には、工具母 材 12が第 1ターゲット 48の前を通過する際には、 MX(B C O N )力も成る第 1 On the other hand, for example, when the component yarns of BCON in the first coating 22 and the second coating 24 are equal to each other, that is, when the atomic ratios a = d, b = e, and c = f, the components Depending on the composition, a predetermined reactive gas is supplied from the reactive gas supply device 40 and an arc current is applied by the first arc power supply 44 to evaporate the first target 48 and at the same time the second arc power supply. The second target 52 is evaporated by supplying an arc current by 46. As a result, the evaporated metals of the targets 48 and 52 react with the reaction gas, respectively, to form the first coating 22 and the second coating 24, and are attached to the surface of the tool base material 12. Specifically, when the tool base material 12 passes in front of the first target 48, the first force that also has an MX (B C O N) force is obtained.
a b c 1 a— b - c  a b c 1 a— b-c
被膜 22が工具母材 12の表面に付着させられ、第 2ターゲット 52の前を通過する際に は、 ZQ (B C O N )力も成る第 2被膜 24が工具母材 12の表面に付着させられ  When the coating 22 is attached to the surface of the tool base 12 and passes in front of the second target 52, the second coating 24, which also has a ZQ (B C O N) force, is attached to the surface of the tool base 12.
d e f i d - e - 1  d e f i d-e-1
るのである。これにより、工具母材 12の表面に第 1被膜 22と第 2被膜 24とが交互に 連続的に積層され、硬質積層被膜 20が形成される。本実施例では、第 1回転テープ ル 32の周囲に第 1ターゲット 48および第 2ターゲット 52が交互に 2個ずっ配設されて いるため、第 1回転テーブル 32の 1回転で第 1被膜 22および第 2被膜 24が 2周期積 層される。各アーク電源 44、 46のアーク電流の電流値は、第 1被膜 22、第 2被膜 24 の膜厚に応じて定められ、第 1回転テーブル 32の回転速度は、第 1被膜 22および第 2被膜 24の膜厚を合わせた積層周期 tに応じて定められる。このような硬質積層被膜 20の形成は、コンピュータを含む制御装置によって自動的に行うことができる。  It is. As a result, the first coating 22 and the second coating 24 are alternately and continuously laminated on the surface of the tool base material 12 to form the hard laminated coating 20. In this embodiment, since the first target 48 and the second target 52 are alternately arranged around the first rotating table 32, the first coating 22 and the second target 52 are rotated by one rotation of the first rotating table 32. The second coating 24 is stacked for two cycles. The current value of the arc current of each arc power source 44, 46 is determined according to the film thickness of the first coating 22 and the second coating 24, and the rotation speed of the first rotary table 32 is determined by the first coating 22 and the second coating. It is determined according to the stacking period t with the thickness of 24 combined. Such a hard laminated film 20 can be automatically formed by a control device including a computer.
[0036] なお、第 1アーク電源 44および第 2アーク電源 46を同時に ONとした場合、第 1ター ゲット 48の近傍で被膜形成処理が開始された工具母材 12については第 1被膜 22か ら先に形成され、第 2ターゲット 52の近傍で被膜形成処理が開始された工具母材 12 につ ヽては第 2被膜 24から先に形成される力 第 2アーク電源 46の OFF→ON切換 を遅らせることにより、総ての工具母材 12に対して第 1被膜 22から先に形成されるよ うにすることもできる。逆に、第 1アーク電源 44の OFF→ON切換を遅らせることにより 、総ての工具母材 12に対して第 2被膜 24から先に形成されるようにすることもできる [0036] When the first arc power supply 44 and the second arc power supply 46 are simultaneously turned ON, the tool base material 12 for which the coating forming process has started in the vicinity of the first target 48 is the first coating 22 or For the tool base material 12 that is formed first and the coating formation process is started in the vicinity of the second target 52, the force that is formed first from the second coating 24. By delaying the first coating 22, the first coating 22 can be formed first for all the tool base materials 12. Conversely, by delaying the switching of the first arc power supply 44 from OFF to ON, the second coating 24 can be formed first for all the tool base materials 12.
[0037] また、第 1被膜 22および第 2被膜 24の BCONの成分組成が異なる場合には、第 1 被膜 22および第 2被膜 24を別々に形成する必要があり、反応ガス供給装置 40から 供給する反応ガスを切り換えたり、第 1アーク電源 44および第 2アーク電源 46をそれ ぞれ ON、 OFFして第 1ターゲット 48と第 2ターゲット 52とを切り換えたりすることにな る。 [0037] When the first coating 22 and the second coating 24 have different BCON component compositions, the first coating 22 and the second coating 24 need to be formed separately, and are supplied from the reaction gas supply device 40. The reaction gas to be used is switched, and the first arc power supply 44 and the second arc power supply 46 are turned on and off respectively to switch between the first target 48 and the second target 52.
[0038] 次に、工具母材 12が超硬合金製で直径が 10mm、 6枚刃のスクェアエンドミルに 上記硬質積層被膜 20が設けられた本発明品と、被膜形成時のターゲットや被膜組 成、積層周期 t、総膜厚 D等が異なる比較品とを用意し、以下の加工条件で切削加 ェを行って 25m切削後の外周刃 16の逃げ面摩耗幅 (mm)を調べた結果を説明す る。逃げ面摩耗幅 (mm)は、 6枚の外周刃 16の平均値である。また、許容摩耗幅は、 0. 15mmとする。なお、被膜硬さ(HV0. 025)については必ずしも測定が容易でな いため、一部の積層被膜についてのみ調べ、記載の無いものは測定を省略した。 (加工条件)  [0038] Next, the product of the present invention in which the tool base material 12 is made of cemented carbide, has a diameter of 10 mm, and a 6-blade square end mill is provided with the hard laminated coating 20, and the target and coating composition during coating formation. A comparative product with different stacking cycle t, total film thickness D, etc. was prepared, and after cutting under the following processing conditions, the flank wear width (mm) of the outer peripheral edge 16 after 25 m cutting was investigated. explain. The flank wear width (mm) is an average value of the six peripheral blades 16. The allowable wear width is 0.15 mm. Since the film hardness (HV0.025) is not always easy to measure, only a part of the laminated film was examined, and the measurement was omitted for those not described. (Processing conditions)
•被削材種: SKD11 (60HRC)  • Cut type: SKD11 (60HRC)
,加工方法:側面切削(ダウンカット)  , Machining method: Side cutting (down cut)
'切削速度: 150mZmin(4800min—  'Cutting speed: 150mZmin (4800min—
.送り速度: 0. 03mm/t (860mm/min)  .Feeding speed: 0.03mm / t (860mm / min)
'切り込み: aa= 10mm、 ar=0. 5mm  'Incision: aa = 10mm, ar = 0. 5mm
•切削油剤:エアブロー  • Cutting fluid: Air blow
•使用機械:立型マシユングセンタ  • Machine used: Vertical machining center
[0039] 図 3は、合金ターゲットを使用した場合、すなわち MX合金力も成る第 1ターゲット 4 8、 ZQ合金力も成る第 2ターゲット 52を用いて硬質積層被膜 20を形成した場合 (本 発明品)と、 M、 X、 Z、 Qの単体金属のターゲットを用いて第 1被膜 22、第 2被膜 24 を形成して硬質積層被膜 20を設けた場合とを比較したもので、第 1被膜 22、第 2被 膜 24は何れも BCONのうち窒素(N)のみを有する窒化物である。 [0039] Fig. 3 shows the case where the hard multilayer coating 20 is formed using the alloy target, that is, the first target 48 with MX alloy force and the second target 52 with ZQ alloy force. Inventive product) and the case where the first coating 22 and the second coating 24 are formed using a single metal target of M, X, Z, and Q, and the hard laminated coating 20 is provided. The coating 22 and the second coating 24 are both nitrides containing only nitrogen (N) in BCON.
[0040] この図 3から明らかなように、合金ターゲットを使用した上段の 4種類の硬質積層被 膜の場合、被膜硬さ (HVO. 025)は何れも 3000以上で、逃げ面摩耗幅も許容摩耗 幅 (0. 15mm以下)を満足している。これに対し、単体金属のターゲットを使用した下 段の 4種類の硬質積層被膜は、被膜硬さ (HVO. 025)が 2000前後で、逃げ面摩耗 幅も 0. 3mmより大きぐ許容摩耗幅(0. 15mm以下)を大幅に上回っており、合金タ 一ゲットを使用することにより優れた被膜硬さおよび耐摩耗性が得られることが分力る [0040] As is apparent from Fig. 3, in the case of the upper four types of hard laminated films using an alloy target, the film hardness (HVO. 025) is 3000 or more and the flank wear width is also acceptable. The wear width (0.15mm or less) is satisfied. On the other hand, the lower four types of hard laminated coatings using a single metal target have a coating hardness (HVO. 025) of around 2000 and a flank wear width of more than 0.3 mm. 0.1.15 mm or less), and it is possible to obtain excellent film hardness and wear resistance by using an alloy target.
[0041] 図 4は、第 1被膜 22および第 2被膜 24が同じ金属元素を有する場合と比較したもの で、各試験品 Nol〜8の上段は本発明品、すなわち第 1被膜 22の金属元素 M、 Xと 第 2被膜 24の金属元素 Z、 Qとが重複しない場合であり、各試験品 Nol〜8の下段は 、同じ金属元素を含んでいる比較品である。図 4から明らかなように、上段の本発明 品は、何れも逃げ面摩耗幅が許容摩耗幅 (0. 15mm以下)を満足しているのに対し 、同じ金属元素を含んでいる下段の比較品は、何れも逃げ面摩耗幅が 0. 2mmを超 えていて許容摩耗幅 (0. 15mm以下)を満たしておらず、第 1被膜 22および第 2被 膜 24の金属元素の重複を避けることにより優れた耐摩耗性が得られることが分かる。 [0041] FIG. 4 is a comparison with the case where the first coating 22 and the second coating 24 have the same metal element. The upper part of each test article Nol to 8 is the product of the present invention, that is, the metal element of the first coating 22. This is a case where M and X do not overlap with the metal elements Z and Q of the second coating 24, and the lower part of each test article Nol to 8 is a comparative product containing the same metal element. As can be seen from Fig. 4, all the products of the present invention in the upper stage satisfy the allowable wear width (0.15 mm or less) in the flank wear width, but the lower stage containing the same metal element. All products have flank wear widths exceeding 0.2 mm and do not satisfy the allowable wear width (0.15 mm or less), and avoid overlapping of metal elements in the first coating 22 and the second coating 24. It can be seen that excellent wear resistance can be obtained.
[0042] 図 5は、第 1被膜 22および第 2被膜 24の合計膜厚である積層周期 tが 0. 2ηπ!〜 1 OOnmの範囲内であるか否かによる耐摩耗性の相違を比較したもので、各試験品 No 1〜: L 1の上段は本発明品、すなわち積層周期 tが 0. 2ηπ!〜 lOOnmの範囲内の場 合であり、各試験品 Nol〜: L 1の下段は、積層周期 tが 0. 2nm〜100nmの範囲から 外れている比較品である。図 5から明らかなように、上段の本発明品は、何れも逃げ 面摩耗幅が許容摩耗幅 (0. 15mm以下)を満足しているのに対し、積層周期 tが 0. 2nm〜100nmの範囲から外れている下段の比較品は、何れも逃げ面摩耗幅が 0. 2 mmを超えていて許容摩耗幅(0. 15mm以下)を満たしておらず、積層周期 tを 0. 2 ηπ!〜 lOOnmの範囲内とすることにより優れた耐摩耗性が得られることが分かる。  FIG. 5 shows that the stacking period t, which is the total film thickness of the first film 22 and the second film 24, is 0.2ηπ! Comparison of differences in wear resistance depending on whether it is within the range of ˜1 OOnm. Each test product No 1˜: The upper part of L 1 is the product of the present invention, that is, the stacking period t is 0.2ηπ! This is a case in the range of ~ lOOnm, and each test product Nol ~: The lower part of L1 is a comparative product in which the lamination period t is out of the range of 0.2nm to 100nm. As is clear from FIG. 5, all the products of the present invention in the upper stage satisfy the allowable wear width (0.15 mm or less) in the flank wear width, but the stacking period t is 0.2 nm to 100 nm. In the lower comparison products that are out of range, the flank wear width exceeds 0.2 mm and does not satisfy the allowable wear width (0.15 mm or less), and the stacking cycle t is 0.2 ηπ! It can be seen that excellent wear resistance can be obtained by setting the content within the range of ~ lOOnm.
[0043] 図 6は、硬質積層被膜 20の総膜厚 Dが 0. 2 m〜10 mの範囲内であるか否か による耐摩耗性の相違を比較したもので、各試験品 Nol〜8の上段は本発明品(請 求項 2)、すなわち総膜厚 Dが 0. 2 m〜10 mの範囲内の場合であり、各試験品 N ol〜8の下段は、総膜厚 Dが 0. 2 /ζ πι〜 10 /z mの範囲から外れている比較品である 。図 6から明らかなように、上段の本発明品は、何れも逃げ面摩耗幅が許容摩耗幅( 0. 15mm以下)を満足しているのに対し、総膜厚 Dが 0. 2 πι〜10 /ζ mの範囲から 外れている下段の比較品は、何れも逃げ面摩耗幅が 0. 2mmを超えていて許容摩 耗幅(0. 15mm以下)を満たしておらず、総膜厚 Dを 0. 2 /ζ πι〜10 /ζ mの範囲内と することにより優れた耐摩耗性が得られることが分かる。 [0043] FIG. 6 shows whether or not the total film thickness D of the hard laminate film 20 is in the range of 0.2 m to 10 m. The upper part of each test product Nol to 8 is the product of the present invention (claim 2), that is, the total film thickness D is in the range of 0.2 m to 10 m. The lower part of each test product Nol to 8 is a comparative product in which the total film thickness D is out of the range of 0.2 / ζ πι to 10 / zm. As is clear from FIG. 6, all the products of the present invention in the upper stage satisfy the allowable wear width (0.15 mm or less) in the flank wear width, but the total film thickness D is 0.2 πι ~ The lower comparison products that are out of the range of 10 / ζ m have a flank wear width of more than 0.2 mm and do not satisfy the allowable wear width (0.15 mm or less). It can be seen that excellent wear resistance can be obtained by setting the value in the range of 0.2 / ζ πι to 10 / ζ m.
[0044] 図 7は、第 1被膜 22および第 2被膜 24における BCONの前記原子比 a〜c、 d〜fの 相違による耐摩耗性の影響を比較したもので、試験品 Nol〜10は本発明品、すなわ ¾0≤a≤0. 2, 0≤b≤0. 3, 0≤c≤0. 1, 0≤d≤0. 2, 0≤e≤0. 3, 0≤f≤0. 1 を総て満たす場合であり、試験品 Nol l〜20は、 BCONの原子比 a〜c、 d〜fの少な くとも一つ力 SO≤a≤0. 2, 0≤b≤0. 3, 0≤c≤0. 1, 0≤d≤0. 2, 0≤e≤0. 3、 0 ≤f≤0. 1の範囲を外れている場合である。図 7から明らかなように、試験品 Nol〜l 0の本発明品は、何れも逃げ面摩耗幅が許容摩耗幅 (0. 15mm以下)を満足してい るのに対し、試験品 Nol l〜20の比較品は、何れも逃げ面摩耗幅が 0. 2mmを超え ていて許容摩耗幅(0. 15mm以下)を満たしておらず、 BCONの原子比 a〜c、 d〜f 力 0≤a≤0. 2, 0≤b≤0. 3, 0≤c≤0. 1, 0≤d≤0. 2, 0≤e≤0. 3, 0≤f≤0. 1 を総て満足するように成分組成を設定することにより優れた耐摩耗性が得られること が分かる。 [0044] Fig. 7 compares the effects of wear resistance due to the difference in the atomic ratios a to c and d to f of BCON in the first coating 22 and the second coating 24. Invention, ie ¾0≤a≤0. 2, 0≤b≤0. 3, 0≤c≤0. 1, 0≤d≤0. 2, 0≤e≤0. 3, 0≤f≤0 The test samples Nol 1 to 20 satisfy at least one of the BCON atomic ratios a to c and d to f SO≤a≤0. 2, 0≤b≤0. 3, 0≤c≤0. 1, 0≤d≤0. 2, 0≤e≤0. 3, 0 ≤f≤0. As is apparent from Fig. 7, the test products Nol to l0 of the present invention products all satisfy the allowable wear width (0.15mm or less) in the flank wear width, whereas the test products Nol to l0 In all 20 comparative products, the flank wear width exceeds 0.2 mm and does not satisfy the allowable wear width (0.15 mm or less). BCON atomic ratio a to c, d to f force 0≤a ≤0. 2, 0≤b≤0. 3, 0≤c≤0. 1, 0≤d≤0. 2, 0≤e≤0. 3, 0≤f≤0. It can be seen that excellent wear resistance can be obtained by setting the component composition to.
[0045] 図 8および図 9は、本発明の更に別の実施例について、上記と同じ加工条件で切 削加工を行って逃げ面摩耗幅を調べた結果で、何れも逃げ面摩耗幅が許容摩耗幅 (0. 15mm以下)を満たしている。  FIG. 8 and FIG. 9 show the results of examining the flank wear width by performing cutting under the same processing conditions as described above for still another example of the present invention. The wear width (0.15mm or less) is satisfied.
[0046] このように、本実施例のエンドミル 10の硬質積層被膜 20は、 MX (B C O N ) a c 1 a— b - c にて構成されて 、る第 1被膜 22と、 ZQ (B C O N )にて構成されて 、る第 2被 a e f 1 d— e~f  As described above, the hard laminated film 20 of the end mill 10 of the present embodiment is composed of MX (BCON) ac 1 a-b-c, and is composed of the first film 22 and ZQ (BCON). Consists of second covered aef 1 d— e ~ f
膜 24とが交互に積層されたもので、 2種類の金属元素 MXおよび ZQは互いに相違 して ヽるため、同じ金属元素を含んで!/ヽる場合に比較して優れた耐摩耗性が得られ る。また、 MX合金を第 1ターゲット 48として第 1被膜 22を形成するとともに ZQ合金を 第 2ターゲット 52として第 2被膜を形成するため、 M、 X、 Z、 Qの単体金属をターゲッ トとして第 1被膜 22、第 2被膜 24を形成する場合に比較して、一層高い耐摩耗性が 得られる。更に、第 1被膜 22および第 2被膜 24の積層周期 tが 0. 2nm〜100nmの 範囲内であるため、両被膜 22、 24の特性を享受しつつ薄膜ィ匕による被膜硬さ(耐摩 耗性)の向上効果が安定して得られる。すなわち、本実施例の硬質積層被膜 20によ れば、 2種類の金属元素の合金化や薄膜化、多層化による被膜硬さの向上効果が 一層好適に得られるようになり、総合的に耐摩耗性が一層向上するのである。 Since the two metal elements MX and ZQ are different from each other, they have excellent wear resistance compared to the case of containing the same metal element! can get. Also, MX alloy is used as the first target 48 to form the first coating 22 and ZQ alloy Since the second film is formed as the second target 52, the wear resistance is higher than when the first film 22 and the second film 24 are formed using a single metal of M, X, Z, and Q as the target. Is obtained. Furthermore, since the lamination period t of the first coating 22 and the second coating 24 is in the range of 0.2 nm to 100 nm, the coating hardness (abrasion resistance) of the thin film is obtained while enjoying the characteristics of both coatings 22 and 24. ) Can be stably obtained. That is, according to the hard laminated film 20 of the present example, the effect of improving the film hardness by alloying, thinning, and multilayering of two kinds of metal elements can be obtained more suitably, and comprehensively withstanding resistance. Abrasion is further improved.
[0047] また、本実施例では硬質積層被膜 20の総膜厚 Dが 0. 2 π!〜 10 mの範囲内と されているため、硬質積層被膜 20の剥離を抑制しつつ優れた耐摩耗性が得られる。  [0047] Further, in this example, the total film thickness D of the hard multilayer coating 20 is 0.2π! Since it is within the range of ˜10 m, excellent wear resistance can be obtained while suppressing the peeling of the hard laminated film 20.
[0048] また、図 3〜図 9における本発明品のうち図 7の試験品 Nol〜9を除く他の発明品は 、第 1被膜 22および第 2被膜 24の BCONの成分組成が互いに等しいため、被膜毎 に反応ガスを切り換える必要がなぐ図 2のアークイオンプレーティング装置 30を用 いることにより短時間で効率良く硬質積層被膜 20を形成することができる。  [0048] In addition, among the products of the present invention in Figs. 3 to 9, the other invention products excluding the test products No1 to 9 in Fig. 7 have the same BCON component composition in the first coating 22 and the second coating 24. By using the arc ion plating apparatus 30 of FIG. 2 that does not require switching of the reaction gas for each coating, the hard laminated coating 20 can be efficiently formed in a short time.
[0049] また、図 2のアークイオンプレーティング装置 30によれば、第 1回転テーブル 32を 一方向へ一定速度で連続回転させながら、第 1被膜 22および第 2被膜 24を交互に 連続的に積層できるため、短時間で効率良く硬質積層被膜 20を形成することができ る。特に、本実施例では、第 1回転テーブル 32の周囲に第 1ターゲット 48および第 2 ターゲット 52が 2個ずっ配設されており、第 1回転テーブル 32の 1回転で第 1被膜 22 および第 2被膜 24を 2周期積層できるため、一層高い効率が得られるとともに、各被 膜 22、 24の膜厚を薄くするために第 1回転テーブル 32の回転速度を速くする必要 力 ぐ高速回転ィ匕による振動等で被膜が損なわれる恐れがない。  In addition, according to the arc ion plating apparatus 30 of FIG. 2, the first coating 22 and the second coating 24 are alternately and continuously rotated while the first rotary table 32 is continuously rotated in one direction at a constant speed. Since it can be laminated, the hard laminated film 20 can be efficiently formed in a short time. In particular, in this embodiment, two first targets 48 and two second targets 52 are arranged around the first rotary table 32, and the first coating 22 and the second target 52 are rotated by one rotation of the first rotary table 32. The coating 24 can be laminated for two cycles, so it is possible to obtain higher efficiency, and it is necessary to increase the rotation speed of the first rotary table 32 in order to reduce the film thickness of each film 22, 24. There is no risk of damage to the coating due to vibration or the like.
[0050] また、第 2回転テーブル 34により工具母材 12を軸心と平行な中心線まわりに回転 駆動しつつ、第 1回転テーブル 32により第 1ターゲット 48および第 2ターゲット 52の 前を通過させるため、工具母材 12の外周表面に均質に硬質積層被膜 20が形成され るようになり、優れた被膜性能が安定して得られる。  [0050] Further, while the tool base material 12 is driven to rotate about a center line parallel to the axis by the second rotary table 34, the first target 48 and the second target 52 are passed by the first rotary table 32. Therefore, the hard laminated film 20 is uniformly formed on the outer peripheral surface of the tool base material 12, and excellent film performance can be stably obtained.
[0051] 以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一 実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態 様で実施することができる。 産業上の利用可能性 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, these are merely embodiments, and the present invention has been subjected to various modifications and improvements based on the knowledge of those skilled in the art. Can be implemented. Industrial applicability
本発明の硬質積層被膜は、 2種類の金属元素の合金化や薄膜化、多層化による被 膜硬さの向上効果が好適に得られるようになり、耐摩耗性が一層向上するため、回 転切削工具等の硬質被膜として好適に用!ヽられる。  The hard laminated film of the present invention can suitably obtain the effect of improving the film hardness by alloying, thinning, and multilayering of two kinds of metal elements, and the wear resistance is further improved. Suitable for use as a hard coating for cutting tools! Be beaten.

Claims

請求の範囲 The scope of the claims
[1] 組成が異なる 2種類の第 1被膜および第 2被膜が所定の部材の表面上に交互に多 数積層された耐摩耗性に優れた硬質積層被膜であって、  [1] A hard laminated film having excellent wear resistance, in which a plurality of first and second films having different compositions are alternately laminated on the surface of a predetermined member.
前記第 1被膜は、 MX(B C O N )〔但し、 Mおよび Xはそれぞれ元素の周期 a b c 1 a— b - c  The first film is MX (B C O N), where M and X are elemental periods a b c 1 a—b-c
律表の IVa族、 Va族、 Via族、 Al、 Si、および Yから選択される 2種類の異なる金属元 素、 a、 b、 cはそれぞれ原子比で、 0≤a≤0. 2、 0≤b≤0. 3、 0≤c≤0. 1の範囲内 〕にて構成され、 MX合金をターゲットとして PVD法により形成されている一方、 前記第 2被膜は、 ZQ (B C O N )〔但し、 Zおよび Qは何れも前記 M、 Xと異な d e l 1 - d - e - f  Two different metal elements selected from IVa group, Va group, Via group, Al, Si, and Y in the table, a, b, c are atomic ratios, 0≤a≤0.2, 0 ≤b≤0.3, 0≤c≤0.1) and formed by PVD method using MX alloy as a target, while the second coating is ZQ (BCON) (however, Z and Q are both different from M and X del 1-d-e-f
るとともにそれぞれ元素の周期律表の IVa族、 Va族、 Via族、 Al、 Si、および Yから選 択される 2種類の異なる金属元素、 d、 e、 fはそれぞれ原子比で、 0≤d≤0. 2、 0≤e ≤0. 3, 0≤f≤0. 1の範囲内〕にて構成され、 ZQ合金をターゲットとして PVD法によ り形成されており、  And two different metal elements selected from IVa group, Va group, Via group, Al, Si, and Y in the periodic table of the elements, d, e, and f, respectively, are atomic ratios, 0≤d ≤0.2, 0≤e ≤0.3, 0≤f≤0.1) and is formed by PVD method with ZQ alloy as the target.
且つ、該第 1被膜の膜厚と該第 2被膜の膜厚を合わせた積層周期 tは 0. 2nm〜10 Onmの範囲内である  In addition, the stacking period t of the thickness of the first coating and the thickness of the second coating is in the range of 0.2 nm to 10 Onm.
ことを特徴とする硬質積層被膜。  Hard laminate film characterized by the above.
[2] 前記第 1被膜および前記第 2被膜が前記積層周期 tで繰り返し積層された前記硬 質積層被膜の総膜厚 Dは 0. 2 m〜10 mの範囲内である [2] The total film thickness D of the hard laminated film in which the first film and the second film are repeatedly laminated at the lamination period t is in the range of 0.2 m to 10 m.
ことを特徴とする請求項 1に記載の硬質積層被膜。  The hard laminated film according to claim 1, wherein:
[3] 前記第 1被膜および前記第 2被膜における前記 BCONの成分組成は互いに等し い [3] The component composition of BCON in the first coating and the second coating is equal to each other
ことを特徴とする請求項 1または 2に記載の硬質積層被膜。  The hard laminated film according to claim 1 or 2, wherein:
[4] 請求項 1〜3の何れか 1項に記載の硬質積層被膜で表面が被覆されていることを特 徴とする硬質積層被膜被覆工具。 [4] A hard multilayer coating-coated tool characterized in that the surface is coated with the hard multilayer coating according to any one of claims 1 to 3.
[5] 請求項 3に記載の硬質積層被膜を PVD法により所定の部材に形成する被膜形成 方法であって、 [5] A film forming method for forming the hard laminated film according to claim 3 on a predetermined member by a PVD method,
前記処理容器内において、外周部に前記部材を保持して一中心線まわりに回転 駆動される回転テーブルと、  In the processing vessel, a rotary table that holds the member on the outer peripheral portion and is driven to rotate around one center line;
該回転テーブルの周囲に互いに周方向に離間して配設された前記 MX合金から 成る第 1ターゲットおよび前記 ZQ合金力も成る第 2ターゲットと、 From the MX alloy disposed circumferentially apart from each other around the rotary table A first target comprising and a second target comprising said ZQ alloy force;
前記 BCONの成分組成に応じて定められた所定の反応ガスを前記処理容器内に 供給する反応ガス供給装置と、  A reaction gas supply device for supplying a predetermined reaction gas determined according to the component composition of the BCON into the processing container;
を有する被膜形成装置を用いて、前記回転テーブルを前記一中心線まわりに一方 向へ連続回転させることにより、前記部材が前記第 1ターゲットおよび前記第 2ターゲ ットの前を交互に周期的に通過させられる一方、前記反応ガスを前記処理容器内に 供給するとともに、前記第 1ターゲットおよび前記第 2ターゲットからそれぞれ前記 M X合金および前記 ZQ合金を蒸発させることにより、該 MX合金および該 ZQ合金をそ れぞれ前記反応ガスと反応させ、前記部材が該第 1ターゲット前を通過する際には 該部材の表面に前記第 1被膜が形成され、該第 2ターゲット前を通過する際には該 部材の表面に前記第 2被膜が形成されることにより、該部材の表面に該第 1被膜と該 第 2被膜とを交互に連続的に積層する  And continuously rotating the rotary table in one direction around the one center line, so that the member alternately and periodically precedes the first target and the second target. While being allowed to pass through, the reaction gas is supplied into the processing vessel, and the MX alloy and the ZQ alloy are evaporated from the first target and the second target, respectively. The first film is formed on the surface of the member when the member reacts with the reaction gas, and the member passes in front of the first target, and the member passes when the member passes in front of the second target. By forming the second coating on the surface of the member, the first coating and the second coating are alternately and continuously laminated on the surface of the member.
ことを特徴とする被膜形成方法。  A film forming method characterized by the above.
前記第 1ターゲットは、前記回転テーブルの周囲に等角度間隔で複数配設されて いるとともに、前記第 2ターゲットは、該第 1ターゲットと同じ数だけ前記回転テーブル の周囲に等角度間隔で配設されており、該回転テーブルの 1回転で前記第 1被膜お よび前記第 2被膜を前記部材の表面に複数周期積層する  A plurality of the first targets are arranged at equal angular intervals around the rotary table, and the same number of the second targets as the first target are arranged at equal angular intervals around the rotary table. The first coating and the second coating are laminated on the surface of the member a plurality of periods by one rotation of the turntable.
ことを特徴とする請求項 5に記載の被膜形成方法。  The film forming method according to claim 5, wherein:
PCT/JP2006/321053 2006-10-23 2006-10-23 Hard laminated coating, tool covered with hard laminated coating, and method of forming coating WO2008050384A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/321053 WO2008050384A1 (en) 2006-10-23 2006-10-23 Hard laminated coating, tool covered with hard laminated coating, and method of forming coating
JP2008540815A JPWO2008050384A1 (en) 2006-10-23 2006-10-23 Hard laminate coating, hard laminate coating tool, and method for forming coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321053 WO2008050384A1 (en) 2006-10-23 2006-10-23 Hard laminated coating, tool covered with hard laminated coating, and method of forming coating

Publications (1)

Publication Number Publication Date
WO2008050384A1 true WO2008050384A1 (en) 2008-05-02

Family

ID=39324199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321053 WO2008050384A1 (en) 2006-10-23 2006-10-23 Hard laminated coating, tool covered with hard laminated coating, and method of forming coating

Country Status (2)

Country Link
JP (1) JPWO2008050384A1 (en)
WO (1) WO2008050384A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837478A (en) * 2009-03-17 2010-09-22 双叶电子工业株式会社 Cutting tool
JP2012512321A (en) * 2008-12-15 2012-05-31 ギューリング オッフェネ ハンデルスゲゼルシャフト Equipment for surface treatment and / or coating of substrate components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028804A (en) * 2000-07-13 2002-01-29 Hitachi Tool Engineering Ltd Multilayer film coated tool
JP2002337006A (en) * 2001-05-11 2002-11-26 Hitachi Tool Engineering Ltd Coated cutting tool
JP2003089004A (en) * 2001-07-13 2003-03-25 Hitachi Tool Engineering Ltd Coated machining tool
JP2006028600A (en) * 2004-07-16 2006-02-02 Kobe Steel Ltd Stacked film having excellent wear resistance and heat resistance
JP2006225708A (en) * 2005-02-17 2006-08-31 Hitachi Tool Engineering Ltd Wear resistant film, wear resistant film-coated cutting tool, and method for producing wear resistant film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JP3910373B2 (en) * 2001-03-13 2007-04-25 オーエスジー株式会社 Hard multilayer coating for rotary cutting tool and hard multilayer coating coated rotary cutting tool
JP3454428B2 (en) * 2001-05-11 2003-10-06 日立ツール株式会社 Wear-resistant film-coated tools
JP3934136B2 (en) * 2004-11-11 2007-06-20 日立ツール株式会社 Hard film coating member and coating method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028804A (en) * 2000-07-13 2002-01-29 Hitachi Tool Engineering Ltd Multilayer film coated tool
JP2002337006A (en) * 2001-05-11 2002-11-26 Hitachi Tool Engineering Ltd Coated cutting tool
JP2003089004A (en) * 2001-07-13 2003-03-25 Hitachi Tool Engineering Ltd Coated machining tool
JP2006028600A (en) * 2004-07-16 2006-02-02 Kobe Steel Ltd Stacked film having excellent wear resistance and heat resistance
JP2006225708A (en) * 2005-02-17 2006-08-31 Hitachi Tool Engineering Ltd Wear resistant film, wear resistant film-coated cutting tool, and method for producing wear resistant film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512321A (en) * 2008-12-15 2012-05-31 ギューリング オッフェネ ハンデルスゲゼルシャフト Equipment for surface treatment and / or coating of substrate components
CN101837478A (en) * 2009-03-17 2010-09-22 双叶电子工业株式会社 Cutting tool

Also Published As

Publication number Publication date
JPWO2008050384A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
KR101150145B1 (en) Surface-coated cutting tool
WO2007029290A1 (en) Hard laminated coating and hard laminated coating provided tool
JP5093530B2 (en) Surface coated cutting tool
JP2006336032A (en) Hard laminated film, and hard laminated film coating tool
JPWO2010150411A1 (en) Hard coating and hard coating tool
WO2018078731A1 (en) Hard coating and member coated with hard coating
JP2010188461A (en) Surface coated cutting tool
KR101544661B1 (en) Hard laminated coating
JP5180221B2 (en) Hard laminate coating, hard laminate coating tool, and method for forming coating
WO2008050384A1 (en) Hard laminated coating, tool covered with hard laminated coating, and method of forming coating
JP2022540076A (en) Saw blades or other cutting tools containing coatings
KR101544660B1 (en) Hard laminated coating
JP5376375B2 (en) Surface coated cutting tool
JP5610219B2 (en) Hard coating for cutting tool and hard coating coated cutting tool
KR101727420B1 (en) Laminated coating film having excellent abrasion resistance
JP5734318B2 (en) Hard laminate coating
JP5376374B2 (en) Surface coated cutting tool
JP5681094B2 (en) Laminated hard coating
JP5945950B2 (en) Hard film coated cutting tool
JP5194306B2 (en) Surface coated cutting tool
JP5050277B2 (en) Surface coated cutting tool
JP6099225B2 (en) Hard lubricant coating and hard lubricant coating tool
JP6168540B2 (en) Hard lubricant coating and hard lubricant coating tool
JP2017043813A (en) Hard film and hard film-coated member

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06812122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008540815

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812122

Country of ref document: EP

Kind code of ref document: A1