JP2008087113A - Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy - Google Patents

Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy Download PDF

Info

Publication number
JP2008087113A
JP2008087113A JP2006271298A JP2006271298A JP2008087113A JP 2008087113 A JP2008087113 A JP 2008087113A JP 2006271298 A JP2006271298 A JP 2006271298A JP 2006271298 A JP2006271298 A JP 2006271298A JP 2008087113 A JP2008087113 A JP 2008087113A
Authority
JP
Japan
Prior art keywords
component
content point
highest
tool
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006271298A
Other languages
Japanese (ja)
Inventor
Tsutomu Ogami
強 大上
Kazunori Sato
和則 佐藤
Satoyuki Masuno
智行 益野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006271298A priority Critical patent/JP2008087113A/en
Publication of JP2008087113A publication Critical patent/JP2008087113A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy. <P>SOLUTION: The surface coated cutting tool has an average layer thickness of 1 to 8 μm on a surface of a tool base body made from tungsten carbide base cemented carbide or titanium carbonitride base cermet, and is coated with a composition changing (Al, Cr, Ti, Si, B) N layer wherein the Al-Ti-Si maximum containing points and the B maximum containing points alternately and repetitively exist at predetermined intervals. The content of Al, Cr, Ti, Si, and B at the Al-Ti-Si maximum containing point is respectively 0.40-0.60, 0.20-0.40, 0.05-0.20, 0.01-0.10, and 0.01-0.10. The content of Al, Cr, Ti, Si, and B at the B maximum containing point is respectively 0.05-0.20, 0.25-0.45, 0.01-0.07, 0.001 to 0.03, and 0.40-0.55. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、Ti基合金、Ni基合金、Co基合金等の耐熱合金の切削加工を、高い発熱を伴い、かつ、切刃に対する負荷が大きい高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention provides a hard coating even when heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys are cut under high-speed heavy cutting conditions with high heat generation and a large load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and wear resistance.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

被覆工具の一つとして、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、AlとCrとTiとSiを主成分とする金属成分と、B、N、C、Oから選択される少なくとも1種以上の元素からなる硬質被覆層を物理蒸着してなる被覆工具が知られており、そして、前記被覆工具の硬質被覆層は、すぐれた高温硬さ、耐熱性および高温強度を有し、通常の条件下で、各種の一般鋼や普通鋳鉄などの切削に用いた場合には、すぐれた切削性能を発揮することが知られている。   As one of the coated tools, Al, Cr, Ti and Si are formed on the surface of a tool base made of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet. There is known a coating tool formed by physical vapor deposition of a hard coating layer composed of a metal component mainly composed of B and N, C, and O, and at least one element selected from B, N, C, and O. The hard coating layer has excellent high-temperature hardness, heat resistance and high-temperature strength, and exhibits excellent cutting performance when used for cutting various general steels and ordinary cast iron under normal conditions. It is known to do.

さらに、上記の被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば550℃の温度に加熱した状態で、窒素ガスを導入して1.0Paの反応雰囲気とし、工具基体に−120Vのバイアス電圧を印加した条件で、アノード電極と所定組成を有するAlとCrとTiとSiとBの合金(以下、Al−Cr−Ti−Si−B合金で示す)がセットされたカソード電極(蒸発源)との間にアーク放電を発生させ、前記工具基体の表面に、上記(Al,Cr,Ti,Si,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開2004−106183号公報
Further, the above-mentioned coated tool is loaded with the above-mentioned tool base in an arc ion plating apparatus which is one type of physical vapor deposition apparatus shown schematically in FIG. 2, for example, and the inside of the apparatus is heated at, for example, 550 ° C. In a state of heating to a temperature of 10 ° C., nitrogen gas was introduced to form a reaction atmosphere of 1.0 Pa, and a bias voltage of −120 V was applied to the tool base, and the anode electrode, Al, Cr, Ti, and Si having a predetermined composition were used. And a cathode electrode (evaporation source) on which an alloy of B (hereinafter referred to as an Al—Cr—Ti—Si—B alloy) is set, an arc discharge is generated, and the above (Al , Cr, Ti, Si, B) It is also known to be manufactured by vapor-depositing a hard coating layer consisting of N layers.
JP 2004-106183 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高速化する傾向にあるが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これを特に高い発熱を伴うとともに切刃に対する負荷が大きいTi基合金、Ni基合金、Co基合金等の耐熱合金の高速重切削に用いた場合には、硬質被覆層は切削時に発生する高熱によって過熱され、潤滑性が不足したり、また溶着を生じたりするために、チッピングの発生、摩耗進行により、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and along with this, cutting processing tends to be further accelerated. In a coated tool, there is no problem when this is used for cutting under normal conditions, but this is accompanied by a particularly high heat generation and a large load on the cutting blade, such as a Ti-based alloy, Ni-based alloy, Co-based alloy, etc. When used for high-speed heavy cutting of heat-resistant alloys, the hard coating layer is overheated by the high heat generated during cutting, resulting in insufficient lubricity and welding, resulting in chipping and increased wear. At present, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に高速重切削加工で、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(イ)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング(AIP)装置とCr−B蒸着用マグネトロンスパッタリング(SP)装置を併設した蒸着装置を用い、装置中央部に工具基体(例えば、超硬基体)装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に、所定組成のAl−Cr−Ti−Si合金からなるカソード電極(蒸発源)を備えた(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング装置、他方側に、CrB焼結体からなるターゲット(蒸発源)を備えたCr−B蒸着用マグネトロンスパッタリング装置を対向配設し、また工具基体装着用回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素とアルゴンの混合ガス雰囲気として、前記回転テーブルを回転させると共に、形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、前記の(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング装置のAl−Cr−Ti−Si合金からなるカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、それと同時に、対向配設したCr−B蒸着用マグネトロンスパッタリング装置のCrB焼結体からなるターゲット(蒸発源)にパルス電圧を印加しCrBをスパッタすると、アークイオンプレーティンとスパッタリングによってAlとCrとTiとSiとBの窒化物層(以下、(Al,Cr,Ti,Si,B)N層で示す)が蒸着形成され、そして、上記窒化物層は、回転テーブル上に配置された工具基体が、上記一方側のAl−Cr−Ti−Si合金のカソード電極(蒸発源)に最も接近した位置で、相対的に、蒸着層中のAl、Ti、Siの含有割合が最大となって、Bの含有割合が最小となる領域(以下、Al−Ti−Si最高含有点という)が形成され、また、前記工具基体が、上記他方側のCrB焼結体ターゲット(蒸発源)に最も接近した位置で、相対的に、蒸着層中のBの含有割合が最大となって、Al、Ti、Siの含有割合が最小となる領域(以下、B最高含有点という)が形成され、上記回転テーブルの回転によって層中には層厚方向に沿って、前記Al−Ti−Si最高含有点とB最高含有点が回転テーブルの回転速度に応じた所定間隔をもって交互に繰り返し現れると共に、前記Al−Ti−Si最高含有点から前記B最高含有点、前記B最高含有点から前記Al−Ti−Si最高含有点へ、Al、Ti、Si、Bの含有量がそれぞれ連続的に変化する成分濃度分布構造の蒸着層(以下、組成変化(Al,Cr,Ti,Si,B)N層という)が形成されること。
In view of the above, the present inventors have developed the above-mentioned conventional coated tool in order to develop a coated tool that exhibits excellent chipping resistance and wear resistance, particularly in high-speed heavy cutting, with a hard coating layer. As a result of conducting research with a focus on
(A) For example, an (Al, Cr, Ti, Si) N deposition arc ion plating (AIP) apparatus and a Cr having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. -B Using a vapor deposition apparatus equipped with a magnetron sputtering (SP) apparatus for vapor deposition, a rotary table for mounting a tool substrate (for example, a carbide substrate) is provided in the center of the device, and a predetermined value is provided on one side of the rotary table. Arc ion plating apparatus for vapor deposition of (Al, Cr, Ti, Si) N having a cathode electrode (evaporation source) made of an Al—Cr—Ti—Si alloy having a composition, and a CrB 2 sintered body on the other side. A magnetron sputtering apparatus for Cr-B vapor deposition equipped with a target (evaporation source) is disposed oppositely, and on a rotary table for mounting a tool base, a position spaced apart from the central axis by a predetermined distance in the radial direction. A plurality of tool bases are mounted in a ring shape in the apparatus, and in this state, the atmosphere in the apparatus is changed to a mixed gas atmosphere of nitrogen and argon, the rotary table is rotated, and the layer thickness of the hard coating layer to be formed is made uniform. A cathode electrode (evaporation source) and an anode electrode made of an Al—Cr—Ti—Si alloy of the above-described arc ion plating apparatus for (Al, Cr, Ti, Si) N vapor deposition while rotating the tool base itself for the purpose. At the same time, an arc discharge is generated, and at the same time, when a pulse voltage is applied to a target (evaporation source) made of a CrB 2 sintered body of a Cr-B vapor deposition magnetron sputtering apparatus arranged oppositely to sputter CrB 2 , Nitride layers of Al, Cr, Ti, Si, and B by ion plating and sputtering (hereinafter referred to as (Al, Cr, Ti, Si, B)) And the nitride layer is the closest to the cathode electrode (evaporation source) of the Al-Cr-Ti-Si alloy on the one side. Thus, a region where the content ratio of Al, Ti, Si in the vapor deposition layer is maximized and the content ratio of B is minimized (hereinafter referred to as the Al-Ti-Si highest content point) is formed. In addition, at the position where the tool base is closest to the CrB 2 sintered body target (evaporation source) on the other side, the content ratio of B in the vapor deposition layer is relatively maximum, Al, A region where the content ratio of Ti and Si is minimum (hereinafter referred to as B highest content point) is formed, and the Al-Ti-Si highest content point is formed in the layer along the layer thickness direction by rotation of the rotary table. And B maximum content point corresponds to the rotation speed of the rotary table. And alternately appear at predetermined intervals, from the Al-Ti-Si highest content point to the B highest content point, from the B highest content point to the Al-Ti-Si highest content point, Al, Ti, Si, B A vapor deposition layer having a component concentration distribution structure (hereinafter referred to as composition change (Al, Cr, Ti, Si, B) N layer) in which the content of each of them continuously changes is formed.

(ロ)上記組成変化(Al,Cr,Ti,Si,B)N層からなる硬質被覆層において、そのAl成分は高温硬さ、耐熱性および耐酸化性を向上させ、同Cr成分およびTi成分は高温強度を向上させ、同Si成分は一段と耐熱性を向上させ、また、B成分は被削材との反応性を低下させると同時に潤滑性を高める作用があり、したがって相対的にAl,Ti,Siの含有割合が高いAl−Ti−Si最高含有点では、上記組成変化(Al,Cr,Ti,Si,B)N層からなる硬質被覆層はすぐれた高温硬さ、耐熱性、耐酸化性および高温強度を有するが、その反面、被削材との反応性が高くまた潤滑性も不十分であるために、耐熱合金の高速重切削条件下では溶着、チッピング、偏摩耗を生じやすいことから、上記組成変化(Al,Cr,Ti,Si,B)N層のAl−Ti−Si最高含有点における潤滑性、非反応性の不足を補う目的で、すぐれた潤滑性、非反応性を備えたB最高含有点を厚さ方向に交互に介在させることによって、上記組成変化(Al,Cr,Ti,Si,B)N層からなる硬質被覆層全体として、すぐれた高温硬さ、耐熱性、耐酸化性および高温強度とともに、すぐれた潤滑性および非反応性を具備するようになり、その結果として、高速重条件下で耐熱合金の切削加工を行ってもチッピング、溶着、偏摩耗等を生じることなくすぐれた耐摩耗性を発揮するようになること。
以上(イ)、(ロ)に示される研究結果を得たのである。
(B) Composition change (Al, Cr, Ti, Si, B) In a hard coating layer comprising an N layer, the Al component improves high-temperature hardness, heat resistance and oxidation resistance, and the Cr component and Ti component Improves the high-temperature strength, the Si component further improves the heat resistance, and the B component has the effect of lowering the reactivity with the work material and at the same time improving the lubricity, and therefore relatively Al, Ti. In the Al-Ti-Si highest content point where the content ratio of Si is high, the hard coating layer composed of the above composition change (Al, Cr, Ti, Si, B) N layer has excellent high temperature hardness, heat resistance, oxidation resistance However, because of its high reactivity with the work material and insufficient lubricity, it tends to cause welding, chipping, and uneven wear under high-speed heavy cutting conditions of heat-resistant alloys. From the above composition change (Al, Cr Ti, Si, B) In order to compensate for the lack of lubricity and non-reactivity at the Al-Ti-Si highest content point of the N layer, the B highest content point with excellent lubricity and non-reactivity is in the thickness direction. As a whole hard coating layer composed of the above-mentioned composition change (Al, Cr, Ti, Si, B) N layer, by interposing alternately, it has excellent high temperature hardness, heat resistance, oxidation resistance and high temperature strength. As a result, it has excellent wear resistance without causing chipping, welding, partial wear, etc. even when cutting heat-resistant alloys under high-speed heavy conditions. To come to do.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr−Ti−Si合金を、また、他方にターゲットのCrB焼結材料を設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr−Ti−Si合金カソード電極側でのアークイオンプレーティングと、CrB焼結材料ターゲット側でのスパッタリングにより、工具基体表面にAlとCrとTiとSiとBの窒化物層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr−Ti−Si合金カソード電極近傍で形成されるAl−Ti−Si最高含有点と前記CrB焼結材料ターゲット近傍で形成されるB最高含有点とが0.005〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Ti−Si最高含有点から前記B最高含有点、前記B最高含有点から前記Al−Ti−Si最高含有点へと、Al、Ti、Si、Bの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Ti−Si合金カソード電極近傍で形成される前記Al−Ti−Si最高含有点におけるAl成分、Cr成分、Ti成分、Si成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.40〜0.60、Yは0.20〜0.40、Zは0.05〜0.20、Qは0.01〜0.10、Rは0.01〜0.10で、かつ、X+Y+Z+Q+R=1を満足し、
(d)前記CrB焼結材料ターゲット近傍で形成される前記B最高含有点におけるAl成分、Cr成分、Ti成分、Si成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.05〜0.20、Yは0.25〜0.45、Zは0.01〜0.07、Qは0.001〜0.03、Rは0.40〜0.55で、かつ、X+Y+Z+Q+R=1を満足する組成変化(Al,Cr,Ti,Si,B)N層を蒸着形成してなる、
耐熱合金の高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する被覆工具(表面被覆切削工具)に特徴を有するものである。
This invention was made based on the above research results,
Vapor deposition with a tungsten carbide based cemented carbide or titanium carbonitride based cermet, a cathode base electrode with Al-Cr-Ti-Si alloy on one side, and a target CrB 2 sintered material on the other side While being placed on the rotary table of the apparatus and rotating the tool base on the rotary table, arc ion plating on the Al—Cr—Ti—Si alloy cathode electrode side and sputtering on the CrB 2 sintered material target side In the surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Al, Cr, Ti, Si, and B is formed on the tool base surface by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and is formed in the vicinity of the Al—Cr—Ti—Si alloy cathode electrode along the thickness direction of the hard coating layer. The highest Si content point and the highest B content point formed in the vicinity of the CrB 2 sintered material target are alternately present at intervals of 0.005 to 0.1 μm,
(B) The content ratio of Al, Ti, Si, and B is continuous from the Al-Ti-Si highest content point to the B highest content point and from the B highest content point to the Al-Ti-Si highest content point. Has a component concentration distribution structure that changes periodically,
(C) Al component, Cr component, Ti component, Si component, and B component at the Al-Ti-Si highest content point formed in the vicinity of the Al-Cr-Ti-Si alloy cathode electrode, , Atomic ratio) is represented by X, Y, Z, Q, and R, respectively, X is 0.40 to 0.60, Y is 0.20 to 0.40, and Z is 0.05 to 0.00. 20, Q is 0.01 to 0.10, R is 0.01 to 0.10, and X + Y + Z + Q + R = 1 is satisfied,
(D) Al component, Cr component, Ti component, Si component, and B component at the B highest content point formed in the vicinity of the CrB 2 sintered material target, respectively, the content ratio (however, the atomic ratio) is X , Y, Z, Q, and R, X is 0.05 to 0.20, Y is 0.25 to 0.45, Z is 0.01 to 0.07 , and Q is 0.001 to 0.001. 0.03, R is 0.40 to 0.55, and a composition change (Al, Cr, Ti, Si, B) N layer satisfying X + Y + Z + Q + R = 1 is formed by vapor deposition.
It is characterized by a coated tool (surface coated cutting tool) that exhibits excellent chipping resistance and wear resistance in a high-speed heavy cutting of a heat-resistant alloy with a hard coating layer.

つぎに、この発明の被覆工具の硬質被覆層を構成する組成変化(Al,Cr,Ti,Si,B)N層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the composition change (Al, Cr, Ti, Si, B) N layer constituting the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)Al−Ti−Si最高含有点のAl、Ti、Si含有割合
組成変化(Al,Cr,Ti,Si,B)N層におけるAlは、高温硬さ、耐熱性および耐酸化性を向上させ、同Cr成分およびTi成分は高温強度を向上させ、同Si成分は一段と耐熱性を向上させ、また、B成分は被削材との反応性を低下させると同時に潤滑性を高める作用がある。したがって相対的にAl,Ti、Si成分の含有割合が高いAl−Ti−Si最高含有点ではすぐれた高温硬さ、高温強度、耐熱性、耐酸化性を備えるが、Alの含有割合(X値)が0.40未満の場合には、硬質被覆層として最小限要求される高温硬さ、耐熱性、耐酸化性を維持することはできず、また、Tiの含有割合(Z値)が0.05未満では硬質被覆層の高温強度を確保することができず、さらにSiの含有割合(Q値)が0.01未満の場合には、硬質被覆層の耐熱性のより一段の向上を期待できない。一方、Alの含有割合(X値)が0.60を超えたり、Tiの含有割合(Z値)が0.20を超えたり、Siの含有割合(Q値)が0.10を越えたりしたような場合には、Crの含有割合(Y値)およびBの含有割合(R値)が少なくなりすぎて、硬質被覆層の反応性の低減および潤滑性の向上を図ることができなくなることから、Alの含有割合(X値)を0.40〜0.60、Tiの含有割合(Z値)を0.05〜0.20、Siの含有割合(Q値)を0.01〜0.10(いずれも、原子比)とそれぞれ定めた。
なお、組成変化(Al,Cr,Si,B)N層におけるCr成分は、アークイオンプレーティングとスパッタリングの双方で供給されるため、アークイオンプレーティングのカソード電極組成あるいはスパッタリング条件等によって影響を受けるものの、他の成分Al,Ti,Si,Bに比較すれば、層の厚み方向で含有割合の変化は少なく、しかも、Crは高温強度を向上させる成分であることから、組成変化(Al,Cr,Ti,Si,B)N層はその厚み方向全体にわたり、ほぼ均一にすぐれた高温強度を備えたものとなり、その結果として、耐チッピング性が非常に優れたものとなるが、Al−Ti−Si最高含有点におけるCr成分の含有割合(Y値)は、高温硬さ、耐熱性、耐酸化性を損なわずに所定の高温強度を保持するという点から、0.20≦Y≦0.40の範囲であることが必要であり、さらに、Al−Ti−Si最高含有点におけるB成分の含有割合(R値)は、耐熱合金の高速切削で要求される非反応性、潤滑性を保持するためには、0.01≦R≦0.10の範囲である必要があり、しかも、X、Y、Z、Q、Rは、X+Y+Z+Q+R=1を満たす数値である。
(A) Al, Ti, Si content ratio of Al-Ti-Si highest content point Al in composition change (Al, Cr, Ti, Si, B) N layer improves high temperature hardness, heat resistance and oxidation resistance The Cr component and the Ti component improve the high-temperature strength, the Si component further improves the heat resistance, and the B component reduces the reactivity with the work material and at the same time increases the lubricity. . Therefore, the Al-Ti-Si highest content point where the content ratio of Al, Ti and Si components is relatively high has excellent high temperature hardness, high temperature strength, heat resistance and oxidation resistance, but the Al content ratio (X value) ) Is less than 0.40, the minimum required high-temperature hardness, heat resistance and oxidation resistance for the hard coating layer cannot be maintained, and the Ti content (Z value) is 0. If it is less than .05, the high temperature strength of the hard coating layer cannot be secured, and if the Si content ratio (Q value) is less than 0.01 , further improvement in the heat resistance of the hard coating layer is expected. Can not. On the other hand, the Al content ratio (X value) exceeded 0.60, the Ti content ratio (Z value) exceeded 0.20, or the Si content ratio (Q value) exceeded 0.10. In such a case, the Cr content ratio (Y value) and the B content ratio (R value) become too small, and it becomes impossible to reduce the reactivity and improve the lubricity of the hard coating layer. , The Al content ratio (X value) is 0.40 to 0.60, the Ti content ratio (Z value) is 0.05 to 0.20, and the Si content ratio (Q value) is 0.01 to 0.00. 10 (both are atomic ratios).
Since the Cr component in the composition change (Al, Cr, Si, B) N layer is supplied by both arc ion plating and sputtering, it is affected by the cathode electrode composition of the arc ion plating or sputtering conditions. However, compared with the other components Al, Ti, Si, B, the change in the content ratio in the thickness direction of the layer is small, and since Cr is a component that improves the high temperature strength, the composition change (Al, Cr , Ti, Si, B) N layer has a substantially uniform high temperature strength throughout its thickness direction, and as a result, the chipping resistance is very excellent. The content ratio (Y value) of the Cr component at the Si highest content point maintains a predetermined high temperature strength without impairing the high temperature hardness, heat resistance, and oxidation resistance. From the point, it is necessary to be in the range of 0.20 ≦ Y ≦ 0.40, and the content ratio (R value) of the B component at the Al—Ti—Si highest content point is determined by high-speed cutting of the heat-resistant alloy. In order to maintain the required non-reactivity and lubricity, it is necessary to be in the range of 0.01 ≦ R ≦ 0.10, and X, Y, Z, Q, and R are X + Y + Z + Q + R = 1. It is a numerical value that satisfies.

(b)B最高含有点のB含有割合
硬質被覆層のB最高含有点において、組成変化(Al,Cr,Ti,Si,B)N層は一段と優れた高温強度とすぐれた非反応性、潤滑性を備えるが、硬質被覆層は、耐熱合金の高速切削に耐えられるに足る最低限の高温硬さ、耐熱性、耐酸化性、高温強度を備える必要があることから、B最高含有点におけるCr含有割合(Y値)およびB含有割合(R値)を、Al,Cr,Ti,Si,Bの合量に占める割合(原子比)で、それぞれ、0.25〜0.45、0.40〜0.55と定めた。
つまり、Cr含有割合(Y値)およびB含有割合(R値)が、それぞれ0.45および0.55を超えると、(Al,Cr,Ti,Si,B)N層中のCr含有割合、B含有割合が増大する反面、Al、Ti、Si成分の含有量が減少し、その結果、高温硬さ、耐熱性、耐酸化性が不十分となり、耐摩耗性が低下し、一方、Cr含有割合(Y値)、B含有割合(R値)が、それぞれ0.25未満および0.45未満になると、(Al,Cr,Ti,Si,B)N層中のBの含有割合が少なくなり過ぎ、反応性の低減作用および潤滑性改善効果が期待できなくなり、また、Cr含有割合の減少により高温強度の向上も望めなくなることから、B最高含有点におけるCrの含有割合(Y値)およびBの含有割合(R値)を、それぞれ、0.25〜0.45、0.40〜0.55(いずれも、原子比)に定めた。
なお、B最高含有点におけるAl成分の含有割合(X値)、Ti成分の含有割合(Z値)、Si成分の含有割合(Q値)は、耐熱合金の高速切削で最低限必要とされる高温硬さ、耐熱性、耐酸化性および高温強度を確保するという点から、0.05≦X≦0.20、0.01≦Z≦0.07、0.001≦Q≦0.03の範囲であることが必要であり、かつ、X、Y、Z、Q、Rは、X+Y+Z+Q+R=1を満たす数値である。
(B) B content ratio at the highest B content point At the highest B content point of the hard coating layer, the composition change (Al, Cr, Ti, Si, B) N layer has much higher temperature strength and better non-reactivity and lubrication. However, the hard coating layer must have the minimum high-temperature hardness, heat resistance, oxidation resistance, and high-temperature strength sufficient to withstand high-speed cutting of heat-resistant alloys. The content ratio (Y value) and the B content ratio (R value) are ratios (atomic ratio) in the total amount of Al, Cr, Ti, Si, and B, and are 0.25 to 0.45 and 0.40, respectively. It was set to -0.55.
That is, when the Cr content ratio (Y value) and the B content ratio (R value) exceed 0.45 and 0.55, respectively, the (Al, Cr, Ti, Si, B) Cr content ratio in the N layer, While the B content ratio increases, the content of Al, Ti, and Si components decreases, resulting in insufficient high-temperature hardness, heat resistance, and oxidation resistance, reducing wear resistance, while containing Cr. When the ratio (Y value) and the B content ratio (R value) are less than 0.25 and less than 0.45, respectively, the content ratio of B in the (Al, Cr, Ti, Si, B) N layer decreases. Therefore, the reactivity reduction effect and lubricity improvement effect can no longer be expected, and the improvement of the high-temperature strength cannot be expected due to the decrease in the Cr content rate, so the Cr content rate (Y value) and B Content ratios (R values) of 0.25 to 0.25 respectively. .45,0.40~0.55 (all atomic ratio) was defined.
The Al component content ratio (X value), Ti component content ratio (Z value), and Si component content ratio (Q value) at the highest B content point are at least required for high-speed cutting of heat-resistant alloys. From the viewpoint of ensuring high temperature hardness, heat resistance, oxidation resistance and high temperature strength, 0.05 ≦ X ≦ 0.20, 0.01 ≦ Z ≦ 0.07 , 0.001 ≦ Q ≦ 0.03 It is necessary to be in the range, and X, Y, Z, Q, and R are numerical values that satisfy X + Y + Z + Q + R = 1.

(c)Al−Ti−Si最高含有点とB最高含有点間の間隔
この発明の硬質被覆層は、その層厚方向に亘って、窒化物を構成する成分の濃度が、Al−Ti−Si最高含有点からB最高含有点へと、また、B最高含有点からAl−Ti−Si最高含有点へと連続的に変化するものであるため、例えば、成分濃度が急激に不連続な変化をする複数層の積層構造からなる硬質被覆層に比べると、複数層間での剥離等の恐れは無く硬質被覆層自体の密着強度・接合強度は非常にすぐれたものである。しかし、Al−Ti−Si最高含有点とB最高含有点間の間隔が0.005μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温硬さ、高温強度、耐熱性、耐酸化性、非反応性および潤滑性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちB最高含有点であれば高温硬さ、高温強度、耐酸化性および耐熱性の不足、また、Al−Ti−Si最高含有点であれば非反応性および潤滑性の不足が層内に局部的に現れ、これが原因で摩耗進行が促進されるようになることから、その間隔を0.005〜0.1μmと定めた。
なお、Al−Ti−Si最高含有点とB最高含有点間の間隔は、(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング(AIP)装置とCr−B蒸着用マグネトロンスパッタリング(SP)装置を併設した蒸着装置を用い、アークイオンプレーティングとスパッタリングを同時に行って蒸着膜を形成する際に、例えば、工具基体を装着した回転テーブルの回転速度を制御することによって調整することができるので、回転テーブルの回転速度を適宜に設定することにより、Al−Ti−Si最高含有点とB最高含有点間の間隔が上記数値範囲内の所望の値となる組成変化(Al,Cr,Ti,Si,B)N層を容易に形成することができる。
(C) Spacing between Al-Ti-Si highest content point and B highest content point In the hard coating layer of the present invention, the concentration of the component constituting the nitride is Al-Ti-Si across the layer thickness direction. Since the maximum content point changes continuously from the highest B content point and from the highest B content point to the highest Al-Ti-Si content point, for example, the concentration of the component changes rapidly and discontinuously. Compared to a hard coating layer having a multilayer structure, the adhesion strength and bonding strength of the hard coating layer itself are very good without fear of peeling between the plurality of layers. However, if the distance between the Al-Ti-Si highest content point and the B highest content point is less than 0.005 μm, it is difficult to clearly form each point with the above composition. High-temperature hardness, high-temperature strength, heat resistance, oxidation resistance, non-reactivity and lubricity cannot be ensured, and when the distance exceeds 0.1 μm, the disadvantages of each point, that is, the highest B content point If it is, high-temperature hardness, high-temperature strength, oxidation resistance and insufficient heat resistance, and if it is the highest Al-Ti-Si content point, non-reactivity and insufficient lubricity will appear locally in the layer. Since the progress of wear is promoted due to the cause, the interval is determined to be 0.005 to 0.1 μm.
Note that the distance between the highest Al-Ti-Si content point and the highest B content point is as follows: (Al, Cr, Ti, Si) N deposition arc ion plating (AIP) apparatus and Cr-B deposition magnetron sputtering (SP ) When forming a vapor deposition film by performing arc ion plating and sputtering at the same time using a vapor deposition apparatus provided with an apparatus, for example, it can be adjusted by controlling the rotational speed of a rotary table equipped with a tool base. Therefore, by appropriately setting the rotation speed of the rotary table, the composition change (Al, Cr, Ti) in which the interval between the Al-Ti-Si highest content point and the B highest content point becomes a desired value within the above numerical range. , Si, B) N layer can be easily formed.

(d)平均層厚
その平均層厚が1μm未満では、硬質被覆層が所望の高温硬さ、高温強度、耐熱性、耐酸化性、非反応性および潤滑性を長期に亘って確保することができず、その結果、耐熱合金の高速重切削における耐摩耗性の向上を期待することができず、一方、その平均層厚が8μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜8μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 1 μm, the hard coating layer can ensure the desired high temperature hardness, high temperature strength, heat resistance, oxidation resistance, non-reactivity and lubricity over a long period of time. As a result, improvement in wear resistance in high-speed heavy cutting of a heat-resistant alloy cannot be expected. On the other hand, if the average layer thickness exceeds 8 μm, chipping tends to occur on the cutting edge. The average layer thickness was set to 1 to 8 μm.

この発明の被覆工具は、硬質被覆層を構成する組成変化(Al,Cr,Ti,Si,B)N層が、全体として、すぐれた高温硬さ、高温強度、耐熱性、耐酸化性を有するとともに、さらに、すぐれた非反応性と潤滑性をも具備することから、Ti基合金、Ni基合金、Co基合金等の耐熱合金を、特に大きな発熱を伴うとともに切刃に対する大きな負荷がかかる高速重切削条件で加工した場合であっても、すぐれた耐チッピング性を示すとともに、溶着・偏摩耗等を生じることなく長期に亘ってすぐれた耐摩耗性を発揮するものである。   In the coated tool of the present invention, the composition change (Al, Cr, Ti, Si, B) N layer constituting the hard coating layer as a whole has excellent high-temperature hardness, high-temperature strength, heat resistance, and oxidation resistance. In addition, because it also has excellent non-reactivity and lubricity, heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys are particularly high speeds that generate large heat and place a heavy load on the cutting blade. Even when processed under heavy cutting conditions, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time without causing welding or uneven wear.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−7を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-7 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−5を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-5 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

ついで、上記の工具基体A−1〜A−7およびB−1〜B−5のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置内の回転テーブル上に外周部に沿って装着し、一方側の前記アークイオンプレーティング装置のカソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−Ti−Si合金、他方側のマグネトロンスパッタリング装置のターゲット(蒸発源)としてCrB焼結体を装着し、またボンバード洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、
(b)ついで、装置内に反応ガスとして窒素ガスとアルゴンガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、
(c)また、それと同時に、CrB焼結体のターゲットにパルス電源を用いて3kWのパルス電力を印加してCrBをスパッタし、
(d)前記回転テーブル上で自転しながら回転する工具基体の表面に、表3,4に示される目標組成のAl−Ti−Si最高含有点とB最高含有点とが交互に、同じく表3、表4に示される目標間隔で繰り返し存在し、また、前記Al−Ti−Si最高含有点から前記B最高含有点、前記B最高含有点から前記Al−Ti−Si最高含有点へと、Al、Ti、Si、Bの含有割合が連続的に変化する成分濃度分布構造を有し、さらに、同じく表3、表4に示される目標層厚の組成変化(Al,Cr,Ti,Si,B)N層からなる硬質被覆層を蒸着することにより、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜12をそれぞれ製造した。
なお、上記実施例では、Al−Ti−Si最高含有点とB最高含有点との目標間隔は、回転テーブルの回転速度を0.5〜10rpmの範囲内で変化させることにより、所定の目標間隔値となるように調整した。
Next, each of the tool bases A-1 to A-7 and B -1 to B-5 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus and magnetron shown in FIG. Al-Cr- having various component compositions as a cathode electrode (evaporation source) of the arc ion plating apparatus on one side mounted on a rotary table in a vapor deposition apparatus provided with a sputtering apparatus. A Ti—Si alloy, CrB 2 sintered body is mounted as a target (evaporation source) of the magnetron sputtering apparatus on the other side, and a bombard cleaning metal Ti is also mounted. The apparatus is first evacuated to a vacuum of 0.5 Pa or less. The heater is heated to 500 ° C. with a heater, and then a −1000 V DC bar is applied to the tool base that rotates while rotating on the rotary table. An ias voltage is applied, and a current of 100 A is caused to flow between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, thereby cleaning the tool base surface with Ti bombardment,
(B) Next, nitrogen gas and argon gas are introduced as reaction gases into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table. Then, a current of 90 A is passed between the cathode electrode and the anode electrode to generate arc discharge,
(C) At the same time, a pulse power of 3 kW is applied to the target of the CrB 2 sintered body using a pulse power source to sputter CrB 2 ,
(D) Al-Ti-Si highest content points and B highest content points having the target compositions shown in Tables 3 and 4 are alternately formed on the surface of the tool base that rotates while rotating on the rotary table. , Repeatedly present at the target intervals shown in Table 4, and from the Al-Ti-Si highest content point to the B highest content point, from the B highest content point to the Al-Ti-Si highest content point, Al , Ti, Si, and B have a component concentration distribution structure in which the content ratio changes continuously, and the compositional change of the target layer thickness (Al, Cr, Ti, Si, B, also shown in Tables 3 and 4) ) The inventive coated tools 1 to 12 having a throwaway tip shape defined in ISO · CNMG120408 were produced by vapor-depositing a hard coating layer consisting of N layers.
In addition, in the said Example, the target space | interval of the Al-Ti-Si highest content point and B highest content point is a predetermined target space | interval by changing the rotational speed of a rotary table within the range of 0.5-10 rpm. It adjusted so that it might become a value.

また、比較の目的で、これら工具基体A−1〜A−7およびB−1〜B−5を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−Ti−Si−B合金を装着し、さらにボンバード洗浄用金属Tiも装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって前記工具基体A−1〜A−7およびB−1〜B−5のそれぞれの表面に、表5,6に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Ti,Si,B)N層からなる硬質被覆層を蒸着することにより、同じくスローアウエイチップ形状の従来被覆工具1〜12をそれぞれ製造した。 For comparison purposes, these tool bases A-1 to A-7 and B -1 to B-5 were ultrasonically cleaned in acetone and dried, and each of the normal arc ions shown in FIG. Inserted into the plating device, as the cathode electrode (evaporation source), Al-Cr-Ti-Si-B alloy with various component compositions was mounted, and also bombard cleaning metal Ti was mounted. The inside of the apparatus was heated to 500 ° C. with a heater while evacuating and maintaining a vacuum of 0.5 Pa or less, and then a DC bias voltage of −1000 V was applied to the tool base, so that the metal Ti and anode electrode of the cathode electrode A current of 100 A is passed between them to generate an arc discharge, thereby cleaning the surface of the tool substrate with Ti bombardment, and then introducing nitrogen gas as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa. Both the lower the bias voltage applied to the tool substrate to -100 V, the cathode electrode and flowing a 90A current between the anode electrode to generate arc discharge, the have tool substrate A-1 to A-7 And B-1 to B-5 are composed of compositionally uniform (Al, Cr, Ti, Si, B) N layers having the target compositions and target layer thicknesses shown in Tables 5 and 6. Similarly, the conventional coated tools 1 to 12 having a throwaway tip shape were manufactured by depositing a hard coating layer, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜12および従来被覆チップ1〜12について、
被削材:Ni−19wt%Cr−18.5wt%Fe−5.2wt%Cd−5wt%Ta−3wt%Mo−0.9wt%Ti−0.5wt%Alの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 50 m/min.、
切り込み: 1.5 mm、
送り: 0.35 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのNi基合金の乾式高速断続高送り切削加工試験(通常の切削速度および送りは、それぞれ30m/min.、0.15mm/rev.、)、
被削材:Co−23wt%Cr−6wt%Mo−2wt%Ni−1wt%Fe−0.6wt%Si−0.4wt%Cの丸棒、
切削速度: 60 m/min.、
切り込み: 1.5 mm、
送り: 0.40 mm/rev.、
切削時間: 4 分、
の条件(切削条件B)でのCo基合金の乾式高速連続高送り切削加工試験(通常の切削速度および送りは、それぞれ40m/min.、0.2mm/rev.、)、
被削材:Ti−6wt%Al−4wt%Vの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 55 m/min.、
切り込み: 2.5 mm、
送り: 0.15 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)でのTi基合金の乾式高速断続高切り込み切削加工試験(通常の切削速度および切り込みは、それぞれ30m/min.、1.2mm、)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 12 and the conventional coated chips 1 to 12 are as follows.
Work Material: Ni-19wt% Cr-18.5wt% Fe-5.2wt% Cd-5wt% Ta-3wt% Mo-0.9wt% Ti-0.5wt% Al. Grooved round bar,
Cutting speed: 50 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes,
Ni-base alloy dry high-speed intermittent high-feed cutting test under the following conditions (cutting condition A) (normal cutting speed and feed are 30 m / min. And 0.15 mm / rev., Respectively),
Work material: Co-23wt% Cr-6wt% Mo-2wt% Ni-1wt% Fe-0.6wt% Si-0.4wt% C round bar,
Cutting speed: 60 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.40 mm / rev. ,
Cutting time: 4 minutes,
A dry high-speed continuous high-feed cutting test of a Co-based alloy under the following conditions (cutting condition B) (normal cutting speed and feed are 40 m / min. And 0.2 mm / rev., Respectively),
Work material: Ti-6wt% Al-4wt% V lengthwise equally spaced round bars with 4 vertical grooves,
Cutting speed: 55 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
The dry high-speed intermittent high-cutting cutting test of the Ti-based alloy under the above conditions (cutting condition C) (normal cutting speed and cutting are 30 m / min. And 1.2 mm, respectively). However, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.

Figure 2008087113
Figure 2008087113

Figure 2008087113
Figure 2008087113

Figure 2008087113
Figure 2008087113

Figure 2008087113
Figure 2008087113

Figure 2008087113
Figure 2008087113

Figure 2008087113
Figure 2008087113

Figure 2008087113
Figure 2008087113

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表8に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角45度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Te, 8 mm in diameter, 13 mm, and 26mm to form a three tool substrate forming round rod sintered body, the further three round bar sintered body of said at grinding, are shown in Table 8 In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 45 degrees Tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1、C−3、C−4、C−6〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl−Ti−Si最高含有点とB最高含有点とが交互に、同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al−Ti−Si最高含有点から前記B最高含有点、前記B最高含有点から前記Al−Ti−Si最高含有点へと、Al、Ti、Si、Bの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の組成変化(Al,Cr,Ti,Si,B)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜をそれぞれ製造した。 Next, the surfaces of these tool substrates (end mills) C-1, C-3, C-4, C-6 to C-8 are ultrasonically cleaned in acetone and dried, as shown in FIG. A maximum of Al-Ti-Si containing the target composition shown in Table 9 along the layer thickness direction was charged in a vapor deposition apparatus provided with an arc ion plating apparatus and a magnetron sputtering apparatus, under the same conditions as in Example 1 above. Points and B highest content points alternately and repeatedly at the target intervals shown in Table 9, and from the Al-Ti-Si highest content point to the B highest content point, from the B highest content point to the Al- It has a component concentration distribution structure in which the content ratio of Al, Ti, Si, B continuously changes to the Ti-Si highest content point, and the compositional change of the target layer thickness (Al, Cr) also shown in Table 9 , Ti, Si, B) From N layer The present coated end mills 1 to 6 as the present coated tool were produced by vapor deposition of the hard coating layer.

また、比較の目的で、上記の工具基体(エンドミル)C−1、C−3、C−4、C−6〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1、C−3、C−4、C−6〜C−8の表面に、表10に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Ti,Si,B)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆エンドミル1〜をそれぞれ製造した。 For comparison purposes, the surfaces of the tool bases (end mills) C-1, C-3, C-4, and C-6 to C-8 are ultrasonically cleaned in acetone and dried. A normal arc ion plating apparatus shown in FIG. 2 was charged, and under the same conditions as in Example 1, tool bases (end mills) C-1, C-3, C-4, C-6 to C- Conventionally coating is performed by depositing a hard coating layer composed of a compositionally uniform (Al, Cr, Ti, Si, B) N layer having the target composition and target layer thickness shown in Table 10 on the surface of 8. Conventional coated end mills 1 to 6 as tools were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜および従来被覆エンドミル1〜のうち、
本発明被覆エンドミル1〜3および従来被覆エンドミル1、2については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのCo−23wt%Cr−6wt%Mo−2wt%Ni−1wt%Fe−0.6wt%Si−0.4wt%Cの板材、
切削速度: 40 m/min.、
溝深さ(切り込み): 2.0 mm、
テーブル送り: 300 mm/分、
の条件でのCo基合金の乾式高速高切り込み溝切削加工試験(通常の切削速度および切り込みは、それぞれ25m/min.、0.5mm)、
本発明被覆エンドミル3、4および従来被覆エンドミル3、4については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6wt%Al−4wt%Vの板材、
切削速度: 55 m/min.、
溝深さ(切り込み): 3.5 mm、
テーブル送り: 400 mm/分、
の条件でのTi合金の乾式高速高切り込み溝切削加工試験(通常の切削速度および切り込みは、それぞれ30m/min.、1.0mm)、
本発明被覆エンドミル5、6および従来被覆エンドミル5、6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−19wt%Cr−18.5wt%Fe−5.2wt%Cd−5wt%Ta−3wt%Mo−0.9wt%Ti−0.5wt%Alの板材、
切削速度: 45 m/min.、
溝深さ(切り込み): 5.0 mm、
テーブル送り: 550 mm/分、
の条件でのNi基合金の乾式高速高送り溝切削加工試験(通常の切削速度および送りは、それぞれ20m/min.、80mm/分)、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1 to 6 and the conventional coated end mills 1 to 6 ,
For the coated end mills 1 to 3 and the conventional coated end mills 1 and 2 ,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm Co-23 wt% Cr-6 wt% Mo-2 wt% Ni-1 wt% Fe-0.6 wt% Si-0.4 wt% C plate material,
Cutting speed: 40 m / min. ,
Groove depth (cut): 2.0 mm,
Table feed: 300 mm / min,
Co-base alloy dry high-speed high-cut groove cutting test (normal cutting speed and cut are 25 m / min. And 0.5 mm, respectively),
About this invention coated end mills 3 and 4 and conventional coated end mills 3 and 4 ,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm Ti-6 wt% Al-4 wt% V plate,
Cutting speed: 55 m / min. ,
Groove depth (cut): 3.5 mm,
Table feed: 400 mm / min,
Ti alloy dry high-speed high-cut groove cutting test under normal conditions (normal cutting speed and cutting are 30 m / min. And 1.0 mm, respectively)
For the coated end mills 5 and 6 of the present invention and the conventional coated end mills 5 and 6 ,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm Ni-19 wt% Cr-18.5 wt% Fe-5.2 wt% Cd-5 wt% Ta-3 wt% Mo-0.9 wt% Ti-0. 5 wt% Al plate material,
Cutting speed: 45 m / min. ,
Groove depth (cut): 5.0 mm,
Table feed: 550 mm / min,
Ni-base alloy dry high-speed high-feed groove cutting test under normal conditions (normal cutting speed and feed are 20 m / min and 80 mm / min, respectively)
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2008087113
Figure 2008087113

Figure 2008087113
Figure 2008087113

Figure 2008087113
Figure 2008087113

上記の実施例2で製造した直径が8mm(工具基体C−1、C−2形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1、D−2)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1、D−2、D−4〜D−6、D−8をそれぞれ製造した。 Diameter produced in the above Example 2 is 8 mm (tool substrate C-1, for C-2 form), 13 mm (for tool substrate C-4~C-6 form), and 26 mm (tool substrate body C-8 form 3 types of round bar sintered bodies were used, and from these three round bar sintered bodies, the diameter x length of the groove forming portion was 4 mm x 13 mm (tool base D-1 , D-2), 8mm × 22mm ( tool substrate D-4~D-6), and dimensions of 16 mm × 45 mm (tool substrate body D-8), and both with a two-blade shape of the twist angle of 30 degrees WC base cemented carbide tool bases (drills) D-1 , D-2, D-4 to D-6, and D-8 were produced, respectively.

ついで、これらの工具基体(ドリル)D−1、D−2、D−4〜D−6、D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl−Ti−Si最高含有点とB最高含有点とが交互に、同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al−Ti−Si最高含有点から前記B最高含有点、前記B最高含有点から前記Al−Ti−Si最高含有点へと、Al、Si、Bの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の組成変化(Al,Cr,Ti,Si,B)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜をそれぞれ製造した。 Next, the cutting edges of these tool bases (drills) D-1 , D-2, D-4 to D-6, D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried. In the same manner as in Example 1 above, an Al ion having a target composition shown in Table 11 along the layer thickness direction was inserted into the vapor deposition apparatus provided with the arc ion plating apparatus and magnetron sputtering apparatus shown in FIG. -Ti-Si highest content point and B highest content point are alternately present at the target intervals shown in Table 11 again, and from the Al-Ti-Si highest content point, the B highest content point, the B highest content point It has a component concentration distribution structure in which the content ratio of Al, Si, and B changes continuously from the content point to the Al-Ti-Si maximum content point, and the compositional change of the target layer thickness shown in Table 11 is also shown in Table 11 (Al, Cr, Ti, S i, B) The present invention coated drills 1 to 6 as the present invention coated tools were produced by vapor-depositing a hard coating layer composed of an N layer.

また、比較の目的で、上記の工具基体(ドリル)D−1、D−2、D−4〜D−6、D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1、D−2、D−4〜D−6、D−8の表面に、表12に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Ti,Si,B)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆ドリル1〜をそれぞれ製造した。 For comparison purposes, honing is performed on the surfaces of the tool bases (drills) D-1 , D-2, D-4 to D-6, and D-8 , ultrasonic cleaning is performed in acetone, and drying is performed. In this state, the same arc ion plating apparatus as shown in FIG. 2 is inserted , and the tool bases (drills) D-1 , D-2, D-4 to D are used under the same conditions as in the first embodiment. A hard coating layer composed of a compositionally uniform (Al, Cr, Ti, Si, B) N layer having the target composition and target layer thickness shown in Table 12 is deposited on the surfaces of -6 and D-8. Thus, conventional coated drills 1 to 6 as conventional coated tools were produced, respectively.

つぎに、上記本発明被覆ドリル1〜および従来被覆ドリル1〜のうち、
本発明被覆ドリル1、2および従来被覆ドリル1、2については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6wt%Al−4wt%Vの板材、
切削速度: 30 m/min.、
送り: 0.20 mm/rev、
穴深さ: 8 mm、
の条件でのTi基合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、20m/min.、0.10mm/rev)、
本発明被覆ドリル3〜5および従来被覆ドリル3〜5については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−19wt%Cr−18.5wt%Fe−5.2wt%Cd−5wt%Ta−3wt%Mo−0.9wt%Ti−0.5wt%Alの板材、
切削速度: 40 m/min.、
送り: 0.30 mm/rev、
穴深さ: 16 mm、
の条件でのNi基合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、25m/min.、0.12mm/rev)、
本発明被覆ドリルおよび従来被覆ドリルについては、
被削材−平面寸法:100mm×250mm、厚さ:50mmのCo−23wt%Cr−6wt%Mo−2wt%Ni−1wt%Fe−0.6wt%Si−0.4wt%Cの板材、
切削速度: 50 m/min.、
送り: 0.40 mm/rev、
穴深さ: 23 mm、
の条件でのCo基合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.2mm/rev)、
をそれぞれ行い、
いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, among the above-mentioned present invention coated drills 1-6 and conventional coated drills 1-6 ,
About the present invention coated drills 1 and 2 and the conventional coated drills 1 and 2 ,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm Ti-6 wt% Al-4 wt% V plate,
Cutting speed: 30 m / min. ,
Feed: 0.20 mm / rev,
Hole depth: 8 mm,
Wet high-speed high-feed drilling test of Ti-based alloy under the conditions (normal cutting speed and feed are 20 m / min. And 0.10 mm / rev, respectively)
About this invention coated drill 3-5 and conventional coated drill 3-5 ,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm Ni-19 wt% Cr-18.5 wt% Fe-5.2 wt% Cd-5 wt% Ta-3 wt% Mo-0.9 wt% Ti-0. 5 wt% Al plate material,
Cutting speed: 40 m / min. ,
Feed: 0.30 mm / rev,
Hole depth: 16 mm,
Wet high-speed high-feed drilling test of Ni-based alloy under the conditions (normal cutting speed and feed are 25 m / min. And 0.12 mm / rev, respectively),
About this invention coated drill 6 and the conventional coated drill 6 ,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm Co-23 wt% Cr-6 wt% Mo-2 wt% Ni-1 wt% Fe-0.6 wt% Si-0.4 wt% C plate material,
Cutting speed: 50 m / min. ,
Feed: 0.40 mm / rev,
Hole depth: 23 mm,
Wet high-speed high-feed drilling test of Co-based alloy under the conditions (normal cutting speed and feed are 30 m / min. And 0.2 mm / rev, respectively)
Each
In any wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2008087113
Figure 2008087113

Figure 2008087113
Figure 2008087113

この結果得られた本発明被覆工具としての本発明被覆チップ1〜12、本発明被覆エンドミル1〜、および本発明被覆ドリル1〜の硬質被覆層を構成する組成変化(Al,Cr,Ti,Si,B)N層のAl−Ti−Si最高含有点およびB最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成のAl−Ti−Si最高含有点およびB最高含有点と実質的に同じ組成を示した。また、従来被覆工具としての従来被覆チップ1〜12、従来被覆エンドミル1〜、および従来被覆ドリル1〜の硬質被覆層を構成する組成的に均一な(Al,Cr,Ti,Si,B)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 The invention coating as a result the present invention coated tool obtained chips 1-12, the present invention coated end mills 1-6, and composition changes constituting the hard layer of the present invention coated drill 1-6 (Al, Cr, Ti , Si, B) The composition of the Al-Ti-Si highest content point and B highest content point of the N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope. The composition was substantially the same as the highest Ti-Si content point and the highest B content point. Moreover, the compositionally uniform (Al, Cr, Ti, Si, B) constituting the hard coating layers of the conventional coated tips 1 to 12 , the conventional coated end mills 1 to 6 , and the conventional coated drills 1 to 6 as conventional coated tools ) When the composition of the N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, it showed substantially the same composition as the target composition.

また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表7、9〜12に示される結果から、本発明被覆工具は、Ti基合金、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴いかつ負荷の大きな高速条件下での重切削加工に用いた場合であっても、硬質被覆層を構成する組成変化(Al,Cr,Ti,Si,B)N層が、全体として、すぐれた高温硬さ、高温強度、耐熱性、耐酸化性、さらに、すぐれた非反応性と潤滑性を備えていることによって、溶着、偏摩耗の発生がなく、長期に亘ってすぐれた耐チッピング性とすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が組成的に均一な(Al,Cr,Ti,Si,B)N層で構成された従来被覆工具においては、高速重切削加工で発生する高熱と切刃に加わる高負荷により、溶着・偏摩耗やチッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 7 and 9-12, the coated tool of the present invention is a heavy cutting under high-speed conditions accompanied by high heat generation of a heat-resistant alloy such as a Ti-base alloy, Ni-base alloy, and Co-base alloy and a large load Even if it is used for the above, the composition change (Al, Cr, Ti, Si, B) N layer constituting the hard coating layer as a whole has excellent high temperature hardness, high temperature strength, heat resistance, and oxidation resistance. In addition, by having excellent non-reactivity and lubricity, there is no occurrence of welding and uneven wear, while exhibiting excellent chipping resistance and excellent wear resistance over a long period of time, In a conventional coated tool with a hard coating layer composed of uniform (Al, Cr, Ti, Si, B) N layers, welding is performed due to the high heat generated by high-speed heavy cutting and the high load applied to the cutting edge.・ Partial wear and chipping occur, which is relatively short It is clear that through use life between.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴うTi基合金、Ni基合金、Co基合金等の耐熱合金の高速重切削加工に用いた場合でも、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is capable of high-speed heavy cutting of heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys with high heat generation as well as cutting of general steel and ordinary cast iron. Even when it is used for cutting, it exhibits excellent chipping resistance and wear resistance over a long period of time and exhibits excellent cutting performance. In addition, it can cope with the cost reduction sufficiently satisfactorily.

この発明の被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置の概略平面図と概略正面図である。It is the schematic plan view and schematic front view of the vapor deposition apparatus which provided together the arc ion plating apparatus and magnetron sputtering apparatus which were used for forming the hard coating layer which comprises the coating tool of this invention. 従来被覆工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the normal arc ion plating apparatus used in forming the hard coating layer which comprises a conventional coating tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr−Ti−Si合金を、また、他方にターゲットとしてCrB焼結材料を設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr−Ti−Si合金カソード電極側でのアークイオンプレーティングと、CrB焼結材料ターゲット側でのスパッタリングにより、工具基体表面にAlとCrとTiとSiとBの窒化物層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr−Ti−Si合金カソード電極近傍で形成されるAl−Ti−Si最高含有点と前記CrB焼結材料ターゲット近傍で形成されるB最高含有点とが0.005〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Ti−Si最高含有点から前記B最高含有点、前記B最高含有点から前記Al−Ti−Si最高含有点へと、Al、Ti、Si、Bの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Ti−Si合金カソード電極近傍で形成される前記Al−Ti−Si最高含有点におけるAl成分、Cr成分、Ti成分、Si成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.40〜0.60、Yは0.20〜0.40、Zは0.05〜0.20、Qは0.005〜0.10、Rは0.01〜0.10で、かつ、X+Y+Z+Q+R=1を満足し、
(d)前記CrB焼結材料ターゲット近傍で形成される前記B最高含有点におけるAl成分、Cr成分、Ti成分、Si成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.05〜0.20、Yは0.25〜0.45、Zは0.01〜0.10、Qは0.001〜0.03、Rは0.40〜0.55で、かつ、X+Y+Z+Q+R=1を満足する組成変化(Al,Cr,Ti,Si,B)N層を蒸着形成してなる、
耐熱合金の高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具。
Vapor deposition with a tungsten carbide based cemented carbide or titanium carbonitride based cermet on one side, an Al—Cr—Ti—Si alloy as a cathode electrode, and a CrB 2 sintered material as a target on the other side While being placed on the rotary table of the apparatus and rotating the tool base on the rotary table, arc ion plating on the Al—Cr—Ti—Si alloy cathode electrode side and sputtering on the CrB 2 sintered material target side In the surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Al, Cr, Ti, Si, and B is formed on the tool base surface by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and is formed in the vicinity of the Al—Cr—Ti—Si alloy cathode electrode along the thickness direction of the hard coating layer. The highest Si content point and the highest B content point formed in the vicinity of the CrB 2 sintered material target are alternately present at intervals of 0.005 to 0.1 μm,
(B) The content ratio of Al, Ti, Si, and B is continuous from the Al-Ti-Si highest content point to the B highest content point and from the B highest content point to the Al-Ti-Si highest content point. Has a component concentration distribution structure that changes periodically,
(C) Al component, Cr component, Ti component, Si component, and B component at the Al-Ti-Si highest content point formed in the vicinity of the Al-Cr-Ti-Si alloy cathode electrode, , Atomic ratio) is represented by X, Y, Z, Q, and R, respectively, X is 0.40 to 0.60, Y is 0.20 to 0.40, and Z is 0.05 to 0.00. 20, Q is 0.005 to 0.10, R is 0.01 to 0.10, and X + Y + Z + Q + R = 1 is satisfied,
(D) Al component, Cr component, Ti component, Si component, and B component at the B highest content point formed in the vicinity of the CrB 2 sintered material target, respectively, the content ratio (however, the atomic ratio) is X , Y, Z, Q, and R, X is 0.05 to 0.20, Y is 0.25 to 0.45, Z is 0.01 to 0.10, and Q is 0.001 to 0.001. 0.03, R is 0.40 to 0.55, and a composition change (Al, Cr, Ti, Si, B) N layer satisfying X + Y + Z + Q + R = 1 is formed by vapor deposition.
A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its high-speed heavy cutting of heat-resistant alloys.
JP2006271298A 2006-10-02 2006-10-02 Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy Withdrawn JP2008087113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271298A JP2008087113A (en) 2006-10-02 2006-10-02 Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271298A JP2008087113A (en) 2006-10-02 2006-10-02 Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy

Publications (1)

Publication Number Publication Date
JP2008087113A true JP2008087113A (en) 2008-04-17

Family

ID=39371797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271298A Withdrawn JP2008087113A (en) 2006-10-02 2006-10-02 Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy

Country Status (1)

Country Link
JP (1) JP2008087113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410727A (en) * 2020-11-11 2021-02-26 中国科学院合肥物质科学研究院 Novel WCrSiN gradient coating and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410727A (en) * 2020-11-11 2021-02-26 中国科学院合肥物质科学研究院 Novel WCrSiN gradient coating and preparation method thereof
CN112410727B (en) * 2020-11-11 2023-04-21 中国科学院合肥物质科学研究院 Novel WCrSiN gradient coating and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP4844880B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4844879B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2008173752A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP2008105106A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP2008049454A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008087113A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2008049455A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP4120490B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP2008173755A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4379912B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2006026881A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP2006051594A (en) Surface coated cemented carbide cutting tool having hard coating layer displaying excellent chipping resistance in high speed heavy cutting of heat resistant alloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105