WO2004108632A1 - Sintered part and the method for the production thereof - Google Patents

Sintered part and the method for the production thereof Download PDF

Info

Publication number
WO2004108632A1
WO2004108632A1 PCT/DE2004/000901 DE2004000901W WO2004108632A1 WO 2004108632 A1 WO2004108632 A1 WO 2004108632A1 DE 2004000901 W DE2004000901 W DE 2004000901W WO 2004108632 A1 WO2004108632 A1 WO 2004108632A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
sintered body
gas phase
sintering
activated gas
Prior art date
Application number
PCT/DE2004/000901
Other languages
German (de)
French (fr)
Inventor
Walter Lengauer
Klaus Dreyer
Klaus RÖDIGER
Original Assignee
Kennametal Widia Produktions Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Widia Produktions Gmbh & Co. Kg filed Critical Kennametal Widia Produktions Gmbh & Co. Kg
Priority to EP04730198A priority Critical patent/EP1625102A1/en
Priority to US10/557,885 priority patent/US20060280639A1/en
Priority to JP2006529587A priority patent/JP2007511665A/en
Publication of WO2004108632A1 publication Critical patent/WO2004108632A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a sintered body consisting of a hard metal, in particular a hard metal based on WC with Co, Ni and / or Fe binder proportions, or a cermet, in particular based on a (Ti, W) (C, N) or (Ti, Mo) (C, N) with binder components composed of Co, Ni and / or Fe.
  • the invention further relates to a method for producing such a sintered body.
  • Sintered bodies of the type mentioned are used in particular as cutting inserts in machining operations.
  • plasma diffusion treatment in particular in the form of nitriding or nitriding or nitrocarburizing, has long been a method of refining steel surfaces in order to increase the wear and corrosion resistance of the steels.
  • titanium alloys and stones have also been subjected to a plasma diffusion treatment in order to diffuse the structure of the edge zones of such bodies in such a way that a diffusion zone or one or more connecting layers are formed.
  • the species diffused in can be, for example, nitrogen or carbon, which do not change the crystallographic structure of the base material, with the exception of any changes in the spacing of the crystal lattice.
  • some or more connecting layers can be formed, which represent a further phase, such as a connection of an element of the base material with the diffused species.
  • a cermet is known from the abstract under the publication number JP 05302140 A, which consists of a hard phase such as TiCN and a binding metal such as Co and Ni and which is exposed to a gaseous nitrogen-plasma atmosphere, the plasma being generated by high frequency or microwave discharge becomes.
  • a nitride zone with a thickness of 10 to 500 ⁇ m should be formed, in which TiN particles with a grain size ⁇ 0.1 ⁇ m are contained in a homogeneous distribution.
  • additional structural components are contained, the grain sizes of which are of the order of magnitude of the structural components that the hard material portions of hard metals and cermets usually have.
  • the substances contained in the plasma-activated gas phase that diffuse into the surface can be nitrogen, carbon, boron, metals that can be excited to a plasma state.
  • the sintered body which has been subjected to a plasma-activated gas phase, has a surface zone that is influenced down to much deeper areas.
  • the plasma-activated gas phase also enables cleaning and / or reduction of the zones near the surface, an improvement in the surface roughness in terms of smoothing and the formation of new structural components (phases) and their arrangement.
  • the composition of the edge zone near the surface can also improve the adhesion of subsequently applied layers of carbides, nitrides, oxides, borides or carbon or combinations of these materials.
  • the plasma-activated treatment also makes it possible to influence the binder phase, for example plasma-activated nitrogen can lead to the formation of cobalt-nickel or iron nitrides, which is not possible with thermally-activated nitrogen.
  • the sintered body according to the invention preferably has edge zones in which substances from the plasma-activated gas phase or compounds formed therefrom are contained by migration and / or by diffusion. The depth of the affected edge zones can be controlled up to 1200 ⁇ m via the choice of the process parameters temperature, pressure and treatment time as well as the structural inhomogeneity of these edge zones.
  • additional nitride particles with a grain size> 0.2 ⁇ m are contained in the edge zone due to the plasma-activated gas phase.
  • a method is used in which the hard metal or the cermet is pretreated by powder metallurgy and pressed to form a green body, which is then at least temporarily, preferably over a period of at least, during heating to the sintering temperature, during sintering or after finished sintering 10 to 100 minutes has been completely or only partially exposed to a plasma-activated gas phase under a pressure of maximum 3 x 10 4 Pa.
  • the plasma activation can be generated by microwaves or by a glow discharge, the glow discharge preferably being generated by means of a pulsed method in which the sintered body is switched as a cathode to which a pulsed DC voltage is applied.
  • Preferred DC voltages are between 200 to 900 V.
  • the DC voltage can either be reduced to 0 V or a residual DC voltage which is equal to or greater than the lowest ionization potential of the gases involved, but a maximum of 50% of the maximum value of the pulsed DC voltage. If a residual DC voltage is maintained in the pulse pauses, its ratio to the maximum pulsed DC voltage is 0.02 to 0.5.
  • the period of the pulsed DC voltage is between 20 ⁇ s and 20 ms.
  • the ratio of the pulse length to the pulse pause is between 0.1 to 0.6.
  • the treatment body is exposed to an inert gas atmosphere, in particular a noble gas and / or a chemical reducing agent, preferably hydrogen, before the inlet of a reactive gas or a reactive gas mixture.
  • an inert gas atmosphere in particular a noble gas and / or a chemical reducing agent, preferably hydrogen
  • Chemically non-reactive substances such as argon, are used to clean the surface, after which the plasma-activated gas phase is let in in a further process step, through which specific migration and diffusion processes are triggered into the layers near the surface.
  • Hydrogen contained in the gas phase serves to stimulate reduction processes on the surface, in particular to break down oxide deposits.
  • Temperatures above 900 ° C. to 1350 ° C. are preferably selected for the treatment of the sintered body in the plasma-activated gas phase.
  • 1 to 4 are micrographs of sintered bodies which have been subjected to a plasma-activated gas phase (in each case a ) in contrast to comparative samples (in each case b).
  • a sintered WC-Ti (C, N) -co-hard metal body with the composition 60.5 mass% W, 16 mass% Ti, 5 mass% Ta, 0.3 mass% Nb, 7 mass% C and 1, 2 mass% N and 10% by mass of Co were exposed to a nitrogen plasma at a temperature of 1350 ° C. at 300 mbar on the side surfaces and the top, whereas the underside was not exposed to this plasma.
  • 2a which shows a micrograph of the top of the hard metal body, it can be seen that an approximately 25 ⁇ m thick Ti (C, N) -rich layer without WC particles, which appear bright in the image, was formed, while the micrograph of the bottom 2b shows practically no influence of the here only thermally activated attacking nitrogen.
  • Two sintered hard metal bodies of the composition 60.5 mass% W, 16 mass% Ti, 5 mass% Ta, 0.3 mass% Nb, 7 mass% C and 1, 2 mass% N and 10 mass% Co were at a hypoeutectic temperature annealed from 1250 ° C at 150 mbar N 2 for 60 min, the first body again being annealed in a plasma-activated gas phase, the second under a purely thermally activated gas phase. While the plasma-exposed sample shows a nitride layer with a thickness of 50 ⁇ m and an approximately 40 ⁇ m thick zone underneath with reduced WC proportions (see FIG. 4a), the body which has only been exposed to a thermally activated nitrogen gas phase is only a 5 ⁇ m thick nitride layer and a less than 5 ⁇ m thick zone underneath.
  • the above exemplary embodiments show that by treating the sintered body in a plasma-activated gas phase, a targeted structural inhomogeneity can be set and / or a connection layer can be produced which improves the usage properties of the body, such as its edge retention, service life and reduced reaction behavior compared to other bodies in machining processes.
  • the plasma activation is preferably generated by a glow discharge, in particular by means of a pulsed method which avoids the occurrence of arcs. Plasma activation need not be maintained throughout the treatment period.
  • the gas pressure is kept in a range up to 300 mbar, in which the plasma state can be reached, ie the plasma can be ignited and maintained.
  • the treatment temperature or its limitation it can be achieved that areas further inside the body are not subject to any recognizable heat influence, so that the structure inside the body remains in its original form and only the areas near the surface are influenced.
  • the treatment under a plasma-activated gas phase can be preceded by an annealing treatment with which the surface is cleaned.
  • treatment in a gas phase consisting of a chemical reducing agent can also be carried out before the plasma-activated gas phase treatment.
  • both a changed phase composition in the surface layers near the surface and a deeper penetration zone of the structural influence and a desired structural homogeneity can be set by selecting the method parameters. This, as well as the smoothing or roughening of the surface produced in the same way, the latter with regard to any desired coatings, create clear advantages over comparable sintered bodies which are known from the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a sintered part consisting of a hard metal, in particular WC with Co, Ni and/or Fe binders-based hard metal, or cermet, in particular on the base of composition consisting of (Ti, W) (C, N) or (Ti, Mo) (C, N) with Co, Ni and/or Fe binders and to a method for producing such a sintered part. The inventive method consists in exposing a sintered part totally or partially to an active plasma gaseous phase at a maximum pressure of 3x104 Pa during heating, sintering or after sintering, at least during a certain time preferably during a time period ranging from 10 to 100 min.

Description

Beschreibung description
Sinterkörper und Verfahren zu seiner HerstellungSintered body and process for its production
Die Erfindung betrifft einen Sinterkörper, bestehend aus einem Hartmetall, insbesondere einem auf WC mit Co, Ni und/oder Fe-Binderanteilen basierenden Hartmetall, oder einem Cermet, insbesondere auf Basis einer (Ti,W)(C,N) oder (Ti,Mo)(C,N) mit Binderanteilen aus Co, Ni und/oder Fe bestehenden Zusammensetzung.The invention relates to a sintered body consisting of a hard metal, in particular a hard metal based on WC with Co, Ni and / or Fe binder proportions, or a cermet, in particular based on a (Ti, W) (C, N) or (Ti, Mo) (C, N) with binder components composed of Co, Ni and / or Fe.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines solchen Sinterkörpers.The invention further relates to a method for producing such a sintered body.
Sinterkörper der genannten Art werden insbesondere als Schneideinsätze in Zerspanungsoperationen eingesetzt.Sintered bodies of the type mentioned are used in particular as cutting inserts in machining operations.
Es ist Aufgabe der vorliegenden Erfindung, einen Sinterkörper anzugeben, der verbesserte Schneideigenschaften besitzt. Ferner soll ein Verfahren zur Herstellung eines solchen Sinterkörpers angegeben werden, das kürzere Prozesszeiten ermöglicht und eine Gefügebeeinflussung in möglichst tiefe Eindringzonen gestattet.It is an object of the present invention to provide a sintered body which has improved cutting properties. Furthermore, a method for producing such a sintered body is to be specified, which enables shorter process times and allows the structure to be influenced in the deepest possible penetration zones.
Diese Aufgabe wird durch den Sinterkörper nach Anspruch 1 bzw. durch das Verfahren nach Anspruch 6 gelöst.This object is achieved by the sintered body according to claim 1 or by the method according to claim 6.
Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.Developments of the invention are described in the subclaims.
Grundsätzlich ist eine Plasma-Diffusionsbehandlung, insbesondere in Form einer Nitridierung bzw. Nitrierung oder Nitrocarburierung eine zur Veredlung von Stahloberflächen seit langem praktizierte Methode, um die Verschleiß- und Korrosionsbeständigkeit der Stähle zu erhöhen. In jüngerer Zeit sind auch Titanlegierungen und Steinte einer Plasma-Diffusionsbehandlung unterzogen worden, um durch Eindiffu- sion das Gefüge der Randzonen solcher Körper in der Weise zu verändern, dass eine Diffusionszone oder eine oder mehrere Verbindungsschichten ausgebildet wer- den. Die eindiffundierten Spezies können z.B. Stickstoff oder Kohlenstoff sein, welche die kristallografische Struktur des Basiswerkstoffes nicht ändern, mit Ausnahme etwaiger Abstandsänderungen des Kristallgitters. Auf einer solchen Diffusionsschicht oder oberflächennahen Zone können sich einige oder mehrere Verbindungsschichten bilden, welche eine weitere Phase, wie z.B. eine Verbindung eines Elementes des Basiswerkstoffes mit den eindiffundierten Spezies darstellen.Basically, plasma diffusion treatment, in particular in the form of nitriding or nitriding or nitrocarburizing, has long been a method of refining steel surfaces in order to increase the wear and corrosion resistance of the steels. More recently, titanium alloys and stones have also been subjected to a plasma diffusion treatment in order to diffuse the structure of the edge zones of such bodies in such a way that a diffusion zone or one or more connecting layers are formed. the. The species diffused in can be, for example, nitrogen or carbon, which do not change the crystallographic structure of the base material, with the exception of any changes in the spacing of the crystal lattice. On such a diffusion layer or near-surface zone, some or more connecting layers can be formed, which represent a further phase, such as a connection of an element of the base material with the diffused species.
Aus dem Abstract unter der Publikationsnummer JP 05302140 A ist ein Cermet bekannt, das aus einer Hartphase wie TiCN und einem Bindemetall wie Co und Ni besteht und dass einer gasförmigen Stickstoff-Plasma-Atmosphäre ausgesetzt wird, wobei das Plasma durch Hochfrequenz oder Mikrowellen-Entladung erzeugt wird. Hierbei soll sich eine Nitrid-Zone von 10 bis 500 μm Dicke bilden, in der TiN-Partikel mit einer Korngröße <0,1 μm in homogener Verteilung enthalten sind. Demgegenüber sind in dem Sinterkörper der vorliegenden Erfindung in den oberflächennahen Zonen durch die plasma-aktivierte Gasphase entstandene zusätzliche Gefügebestandteile enthalten, deren Korngrößen der Größenordnung der Gefügebestandteile liegen, die die Hartstoffanteile von Hartmetallen und Cermets üblicherweise besitzen. Die in der plasma-aktivierten Gasphase enthaltenen Stoffe, die in die Oberfläche eindiffundieren, können Stickstoff, Kohlenstoff, Bor, Metalle sein, die zu einem Plasmazustand anregbar sind. Gegenüber rein thermisch-aktivierten Gasphasen besitzt der Sinterkörper, der einer plasma-aktivierten Gasphase unterzogen worden ist, eine bis in wesentlich tiefere Bereiche beeinflusste Oberflächenzone. Die plasma-aktivierte Gasphase ermöglicht je nach Gaszusammensetzung des Plasmas auch eine Reinigung und/oder Reduktion der oberflächennahen Zonen, eine Verbesserung der Oberflächenrauhigkeit im Sinne einer Glättung sowie die Entstehung von neuen Gefügebestandteilen (Phasen) und deren Anordnung. Die Zusammensetzung der oberflächennahen Randzone kann erfindungsgemäß auch die Haftung von nachfolgend aufgebrachten Schichten aus Carbiden, Nitriden, Oxiden, Boriden oder Kohlenstoff bzw. Kombinationen aus diesen Materialien verbessern. Die plasma-aktivierte Behandlung ermöglicht auch eine Beeinflussung der Binderphase, beispielsweise kann plasma-aktivierter Stickstoff zur Bildung von Cobalt-Nickel- oder Eisennitride führen, was mit thermisch-aktiviertem Stickstoff nicht möglich ist. Vorzugsweise besitzt der erfindungsgemäße Sinterkörper Randzonen, in die durch Migration und/oder durch Diffusion Stoffe aus der plasma-aktivierten Gasphase oder hieraus gebildete Verbindungen enthalten sind. Die Tiefe der beeinflussten Randzonen ist über die Wahl der Verfahrensparameter Temperatur, Druck und Behandlungszeit ebenso wie die Gefügeinhomogenität dieser Randzonen bis zu 1200 μm steuerbar.A cermet is known from the abstract under the publication number JP 05302140 A, which consists of a hard phase such as TiCN and a binding metal such as Co and Ni and which is exposed to a gaseous nitrogen-plasma atmosphere, the plasma being generated by high frequency or microwave discharge becomes. A nitride zone with a thickness of 10 to 500 μm should be formed, in which TiN particles with a grain size <0.1 μm are contained in a homogeneous distribution. In contrast, in the sintered body of the present invention in the near-surface zones by the plasma-activated gas phase additional structural components are contained, the grain sizes of which are of the order of magnitude of the structural components that the hard material portions of hard metals and cermets usually have. The substances contained in the plasma-activated gas phase that diffuse into the surface can be nitrogen, carbon, boron, metals that can be excited to a plasma state. Compared to purely thermally activated gas phases, the sintered body, which has been subjected to a plasma-activated gas phase, has a surface zone that is influenced down to much deeper areas. Depending on the gas composition of the plasma, the plasma-activated gas phase also enables cleaning and / or reduction of the zones near the surface, an improvement in the surface roughness in terms of smoothing and the formation of new structural components (phases) and their arrangement. According to the invention, the composition of the edge zone near the surface can also improve the adhesion of subsequently applied layers of carbides, nitrides, oxides, borides or carbon or combinations of these materials. The plasma-activated treatment also makes it possible to influence the binder phase, for example plasma-activated nitrogen can lead to the formation of cobalt-nickel or iron nitrides, which is not possible with thermally-activated nitrogen. The sintered body according to the invention preferably has edge zones in which substances from the plasma-activated gas phase or compounds formed therefrom are contained by migration and / or by diffusion. The depth of the affected edge zones can be controlled up to 1200 μm via the choice of the process parameters temperature, pressure and treatment time as well as the structural inhomogeneity of these edge zones.
Insbesondere sind in der Randzone durch die plasma-aktivierte Gasphase zusätzliche Nitridpartikel einer Korngröße > 0,2 μm enthalten.In particular, additional nitride particles with a grain size> 0.2 μm are contained in the edge zone due to the plasma-activated gas phase.
Zur Herstellung eines solchen Sinterkörpers wird ein Verfahren verwendet, bei dem das Hartmetall oder das Cermet pulvermetallurgisch vorbehandelt und zu einem Grünling gepresst wird, der dann während des Aufheizens zur Sintertemperatur, während des Sinterns oder nach erfolgter Fertigsinterung zumindest zeitweise, vorzugsweise über eine Zeitspanne von mindestens 10 min bis 100 min vollständig oder nur partiell einer plasma-aktivierten Gasphase unter einem Druck von maximal 3 x 104 Pa ausgesetzt worden ist. Die Plasma-Aktivierung kann durch Mikrowellenoder durch eine Glimmentladung erzeugt werden, wobei die Glimmentladung vorzugsweise mittels eines gepulsten Verfahrens erzeugt wird, bei dem der Sinterkörper als Kathode geschaltet wird, an der eine gepulste Gleichspannung angelegt wird. Bevorzugte Gleichspannungen liegen zwischen 200 bis 900 V. Die Gleichspannung kann in den Pulspausen entweder auf 0 V oder eine Restgleichspannung abgesenkt werden, die gleich oder größer ist als das niedrigste lonisierungspotential der beteiligten Gase, maximal jedoch 50 % des maximalen Wertes der gepulsten Gleichspannung beträgt. Soweit eine Restgleichspannung in den Pulspausen aufrechterhalten bleibt, ist deren Verhältnis zur maximalen gepulsten Gleichspannung 0,02 bis 0,5. Die Periodendauer der gepulsten Gleichspannung liegt zwischen 20 μs und 20 ms. Das Verhältnis der Pulslänge zu der Pulspause liegt zwischen 0,1 bis 0,6.To produce such a sintered body, a method is used in which the hard metal or the cermet is pretreated by powder metallurgy and pressed to form a green body, which is then at least temporarily, preferably over a period of at least, during heating to the sintering temperature, during sintering or after finished sintering 10 to 100 minutes has been completely or only partially exposed to a plasma-activated gas phase under a pressure of maximum 3 x 10 4 Pa. The plasma activation can be generated by microwaves or by a glow discharge, the glow discharge preferably being generated by means of a pulsed method in which the sintered body is switched as a cathode to which a pulsed DC voltage is applied. Preferred DC voltages are between 200 to 900 V. In the pulse pauses, the DC voltage can either be reduced to 0 V or a residual DC voltage which is equal to or greater than the lowest ionization potential of the gases involved, but a maximum of 50% of the maximum value of the pulsed DC voltage. If a residual DC voltage is maintained in the pulse pauses, its ratio to the maximum pulsed DC voltage is 0.02 to 0.5. The period of the pulsed DC voltage is between 20 μs and 20 ms. The ratio of the pulse length to the pulse pause is between 0.1 to 0.6.
Wie bereits erwähnt, sollen in der plasma-aktivierten Gasphase Stickstoff, Kohlenstoff, Bor oder auch plasma-aktivierbare Metalle, Verbindungen oder Gemische der vorgenannten Stoffe oder auch Precursoren enthalten sein. Nach einer Weiterbildung des erfindungsgemäßen Verfahrens wird vor Einlass eines reaktiven Gases oder einer reaktiven Gasmischung der Behandlungskörper einer Inertgasatmosphäre, insbesondere aus einem Edelgas und/oder einem chemischen Reduktionsmittel, vorzugsweise Wasserstoff, ausgesetzt. Chemisch nicht reaktive Stoffe, wie beispielsweise Argon, dienen der Reinigung der Oberfläche, wonach in einem weiteren Verfahrensschritt die plasma-aktivierte Gasphase eingelassen wird, durch die gezielt Migrations- und Diffusionsprozesse in die oberflächennahen Schichten ausgelöst werden. In der Gasphase enthaltener Wasserstoff dient zu der Anregung von Reduktionsprozessen an der Oberfläche, insbesondere zum Abbau von Oxideinlagerungen.As already mentioned, nitrogen, carbon, boron or even plasma-activatable metals, compounds or mixtures of the aforementioned substances or also precursors should be contained in the plasma-activated gas phase. According to a further development of the method according to the invention, the treatment body is exposed to an inert gas atmosphere, in particular a noble gas and / or a chemical reducing agent, preferably hydrogen, before the inlet of a reactive gas or a reactive gas mixture. Chemically non-reactive substances, such as argon, are used to clean the surface, after which the plasma-activated gas phase is let in in a further process step, through which specific migration and diffusion processes are triggered into the layers near the surface. Hydrogen contained in the gas phase serves to stimulate reduction processes on the surface, in particular to break down oxide deposits.
Für die Behandlung des Sinterkörpers in der plasma-aktivierten Gasphase werden vorzugsweise Temperaturen oberhalb von 900°C bis 1350°C gewählt.Temperatures above 900 ° C. to 1350 ° C. are preferably selected for the treatment of the sintered body in the plasma-activated gas phase.
Weitere Vorteile der Erfindung werden anhand der nachfolgend erörterten Ausführungsbeispiele sowie der Zeichnungen erläutert. Es zeigenFurther advantages of the invention are explained on the basis of the exemplary embodiments discussed below and the drawings. Show it
Fig. 1 bis 4 jeweils Schliffbilder von Sinterkörpern, die einer plasma-aktivierten Gasphase unterzogen worden sind (jeweils a) im Gegensatz zu Vergleichsproben (jeweils b).1 to 4 are micrographs of sintered bodies which have been subjected to a plasma-activated gas phase (in each case a ) in contrast to comparative samples (in each case b).
Ausführungsbeispiel 1 :Example 1:
Zunächst sind zwei gesinterte Hartmetallkörper des Typs WC-Ti(C,N)-Co mit identischer chemischer Zusammensetzung (jeweils 40 Massen% W, 25,5 Massen% Ti, 9 Massen% Ta, 0,5 Massen% Nb, 7 Massen% C, 3 Massen% N und 15 Massen% Co) bei einer übereutektischen Temperatur von 1350°C bei 300 mbar 20 min in einer Stickstoffatmosphäre behandelt worden, wobei der erste Hartmetallkörper mit Plasma beaufschlagt worden ist, der zweite jedoch nicht. Bei beiden Proben bildete sich eine sogenannte gradierte Schicht aus, welche eine Anreicherung von Titancar- bonitriden bei gleichzeitiger Verdrängung von WC-Anteilen in das Probeninnere zeigt. Wie aus Fig. 1a im Gegensatz zu Fig. 1 b ersichtlich ist, ist jedoch die durch Stickstoff beeinflusste Zone bei der Stickstoff-Plasma beaufschlagten Probe (Fig. 1a) deutlich größer als die Zone der Probe, die einer lediglich thermisch, aber nicht plasma-aktivierten Gasphase ausgesetzt war.First, there are two sintered hard metal bodies of the type WC-Ti (C, N) -Co with identical chemical composition (40 mass% W, 25.5 mass% Ti, 9 mass% Ta, 0.5 mass% Nb, 7 mass% C, 3 mass% N and 15 mass% Co) were treated at a hypereutectic temperature of 1350 ° C at 300 mbar for 20 min in a nitrogen atmosphere, the first hard metal body having been exposed to plasma, but not the second. A so-called graded layer was formed in both samples, which shows an accumulation of titanium carbonitrides with simultaneous displacement of WC components into the interior of the sample. As can be seen from FIG. 1 a in contrast to FIG. 1 b, however, the is The nitrogen-affected zone in the sample exposed to nitrogen plasma (FIG. 1a) is significantly larger than the zone of the sample which was exposed to a gas phase which was only thermally activated but not plasma-activated.
Ausführungsbeispiel 2:Example 2:
Ein gesinterter WC-Ti(C,N)-Co-Hartmetallkörper der Zusammensetzung 60,5 Massen% W, 16 Massen% Ti, 5 Massen% Ta, 0,3 Massen% Nb, 7 Massen% C und 1 ,2 Massen% N sowie 10 Massen% Co wurde bei einer Temperatur von 1350°C bei 300 mbar an den Seitenflächen und der Oberseite einem Stickstoffplasma ausgesetzt, wohingegen die Unterseite diesem Plasma nicht ausgesetzt war. Der Fig. 2a, die ein Schliffbild der Hartmetallkörperoberseite zeigt, ist zu entnehmen, dass eine etwa 25 μm dicke Ti(C,N)-reiche Schicht ohne WC-Partikel, die im Bild hell erscheinen, ausgebildet wurde, während das Schliffbild der Unterseite nach Fig. 2b praktisch keinerlei Einfluss des hier nur thermisch-aktivierten, angreifenden Stickstoffes zeigt.A sintered WC-Ti (C, N) -co-hard metal body with the composition 60.5 mass% W, 16 mass% Ti, 5 mass% Ta, 0.3 mass% Nb, 7 mass% C and 1, 2 mass% N and 10% by mass of Co were exposed to a nitrogen plasma at a temperature of 1350 ° C. at 300 mbar on the side surfaces and the top, whereas the underside was not exposed to this plasma. 2a, which shows a micrograph of the top of the hard metal body, it can be seen that an approximately 25 μm thick Ti (C, N) -rich layer without WC particles, which appear bright in the image, was formed, while the micrograph of the bottom 2b shows practically no influence of the here only thermally activated attacking nitrogen.
Ausführungsbeispiel 3:Example 3:
Zwei gesinterte Hartmetallkörper der Zusammensetzung 40 Massen% W, 25,5 Massen% Ti, 9 Massen% Ta, 0,5 Massen% Nb, 7 Massen% C, 3 Massen% N und 15 Massen% Co wurden bei untereutektischen Temperatur von 1250°C bei 150 mbar N2 für 60 min geglüht, wobei der erste Hartmetallkörper dem plasma-aktivierten Stickstoff und der zweite nur thermisch-aktiviertem Stickstoff in der Gasatmosphäre unterzogen worden ist. Die mit Plasma beaufschlagte Probe zeigt in Fig. 3a eine deutliche Verdrängung des WC bis in eine Tiefe von 1200 μm. Bis zu einer Tiefe von ca. 20 μm ist eine Ti(C,N)-Anreicherung in Fig. 3a zu erkennen. Der lediglich einer thermischen Stickstoffatmosphäre ausgesetzte Hartmetallkörper zeigt nach Fig. 3b hingegen lediglich eine nur bis 5 μm tiefe Randzonenbeeinflussung. Ausführungsbeispiel 4:Two sintered hard metal bodies of the composition 40% by mass W, 25.5% by mass Ti, 9% by mass Ta, 0.5% by mass Nb, 7% by mass C, 3% by mass N and 15% by mass Co were produced at a hypereutectic temperature of 1250 ° C annealed at 150 mbar N 2 for 60 min, the first hard metal body having been subjected to the plasma-activated nitrogen and the second only thermally-activated nitrogen in the gas atmosphere. The sample exposed to plasma shows a clear displacement of the toilet down to a depth of 1200 μm in FIG. 3a. Up to a depth of approximately 20 μm, a Ti (C, N) enrichment can be seen in FIG. 3a. In contrast, the hard metal body, which is only exposed to a thermal nitrogen atmosphere, only shows an edge zone influence of up to 5 μm deep according to FIG. 3b. Example 4:
Zwei gesinterte Hartmetallkörper der Zusammensetzung 60,5 Massen% W, 16 Massen% Ti, 5 Massen% Ta, 0,3 Massen% Nb, 7 Massen% C und 1 ,2 Massen% N und 10 Massen% Co wurden bei einer untereutektischen Temperatur von 1250°C bei 150 mbar N2 für 60 min geglüht, wobei wiederum der erste Körpeer in einer plasma-aktivierter Gasphase geglüht wurde, der zweite unter einer nur rein ther- misch-aktivierten Gasphase. Während die plasmabeaufschlagte Probe eine Nitridschicht mit einer Dicke von 50 μm und eine darunter etwa 40 μm dicke Zone mit verringerten WC-Anteilen (siehe Fig. 4a) zeigt, sind bei dem Körper, der lediglich einer thermisch-aktivierten Stickstoffgasphase ausgesetzt worden ist, lediglich eine 5 μm dicke Nitridschicht und eine weniger als 5 μm dicke darunter liegende Zone zu entnehmen.Two sintered hard metal bodies of the composition 60.5 mass% W, 16 mass% Ti, 5 mass% Ta, 0.3 mass% Nb, 7 mass% C and 1, 2 mass% N and 10 mass% Co were at a hypoeutectic temperature annealed from 1250 ° C at 150 mbar N 2 for 60 min, the first body again being annealed in a plasma-activated gas phase, the second under a purely thermally activated gas phase. While the plasma-exposed sample shows a nitride layer with a thickness of 50 μm and an approximately 40 μm thick zone underneath with reduced WC proportions (see FIG. 4a), the body which has only been exposed to a thermally activated nitrogen gas phase is only a 5 μm thick nitride layer and a less than 5 μm thick zone underneath.
Die vorstehenden Ausführungsbeispiele zeigen, dass durch Behandlung des Sinterkörpers in einer plasma-aktivierten Gasphase eine gezielte Gefügeinhomogenität eingestellt und/oder eine Verbindungsschicht erzeugt werden kann, die die Gebrauchseigenschaften des Körpers, wie dessen Schneidhaltigkeit, Standzeit und vermindertes Reaktionsverhalten gegenüber anderen Körpern bei Zerspanungsprozessen verbessern. Vorzugsweise wird die Plasma-Aktivierung durch eine Glimmentladung erzeugt, insbesondere mittels eines gepulsten Verfahrens, welches die Entstehung von Lichtbögen vermeidet. Die Plasma-Aktivierung muss nicht über den gesamten Behandlungszeitraum aufrechterhalten bleiben. Der Gasdruck wird in einem Bereich bis 300 mbar gehalten, in dem der Plasmazustand erreichbar ist, d.h., das Plasma gezündet und aufrechterhalten werden kann. Durch Wahl der Behandlungstemperatur bzw. deren Begrenzung kann erreicht werden, dass weiter im Körperinneren liegende Bereiche keinem erkennbaren Wärmeeinfluss unterliegen, so dass das Gefüge im Körperinneren in der ursprünglichen Form erhalten bleibt und lediglich die oberflächennahen Zonen beeinflusst werden. Durch teilweises Abdecken von Oberflächen des Sinterkörpers oder deren gegenseitige Anlage bzw. Auflage kann erreicht werden, dass dort kein Plasma angreifen kann bzw. sich der sogenannte Plasmasaum nicht ausbildet. Etwaige Gefügemodifikationen werden an diesen Stellen lediglich durch die Gasatmosphäre und die eingestellten Verfahrensparameter beeinflusst, nicht jedoch durch das Plasma, das in den oberflächennahen Randbereichen eine demgegenüber unterschiedliche Gefügemodifikation erhalten wird.The above exemplary embodiments show that by treating the sintered body in a plasma-activated gas phase, a targeted structural inhomogeneity can be set and / or a connection layer can be produced which improves the usage properties of the body, such as its edge retention, service life and reduced reaction behavior compared to other bodies in machining processes. The plasma activation is preferably generated by a glow discharge, in particular by means of a pulsed method which avoids the occurrence of arcs. Plasma activation need not be maintained throughout the treatment period. The gas pressure is kept in a range up to 300 mbar, in which the plasma state can be reached, ie the plasma can be ignited and maintained. By choosing the treatment temperature or its limitation, it can be achieved that areas further inside the body are not subject to any recognizable heat influence, so that the structure inside the body remains in its original form and only the areas near the surface are influenced. By partially covering surfaces of the sintered body or their mutual abutment or support, it can be achieved that no plasma can attack there or the so-called plasma seam does not form. Any structural modifications are announced These points are only influenced by the gas atmosphere and the set process parameters, but not by the plasma, which has a different structural modification in the edge regions near the surface.
Falls erforderlich oder gewünscht, kann der Behandlung unter einer plasma-aktivierten Gasphase eine Glühbehandlung vorgeschaltet werden, mit der die Oberfläche gereinigt wird. Alternativ oder zusätzlich kann auch vor der plasma-aktivierten Gasphasenbehandlung eine Behandlung in einer aus einem chemischen Reduktionsmittel bestehenden Gasphase vorgenommen werden.If necessary or desired, the treatment under a plasma-activated gas phase can be preceded by an annealing treatment with which the surface is cleaned. Alternatively or additionally, treatment in a gas phase consisting of a chemical reducing agent can also be carried out before the plasma-activated gas phase treatment.
Durch den Einfluss des Plasmas können in den oberflächennahen Randzonen neue Phase erzeugt werden, die sich ohne Plasma-Aktivierung nicht ausbilden können. Somit ist mit dem erfindungsgemäßen Verfahren sowohl eine geänderte Phasenzusammensetzung in den oberflächennahen Randschichten als auch eine tiefere Eindringzone der Gefügebeeinflussung und durch Wahl der Verfahrensparameter eine gewünschte Gefügeinhomogenität einstellbar. Dieses wie auch die gleichermaßen erzeugte Glättung oder Aufrauhung der Oberfläche, letzteres im Hinblick auf etwa gewünschte Beschichtungen, schaffen gegenüber vergleichbaren Sinterkörpern, die nach dem Stand der Technik bekannt sind, deutliche Vorteile. Due to the influence of the plasma, new phases can be generated in the near-surface marginal zones, which cannot form without plasma activation. Thus, with the method according to the invention, both a changed phase composition in the surface layers near the surface and a deeper penetration zone of the structural influence and a desired structural homogeneity can be set by selecting the method parameters. This, as well as the smoothing or roughening of the surface produced in the same way, the latter with regard to any desired coatings, create clear advantages over comparable sintered bodies which are known from the prior art.

Claims

Ansprüche Expectations
1. Sinterkörper, bestehend aus einem Hartmetall, insbesondere einem auf WC mit Co, Ni und/oder Fe-Binderanteilen basierenden Hartmetall, oder einem Cermet, insbesondere auf Basis einer (Ti,W) (C,N) oder (Ti,Mo)(C,N) mit Binderanteilen aus Co, Ni und/oder Fe bestehenden Zusammensetzung, d a d u r c h g e k e n n z e i c h n e t, dass der Sinterkörper während der Aufheizung, während des Sinterns oder nach erfolgter Fertigsinterung zumindest zeitweise, vorzugsweise über eine Zeitspanne von mindestens 10 min bis 100 min vollständig oder nur partiell einer plasma-aktivierten Gasphase unter einem Druck von maximal 3 x 104 Pa ausgesetzt worden ist.1. Sintered body consisting of a hard metal, in particular a hard metal based on WC with Co, Ni and / or Fe binder proportions, or a cermet, in particular based on a (Ti, W) (C, N) or (Ti, Mo) (C, N) with binder components composed of Co, Ni and / or Fe, characterized in that the sintered body during the heating, during the sintering or after the finished sintering has been carried out completely or at least temporarily, preferably over a period of at least 10 min to 100 min has only been partially exposed to a plasma-activated gas phase at a maximum pressure of 3 x 10 4 Pa.
2. Sinterkörper nach Anspruch 1 , dadurch gekennzeichnet, dass in den oberflächennahen Randzonen durch Migration und/oder Diffusion Stoffe aus der plasma-aktivierten Gasphase oder hieraus gebildete Verbindungen enthalten sind.2. Sintered body according to claim 1, characterized in that substances from the plasma-activated gas phase or compounds formed therefrom are contained in the near-surface edge zones by migration and / or diffusion.
3. Sinterkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Sinterkörper in einer plasma-aktivierten Gasphase behandelt worden ist, die Stickstoff, Kohlenstoff, Bor, Metalle, Verbindungen oder Gemische hiervon oder entsprechende Precursoren enthalten hat.3. Sintered body according to claim 1 or 2, characterized in that the sintered body has been treated in a plasma-activated gas phase which has contained nitrogen, carbon, boron, metals, compounds or mixtures thereof or corresponding precursors.
4. Sinterkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in den oberflächennahen Zonen des Sinterkörpers Nitridpartikel einer Korngröße > 0,2 μm enthalten sind.4. Sintered body according to one of claims 1 to 3, characterized in that nitride particles with a grain size> 0.2 μm are contained in the zones near the surface of the sintered body.
5. Sinterkörper nach einem der Ansprüche 1 bis 4, gekennzeichnet durch einen Gefügegradienten des Sinterkörpers von der Oberfläche zum Körperinneren.5. Sintered body according to one of claims 1 to 4, characterized by a structural gradient of the sintered body from the surface to the inside of the body.
6. Verfahren zur Herstellung eines Sinterkörpers aus einem Hartmetall oder einem Cermet nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der auf pulvermetallurgischem Weg vorbehandelte und zu einem Grünling gepresste Körper während des Aufheizens zur Sintertemperatur, während des Sinters oder nach erfolgter Fertigsinterung zumindest zeitweise, vorzugsweise über eine Zeitspanne von mindestens 10 min bis 100 min vollständig oder nur partiell einer plasma-aktivierten Gasphase unter einem Druck von maximal 3 x 104 Pa ausgesetzt worden ist, vorzugsweise bei Temperaturen zwischen 900°C bis 1350°C.6. A method for producing a sintered body made of a hard metal or a cermet according to one of claims 1 to 5, characterized in that that the body pretreated by powder metallurgy and pressed into a green body during the heating to the sintering temperature, during the sintering or after the finished sintering has been carried out at least temporarily, preferably over a period of at least 10 min to 100 min, completely or only partially in a plasma-activated gas phase under a Pressure of maximum 3 x 10 4 Pa has been exposed, preferably at temperatures between 900 ° C to 1350 ° C.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Plasma-Aktivierung durch Mikrowellen oder durch eine Glimmentladung erzeugt wird, vorzugsweise mittels eines gepulsten Verfahrens, bei dem der Sinterkörper als Kathode geschaltet wird, an der eine gepulste Gleichspannung angelegt wird.7. The method according to claim 6, characterized in that the plasma activation is generated by microwaves or by a glow discharge, preferably by means of a pulsed method in which the sintered body is switched as a cathode to which a pulsed DC voltage is applied.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass in der plasma-aktivierten Gasphase Stickstoff, Kohlenstoff, Bor, Metalle, Verbindungen oder Gemische hiervon enthalten sind.8. The method according to claim 6 or 7, characterized in that nitrogen, carbon, boron, metals, compounds or mixtures thereof are contained in the plasma-activated gas phase.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass vor Einlass eines reaktiven Gases oder einer reaktiven Gasmischung die Gasphase aus einem Inertgas, insbesondere einem Edelgas, besteht und/oder ein chemisches Reduktionsmittel, vorzugsweise Wasserstoff, enthält.9. The method according to any one of claims 6 to 8, characterized in that before the inlet of a reactive gas or a reactive gas mixture, the gas phase consists of an inert gas, in particular a noble gas, and / or contains a chemical reducing agent, preferably hydrogen.
10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass während der Behandlung in der plasma-aktivierten Gasphase Teile der Oberfläche des Substratkörpers abgedeckt sind. 10. The method according to any one of claims 6 to 9, characterized in that parts of the surface of the substrate body are covered during the treatment in the plasma-activated gas phase.
PCT/DE2004/000901 2003-05-21 2004-04-29 Sintered part and the method for the production thereof WO2004108632A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04730198A EP1625102A1 (en) 2003-05-21 2004-04-29 Sintered part and the method for the production thereof
US10/557,885 US20060280639A1 (en) 2003-05-21 2004-04-29 Sintered part and the method for production thereof
JP2006529587A JP2007511665A (en) 2003-05-21 2004-04-29 Sintered body and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10322871.3 2003-05-21
DE10322871A DE10322871A1 (en) 2003-05-21 2003-05-21 Sintered body and process for its production

Publications (1)

Publication Number Publication Date
WO2004108632A1 true WO2004108632A1 (en) 2004-12-16

Family

ID=33441065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000901 WO2004108632A1 (en) 2003-05-21 2004-04-29 Sintered part and the method for the production thereof

Country Status (6)

Country Link
US (1) US20060280639A1 (en)
EP (1) EP1625102A1 (en)
JP (1) JP2007511665A (en)
CN (1) CN100398497C (en)
DE (1) DE10322871A1 (en)
WO (1) WO2004108632A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2367652A1 (en) * 2008-11-21 2011-09-28 Seco Tools AB Method for producing cemented carbide or cermet products
CN101974713B (en) * 2010-10-25 2012-11-07 北京科技大学 Method for preparing gradient cemented carbide with beta removal layer
CN103357872A (en) * 2012-06-12 2013-10-23 北京京磁强磁材料有限公司 Sintering technology of NdFeB (neodymium iron boron) magnet
CN102825252B (en) * 2012-08-21 2015-07-29 沈阳化工大学 A kind of powder metallurgy manufactures the method for titanium base medical material
AT515148B1 (en) * 2013-12-12 2016-11-15 Böhler Edelstahl GmbH & Co KG Process for producing articles of iron-cobalt-molybdenum / tungsten-nitrogen alloys
CN103896635B (en) * 2014-03-07 2015-09-02 太原理工大学 The surface alloying process of powdered ceramic material
CN104174846B (en) * 2014-09-10 2017-02-01 太仓派欧技术咨询服务有限公司 Ceramic matrix composite niobium alloy skirt section 3D printing method
US20170067137A1 (en) * 2015-09-07 2017-03-09 Seiko Epson Corporation Titanium sintered body and ornament
CN106270491A (en) * 2016-09-18 2017-01-04 广东工业大学 A kind of cermet particles and preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290807A (en) * 1977-09-20 1981-09-22 Sumitomo Electric Industries, Ltd. Hard alloy and a process for the production of the same
JPS59229479A (en) * 1983-05-24 1984-12-22 Mitsubishi Metal Corp Production of surface coated sintered hard member for cutting tool
US5733668A (en) * 1992-10-26 1998-03-31 Kabushiki Kaisha Kobe Seiko Sho Method for the preparation of WC-Co Alloys and hard carbon-layer coated on WC-Co Alloys, and their coated tools

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU432371B2 (en) * 1967-07-13 1973-02-06 Commonwealth Scientific And Industrial Research Organization Plasma sintering
JPS5925902A (en) * 1982-07-31 1984-02-10 Sumitomo Electric Ind Ltd Sintering method
DE3789829T2 (en) * 1986-06-06 1994-09-01 Seiko Instr Inc Rare earth iron magnet and manufacturing process.
DE3841731C1 (en) * 1988-12-10 1990-04-12 Krupp Widia Gmbh, 4300 Essen, De Process for coating a tool base, and tool produced by this process
US5223337A (en) * 1988-12-10 1993-06-29 Fried. Krupp Gmbh Tool produced by a plasma-activated CVD process
DE4037480A1 (en) * 1990-11-24 1992-05-27 Krupp Widia Gmbh METHOD FOR PRODUCING A COATED CARBIDE CUTTING BODY
US5232522A (en) * 1991-10-17 1993-08-03 The Dow Chemical Company Rapid omnidirectional compaction process for producing metal nitride, carbide, or carbonitride coating on ceramic substrate
JPH05302140A (en) * 1992-04-24 1993-11-16 Sumitomo Electric Ind Ltd Cermet alloy and its manufacture
JPH06287674A (en) * 1993-03-31 1994-10-11 Hitachi Metals Ltd Coated cermet alloy
EP0845053B1 (en) * 1995-08-19 2001-10-10 Widia GmbH Composite body and process for its production
US6074453A (en) * 1996-10-30 2000-06-13 Iowa State University Research Foundation, Inc. Ultrafine hydrogen storage powders
US6478887B1 (en) * 1998-12-16 2002-11-12 Smith International, Inc. Boronized wear-resistant materials and methods thereof
US6228484B1 (en) * 1999-05-26 2001-05-08 Widia Gmbh Composite body, especially for a cutting tool
CA2348145C (en) * 2001-05-22 2005-04-12 Surface Engineered Products Corporation Protective system for high temperature metal alloys
SE0002770D0 (en) * 2000-07-25 2000-07-25 Biomat System Ab a method of producing a body by adiabatic forming and the body produced
US7442227B2 (en) * 2001-10-09 2008-10-28 Washington Unniversity Tightly agglomerated non-oxide particles and method for producing the same
US20060057016A1 (en) * 2002-05-08 2006-03-16 Devendra Kumar Plasma-assisted sintering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290807A (en) * 1977-09-20 1981-09-22 Sumitomo Electric Industries, Ltd. Hard alloy and a process for the production of the same
JPS59229479A (en) * 1983-05-24 1984-12-22 Mitsubishi Metal Corp Production of surface coated sintered hard member for cutting tool
US5733668A (en) * 1992-10-26 1998-03-31 Kabushiki Kaisha Kobe Seiko Sho Method for the preparation of WC-Co Alloys and hard carbon-layer coated on WC-Co Alloys, and their coated tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0091, no. 04 (C - 279) 8 May 1985 (1985-05-08) *

Also Published As

Publication number Publication date
US20060280639A1 (en) 2006-12-14
EP1625102A1 (en) 2006-02-15
CN100398497C (en) 2008-07-02
CN1842508A (en) 2006-10-04
JP2007511665A (en) 2007-05-10
DE10322871A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
WO2004005585A1 (en) Diamond electrode and method for production thereof
DE68921246T2 (en) Sintered, surface-refined alloy with and without hard coating as well as a process for producing the alloy.
DE1957903C3 (en) Process for the production of a coating on bodies made of steel
WO2004108632A1 (en) Sintered part and the method for the production thereof
EP1511870B1 (en) Hard metal substrate body and method for producing the same
DE69734918T2 (en) COATED MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
EP1095168B1 (en) Hard metal or ceramet body and method for producing the same
DE2149772B1 (en) WELD FILLER MATERIAL MADE FROM HARDENABLE HARD MATERIAL ALLOYS
DE1954366B1 (en) Method and device for the production of hard coatings from titanium and / or tantalum compounds
DE1942292B2 (en) PROCESS FOR DEPOSITING A COATING
DE10297020T5 (en) Multi-component ceramic powder, method for producing multi-component ceramic powder, sintered body and method for producing a sintered body
DE19922057B4 (en) Carbide or cermet body and process for its preparation
DE102008048967A1 (en) Carbide body and process for its production
DE19815019B4 (en) Process for producing aluminum nitride layers on aluminum-based components based on plasma nitriding
DE2350694C3 (en) Process for coating a workpiece made of a superalloy to protect against corrosion and reaction mixture
WO2002081764A1 (en) Complex boride-cermet body, method for production and use of said body
DE2605873C2 (en) Process for increasing the abrasion resistance of writing tubes
DE102019213030A1 (en) Process for the powder metallurgical production of components from stainless martensitic steel
AT524143B1 (en) Process for hardening a sintered component
AT513422B1 (en) Hexagonal WC powder, process for its preparation and use of the powder
WO2017059467A1 (en) Component of a metal processing machine
DE10162339A1 (en) Process for producing an oxide layer on metal parts
WO1992018664A1 (en) Process for applying a coating to a substrate, coating and plasmaburner
DE19714306C2 (en) Process for case hardening of sintered parts
DE102021209592A1 (en) Process for reducing the electrical contact resistance of components made of corrosion-resistant steels, component made of corrosion-resistant material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004730198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006280639

Country of ref document: US

Ref document number: 10557885

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006529587

Country of ref document: JP

Ref document number: 20048137403

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004730198

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10557885

Country of ref document: US