EP1095168B1 - Hard metal or ceramet body and method for producing the same - Google Patents

Hard metal or ceramet body and method for producing the same Download PDF

Info

Publication number
EP1095168B1
EP1095168B1 EP99941397A EP99941397A EP1095168B1 EP 1095168 B1 EP1095168 B1 EP 1095168B1 EP 99941397 A EP99941397 A EP 99941397A EP 99941397 A EP99941397 A EP 99941397A EP 1095168 B1 EP1095168 B1 EP 1095168B1
Authority
EP
European Patent Office
Prior art keywords
phase
mass
nitrogen
binder
cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP99941397A
Other languages
German (de)
French (fr)
Other versions
EP1095168A1 (en
Inventor
Limin Chen
Walter Lengauer
Hans Werner Daub
Klaus Dreyer
Dieter Kassel
José Garcia
Georg Korb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widia GmbH
Original Assignee
Widia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27218491&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1095168(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19845376A external-priority patent/DE19845376C5/en
Priority claimed from DE1999122057 external-priority patent/DE19922057B4/en
Application filed by Widia GmbH filed Critical Widia GmbH
Publication of EP1095168A1 publication Critical patent/EP1095168A1/en
Application granted granted Critical
Publication of EP1095168B1 publication Critical patent/EP1095168B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]

Definitions

  • the invention relates to a hard metal or cermet body a hard phase from WC and / or at least one carbide, Nitride, carbonitride and / or oxicarbonitride at least one the elements of the IVa, Va or VIa group of the periodic table and a binder metal phase on Fe, Co and / or Ni, their proportion 3 to 25 mass%.
  • the invention further relates to a method of manufacture of such a hard metal or cermet body with a WC content between 50 mass% and 96 mass% by mixing, Grinding, granulating and pressing a corresponding component containing starting mixture and subsequent sintering.
  • EP 0 344 421 A1 proposes a cermet which should either have an average grain size of the hard material phase in the surface layer compared to a core with a penetration depth of 0.05 mm, which is between 0.8 and 1.2 times that average grain size of the hard material phase in the cermet core or in the same penetration depth relates to a binder phase that corresponds to 0.7 to 1.2 times the average binder content of the cermet core or in which the hardness in the aforementioned penetration depth is between 0.95 and 1.1 times the average hardness of the cermet core.
  • the starting mixture is sintered after grinding, mixing and pre-pressing, sintering in a first stage up to 1300 ° C.
  • EP 0 368 336 B1 describes a cermet substrate with a hard surface layer in which the region with the maximum Hardness at a depth between 5 ⁇ m and 50 ⁇ m from the substrate surface is present, and the substrate surface has a hardness of 20 to 90% of the maximum hardness.
  • This Cermets becomes the pre-pressed mixture of an initial temperature increase to 1100 ° C in a vacuum, followed by an increase in temperature from 1100 ° C to a temperature range between 1400 ° C and 1500 ° C in a nitrogen atmosphere, and one then subjected to sintering in a vacuum.
  • EP 0 374 358 B1 describes a process for producing a cermet with 7 to 20% by weight binder phase and a hard phase made of titanium carbide, titanium nitride and / or titanium carbonitride with 35 to 59% by weight Ti, 9 to 29% by weight W, 0.4 to 3.5% by weight Mo, 4 to 24% by weight of at least one metal from Ta, Nb, V and Zr, 5.5 to 9.5% by weight N 2 and 4, 5 to 12 wt .-% C.
  • the formulated, mixed, dried and pre-pressed mass is sintered in such a way that the temperature is raised to 1350 ° C. in vacuo, the nitrogen atmosphere being set to 1 Torr (133 Pa) at 1350 ° C. , the nitrogen partial pressure is gradually increased together with the temperature increase from 1350 ° C. to the sintering temperature, the nitrogen atmosphere being set to 5 Torr (665 Pa) at the sintering temperature.
  • EP 0 492 059 A2 describes a cermet body, the hardness of which is not less than 1 mm higher than in the interior of the cermet, the binder content being able to be minimized in a layer thickness of 0.5 to 3 ⁇ m compared to the core substrate.
  • the cermet should have a hard material coating in a thickness of 0.5 to 20 ⁇ m made of carbides, nitrides, oxides and borides of titanium and Al 2 O 3 .
  • a green compact is first heated to a temperature between 1100 ° C and 1400 ° C under vacuum, then nitrogen gas is admitted to a pressure at which the partial nitrogen pressure is between 5 and 10 Torr (665 and 1330 Pa), so that the substrate surface is denitrified.
  • the sintering and the final cooling are carried out under a non-oxidizing atmosphere, such as a vacuum or an inert gas atmosphere.
  • the body is coated using CVD or PVD.
  • EP 0 499 223 suggests that the relative concentration of the binder in a layer close to the surface 10 ⁇ m thick to 5 to 50% of the average mean content of binder in the cermet core and in the layer below it from 10 ⁇ m to 100 ⁇ m penetration depth adjust the binder content to 70 to 100% relative to the cermet core.
  • the sintering is carried out under nitrogen gas at a constant pressure of 5 to 30 Torr (665 to 3.99 x 10 3 Pa) and the cooling under vacuum at a cooling rate of 10 to 20 ° C / min.
  • EP 0 519 895 A1 discloses a cermet with a three-layer edge zone in which the first layer extends to a depth of 50 ⁇ m TiN, the next layer from 50 to 150 ⁇ m penetration depth with a binder enrichment and the next layer from 150 ⁇ m to 400 ⁇ m is formed with a binder depletion relative to the interior of the cermet core.
  • the sintered body is in an atmosphere of N 2 and / or NH 3, optionally in combination with CH 4 , CO, CO 2 at 1100 ° C to 1350 ° C for 1 to 25 hours at atmospheric pressure or a pressure above 1.1 bar ( 1.1 x 10 5 Pa) treated.
  • the cermets known from the prior art have the surface either different binder levels what is recognizable by spotty appearance, or tend to stick of the binder with the sinter pad, what because of that associated response to changes in composition in the Contact zone leads.
  • Another disadvantage of the so far after Cermets known in the prior art are those with increased binding metal contents poor adhesion from there in the surface applied wear protection layers. If nickel shares occur in the surface is not a CVD coating at all possible.
  • a cermet which has a hard material content of 95 to 75 mass% and 5 to Has 25% by mass of Co and / or Ni binder, the hard material phase made of carbonitrides with a cubic B1 crystal structure exists and 30 to 60 mass% Ti, 5 to 25 mass% W, 5 to 15 Mass% Ta, of which up to 70 mass% can be replaced by Nb, 0 to 12 mass% Mo, 0 to 5 mass% V, 0 to 2 mass% Cr, 0 to 1 mass% Hf and / or Zr contains.
  • the (C + N) content in the carbonitride phase should be> 80 mol%, the nitrogen content N / (C + N) is between 0.15 and 0.7.
  • a 0.01 up to 3 ⁇ m determined surface layer depth is the content of Binder phase in relation to the underlying cermet core area less than 30 mass%.
  • the titanium content is in this zone 1.1 to 1.3 times the size of the underlying cermet core areas, whereas the sum of the tungsten contents, Tantalum and any proportions of molybdenum, niobium, vanadium and / or chromium in only 0.7 to 1 times the amount relative to the underlying cermet core areas.
  • this cermet is in the same Surface edge zone the relative content of binder phase 90 mass%, the relative Ti content 100% to 120% and the Sum of the contents of tungsten, tantalum and possibly molybdenum, niobium, Vanadium, chromium between 80 mass% and 110 mass%, each relative to the core of the cermet.
  • This edge structure according to the above-mentioned document is produced by a process for cermet production, according to which the green compact produced by mixing, grinding, granulating and pressing is first heated to the melting point of the binder phase under vacuum with a pressure below 10 -1 mbar (10 Pa). Upon further heating from the melting temperature of the binder phase to the sintering temperature, which is maintained for 0.2 to 2 hours, and a subsequent cooling to 1200 ° C., a gas mixture of N 2 and Co with an N 2 / (N 2 + is in the furnace atmosphere CO) ratio varies between 0.1 and 0.9 under an alternating around a mean pressure of 10% to 80% of an average value in a period between 40 and 240 sec. The mean pressure and the aforementioned ratio are selected depending on the binder content.
  • EP 0 687 744 A2 also describes a nitrogen-containing one Sintered hard metal alloy with at least 75% by weight and maximum 95% by weight of hard phase, titanium, an element of Group VIa of the periodic table and WC, rest of the binder phase Contains nickel and cobalt.
  • the alloy has 5 wt .-% to 60% by weight titanium in the form of TiC and 30% by weight to 70% by weight of a metal in the form of a metal carbide.
  • the cemented carbide alloy supposed to be a soft, outermost surface layer own, which consists of a binder phase and toilet. Under this outermost layer is a 3 ⁇ m to 30 ⁇ m thick Layer consisting essentially of WC with low binder metal content should exist.
  • a cemented carbide alloy of the composition mentioned at the beginning also describes EP 0 822 265 A2.
  • the one from here produced sintered body should have an edge area that divided into three layers, of which the outermost layer a WC content between 0 and 30 vol .-%, remainder binder phase, the middle layer 50 vol.% to 100 vol.% WC, remainder binder phase, and a third lowest layer has a toilet volume fraction between 0 and 30 vol .-%, the rest of the binder.
  • This task is performed by a hard metal or cermet body solved according to claim 1, characterized in accordance with the invention is that from the body surface around 2 to 20 microns, preferably Project 5 to 10 ⁇ m WC crystallites. Through this Crystals a coarse-grained surface morphology is generated, which determines the adhesion of applied surface layers Interlocking of the crystallites with the separated phases creates. These WC crystallites are in the edge zone near the surface so firmly integrated that they can also be used as a trial performed grinding work did not break out. The created one Surface roughness thus provides an ideal "Anchoring" for the application of surface coatings.
  • the WC crystallites are preferably on the Body edge zone or surface with up to 50 vol .-% one cubic phase of another hard material of different composition and binder metal parts connected.
  • This cubic phase can essentially of carbides, nitrides, carbonitrides and / or Oxicarbonitriden at least one of the IVa, Va and / or VIa elements (except W) of the periodic system.
  • the cubic phase can be single or multi-phase, in particular, for example, consist of Ti (C, N) and (Ti, W) C.
  • the hard metal or cermet body especially in the marginal zone near the body surface also metals from the IVa, Va and / or VIa group of Periodic table, preferably W, Ta, Nb, Mo and Cr, included his.
  • the cubic phases in the peripheral zone can each have a homogeneous structure or a local core-edge structure, as it is basically known at cermets.
  • the present invention particularly includes cermet bodies, whose phases with a cubic crystal structure 30 to 60 mass% Titanium, 5 to 15 mass% tantalum and / or niobium, 0 to 12 mass% Molybdenum, 0 to 5 mass% vanadium, 0 to 2 mass% chromium, 0 contain up to 1 mass% hafnium and / or zirconium, in the binder phase up to 2% aluminum and / or metallic Tungsten, titanium, molybdenum, vanadium and / or chromium are dissolved.
  • the edge zones near the surface can be essentially homogeneous be built or a gradient in the composition have or near-surface marginal zones different Composition, being in an outer, attached to the body surface subsequent and to a depth of between 2 ⁇ m and 3 ⁇ m first layer a substantially binder phase free Carbonitridphase is located on an underlying middle layer with a thickness of 5 microns to 150 microns adjoins an essentially pure WC-Co composition and which is followed by a third bottom layer with a thickness of at least 10 ⁇ m and a maximum of 650 ⁇ m, the proportions of Binder phase and the IVa and / or Va elements on the inside of the body present, substantially constant value and the proportion of tungsten on the inside of the body essentially constant value drops.
  • the different layers of the sintered body described above merge continuously about, preferably as the metal of the carbonitride phase Titanium is used.
  • the content of titanium and / or another Element of the IVa to VIa group of the periodic table, tungsten except, is maximum in the outer layer, then falls steeply to a minimum when transitioning to the middle layer Value decreases and increases with the transition to the third lowest Layer up to a penetration depth of approx. 800 ⁇ m from the Surface gradually measured from a medium to that Proportion of the total composition corresponding value inside the body back on, but below the titanium or other Metal content in the outer layer.
  • the nitrogen content in the middle Layer minimal and rises at the transition to the outermost Layer on proportions above average nitrogen content of the alloy that are present in the core interior are.
  • the hard material phase WC can possibly only formed from (Ti, W) C or (Ti, W) (C, N) during sintering.
  • the binder phase content in the middle Layer maximum 0.9 times the binder phase content inside the body, while the tungsten portion in this middle Layer at least 1.1 times that inside the body Proportion of tungsten.
  • border zone areas are also possible, where the individual layers are not sharply apart are separated, but the respective metal and non-metal parts of the alloy gradually over wide transition areas to change.
  • the body characterized according to claim 9 meets in three layers forming the edge area the following conditions:
  • the tungsten and the binder phase maximum 0.8 times that of the total composition resulting share In an outer, on the surface of the body or on one Edge zone with a penetration depth of 1 to a maximum of 3 ⁇ m subsequent and to a depth between 10 microns to 200 microns reaching the layer is the tungsten and the binder phase maximum 0.8 times that of the total composition resulting share.
  • the tungsten mouth rises in this layer the binder phase portion to the inside of the body essentially continuously, whereas the nitrogen content at The body's interior essentially falls off continuously.
  • an underlying middle layer of a thickness between 20 ⁇ m and 400 ⁇ m pass through with increasing depth of penetration the tungsten and binder phase contents a maximum and Contents of elements of the IVa and / or Va group of the periodic table a minimum.
  • the nitrogen content remains at the transition from the middle layer to the lowest layer down to The inside of the body is essentially constant.
  • the alloys of the bodies according to the invention can be up to 2% by mass of chromium and / or molybdenum as well as in the hard material phase TiCN in an amount between 3 to 40 mass% TiCN or contain up to 40% by mass of TiC and / or TiN.
  • the hard metal or cermet body according to the invention is preferably coated with at least one hard material layer and / or a ceramic layer (Al 2 O 3 ) or diamond, cubic boron nitride or similar layers.
  • nitrogen-free mixtures of hard materials with a WC content between 50 mass% and 96 mass% and binding metals these are pressed into a green body and first in a vacuum to about 1200 ° C and then in an inert gas atmosphere to between 1200 ° C and Sintering temperature is heated, after which at the latest when the sintering temperature is reached, a nitrogen and possibly carbon-containing atmosphere is at least temporarily set at a pressure between 10 3 and 10 7 Pa, preferably between 5 x 10 3 Pa and 5 x 10 4 Pa.
  • the temperature is still increased to this temperature and maintained for a holding time of at least 20 minutes or only a slight cooling of at most 2 ° C./min is carried out in this time of at least 20 minutes.
  • the set nitrogen and possibly carbon-containing gas atmosphere is maintained until at least 1000 ° C. is reached.
  • the sintered body heated up to 1200 ° C during the heating phase and this Temperature a period of at least 20 minutes, preferably held more than an hour before moving on to the next Heating to the sintering temperature is continued.
  • the inert gas pressure of 10 3 to 10 4 Pa is maintained until the sintering temperature is reached, after which an atmosphere containing nitrogen and possibly carbon is set at a higher pressure of more than 10 4 Pa above 1450 ° C., preferably close to 1500 ° C. ,
  • the sintered body can be made of a hard metal or a cermet after at least one Maintaining the sintering temperature of a "pendulum annealing" for 0.5 hours undergo, i.e. a temperature control in which at least once, preferably several times, the eutectic melting point is oscillating below and exceeded, the Temperature by at least 20 ° C, preferably at least 50 ° C, each exceeds and falls below the eutectic point.
  • the atmospheric gas mixture set after reaching the sintering temperature can be selected from N 2 and CO with a ratio N 2 / (N 2 + CO) between 0.1 and 0.9.
  • the surface of the finished sintered body using gases or liquids are subjected to an etching treatment, whereby the WC crystallites emerge more clearly through relief formation.
  • this measure can be used to remove binder metal components serve on the substrate body surface, which at a diamond coating is undesirable.
  • a WC-TiC-TiN-TaC-NbC-Co green compact with a composition with 1.3 mass% TiC was subjected to the temperature control shown in FIG. 1.
  • the green body was heated for about 3 hours in a vacuum atmosphere to a temperature of 1200 ° C, which was then maintained for about half an hour.
  • An inert gas was then admitted at a pressure of 5 ⁇ 10 3 Pa and the heating was continued at 1485 ° C. until the sintering point was reached.
  • the inert gas atmosphere was replaced by a nitrogen atmosphere under a pressure of 5 ⁇ 10 4 Pa.
  • the sintering temperature was maintained for about half an hour after which the furnace atmosphere was cooled to 1400 ° C.
  • the temperature of 1400 ° C was maintained for about 5 hours after which the sintered body was cooled to room temperature.
  • the nitrogen atmosphere was maintained under the pressure mentioned.
  • Fig. 4 shows a scanning electron micrograph of the 2 that reveals the surface of the sintered body that the WC crystallites are firmly integrated into the surface edge zones from which they protrude by 2 ⁇ m to 20 ⁇ m.
  • the WC crystallites are depending on the sintering conditions, i.e. after setting the atmosphere more or less large Proportion of face-centered cubic phase (Ti, Ta, Nb, W) (C, N) as well as binder phase.
  • Ti, Ta, Nb, W Proportion of face-centered cubic phase
  • C, N binder phase
  • the proportion of tantalum and niobium carbides that can be estimated according to this is about 20 mol%. From the peak shape of the diffraction lines can be an inhomogeneous and / or at least two-phase structure similar to the cubic face-centered phase as this is known from cermets with a core-shell structure is.
  • FIG. 6 shows an edge zone structure of a sintered body another mixture that contains a (larger) proportion of TiC, namely 6 mass%.
  • FIG. 7 An edge zone structure of a further sintered sample is shown in FIG. 7.
  • the structure according to Fig. 7 was during a treatment of the body obtained according to Fig. 8.
  • the temperature control 1 is after the hold time the sintering temperature of the body cooled to 1200 ° C and thereafter reheated to 1400 ° C.
  • the temperature of 1400 ° C has been maintained for about 2 1/2 hours before the body has cooled down.
  • Fig. 9 protrude from the surface edge zone WC crystallites out in an intermediate layer with a Enrichment of face-centered cubic phase from carbides, Nitrides and carbonitrides of titanium, tantalum, niobium or Wolframs adjoins.
  • This layer does not have to be strictly single-phase or be homogeneous, but can be made of higher carbon and there are low-carbon phases.
  • binder material are also incorporated.
  • the interior of the body connects to the edge zone of the sintered core, which in its composition and its layer structure Overall composition corresponds.
  • the outlined structure those in their structure from layers below deviates, is particularly due to heat treatments with changing Temperatures such as those shown in FIG.
  • FIGS. 10 and 11 Variations in the temperature control are shown in FIGS. 10 and 11.
  • the temperature profile according to Fig. 8. Which depends on the holding time Sintering temperature subsequent cooling rate was with 2 ° C / min selected. Both the heating rate of 1200 ° C up to 1400 ° C as well as after a holding time of approx. 2 1/2 The cooling rate selected for hours is 5 ° C / min.
  • FIG. 11 is compared to Fig. 1 also a higher heating rate of 5 ° C / min in the first two heating phases instead of that shown in Fig. 1 significantly lower heating rate selected Service.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

The invention relates to a hard metal or cermet body with a hard material phase consisting of WC and/or at least one carbide, nitride, carbonitride and/or oxicarbonitride of at least one of the elements from group IVa, Va, or VIa of the periodic table and a binding metal phase consisting of Fe, Co and/or Ni, said binding metal phase making up 3 to 25 mass %. In particular, WC crystallites should protrude beyond the hard metal or cermet surface of the by 2 to 20 mum in order to improve the adhesion of surface layers that are applied.

Description

Die Erfindung betrifft einen Hartmetall- oder Cermet-Körper mit einer Hartstoffphase aus WC und/oder mindestens einem Carbid, Nitrid, Carbonitrid und/oder Oxicarbonitrid mindestens eines der Elemente der IVa-, Va- oder VIa-Gruppe des Periodensystemes und einer Bindemetallphase auf Fe, Co und/oder Ni, deren Anteil 3 bis 25 Massen% beträgt.The invention relates to a hard metal or cermet body a hard phase from WC and / or at least one carbide, Nitride, carbonitride and / or oxicarbonitride at least one the elements of the IVa, Va or VIa group of the periodic table and a binder metal phase on Fe, Co and / or Ni, their proportion 3 to 25 mass%.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines solchen Hartmetall- oder Cermet-Körpers mit einem WC-Anteil zwischen 50 Massen% und 96 Massen% durch Mischen, Mahlen, Granulieren und Pressen einer entsprechende Bestandteile enthaltenden Ausgangsmischung und anschließendem Sintern.The invention further relates to a method of manufacture of such a hard metal or cermet body with a WC content between 50 mass% and 96 mass% by mixing, Grinding, granulating and pressing a corresponding component containing starting mixture and subsequent sintering.

In der EP 0 344 421 A1 wird ein Cermet vorgeschlagen, das entweder eine mittlere Korngröße der Hartstoffphase in der Oberflächenschicht gegenüber einem Kern mit einer Eindringtiefe von 0,05 mm haben soll, die zwischen dem 0,8- bis 1,2-fachen der mittleren Korngröße der Hartstoffphase im Cermetkern liegt oder in derselben Eindringtiefe eine Binderphase betrifft, die 0,7-bis 1,2mal dem mittleren Bindergehalt des Cermetkernes entspricht oder bei dem die Härte in der vorgenannten Eindringtiefe zwischen dem 0,95- und 1,1-fachen der mittleren Härte des Cermetkernes liegt. Zur Herstellung dieses Cermets wird die Ausgangsmischung nach dem Mahlen, Mischen und Vorpressen gesintert, wobei in einer ersten Stufe bis 1300°C oder darunter unter Vakuum oder einer Inertgasatmosphäre gesintert wird, während in einer zweiten Stufe oberhalb 1300°C bei einem Stickstoffdruck von 0,1 bis 20 Torr (13,3 Pa bis 2,66 x 103 Pa) gesintert wird, und wobei der Stickstoffdruck mit steigender Temperatur ebenfalls steigen soll. EP 0 344 421 A1 proposes a cermet which should either have an average grain size of the hard material phase in the surface layer compared to a core with a penetration depth of 0.05 mm, which is between 0.8 and 1.2 times that average grain size of the hard material phase in the cermet core or in the same penetration depth relates to a binder phase that corresponds to 0.7 to 1.2 times the average binder content of the cermet core or in which the hardness in the aforementioned penetration depth is between 0.95 and 1.1 times the average hardness of the cermet core. To produce this cermet, the starting mixture is sintered after grinding, mixing and pre-pressing, sintering in a first stage up to 1300 ° C. or below under vacuum or an inert gas atmosphere, while in a second stage above 1300 ° C. at a nitrogen pressure of 0. 1 to 20 torr (13.3 Pa to 2.66 x 10 3 Pa) is sintered, and the nitrogen pressure should also rise with increasing temperature.

Die EP 0 368 336 B1 beschreibt ein Cermet-Substrat mit einer harten Oberflächenschicht, in der die Region mit der maximalen Härte in einer Tiefe zwischen 5 µm und 50 µm von der Substratoberfläche vorliegt, und die Substratoberfläche eine Härte von 20 bis 90 % der maximalen Härte hat. Zur Herstellung dieses Cermets wird die vorgepreßte Mischung einer anfänglichen Temperaturerhöhung auf 1100°C im Vakuum, einer anschließenden Temperaturerhöhung von 1100°C auf einen Temperaturbereich zwischen 1400°C und 1500°C in einer Stickstoffatmosphäre, und einem anschließenden Sintern im Vakuum unterzogen.EP 0 368 336 B1 describes a cermet substrate with a hard surface layer in which the region with the maximum Hardness at a depth between 5 µm and 50 µm from the substrate surface is present, and the substrate surface has a hardness of 20 to 90% of the maximum hardness. To make this Cermets becomes the pre-pressed mixture of an initial temperature increase to 1100 ° C in a vacuum, followed by an increase in temperature from 1100 ° C to a temperature range between 1400 ° C and 1500 ° C in a nitrogen atmosphere, and one then subjected to sintering in a vacuum.

Die EP 0 374 358 B1 beschreibt ein Verfahren zur Herstellung eines Cermets mit 7 bis 20 Gew.-% Binderphase und einer Hartphase aus Titancarbid, Titannitrid und/oder Titancarbonitrid mit 35 bis 59 Gew.-% Ti, 9 bis 29 Gew.-% W, 0,4 bis 3,5 Gew.-% Mo, 4 bis 24 Gew.-% mindestens eines Metalles aus Ta, Nb, V und Zr, 5,5 bis 9,5 Gew.-% N2 und 4,5 bis 12 Gew.-% C. Die formulierte, gemischte, getrocknete und vorgepreßte Masse wird derart gesintert, daß die Temperatur auf 1350°C im Vakuum erhöht wird, wobei die Stickstoffatmosphäre zu 1 Torr (133 Pa) bei 1350°C eingestellt wird, der Stickstoffpartialdruck zusammen mit der Temperaturerhöhung von 1350°C bis zur Sintertemperatur allmählich erhöht wird, wobei die Stickstoffatmosphäre zu 5 Torr (665 Pa) bei Sintertemperatur eingestellt wird.EP 0 374 358 B1 describes a process for producing a cermet with 7 to 20% by weight binder phase and a hard phase made of titanium carbide, titanium nitride and / or titanium carbonitride with 35 to 59% by weight Ti, 9 to 29% by weight W, 0.4 to 3.5% by weight Mo, 4 to 24% by weight of at least one metal from Ta, Nb, V and Zr, 5.5 to 9.5% by weight N 2 and 4, 5 to 12 wt .-% C. The formulated, mixed, dried and pre-pressed mass is sintered in such a way that the temperature is raised to 1350 ° C. in vacuo, the nitrogen atmosphere being set to 1 Torr (133 Pa) at 1350 ° C. , the nitrogen partial pressure is gradually increased together with the temperature increase from 1350 ° C. to the sintering temperature, the nitrogen atmosphere being set to 5 Torr (665 Pa) at the sintering temperature.

Die EP 0 492 059 A2 beschreibt einen Cermetkörper, dessen Härte in einer Eindringtiefe von nicht weniger als 1 mm höher ist als im Cermet-Inneren, wobei der Bindergehalt in einer Schichtdicke von 0,5 bis 3 µm gegenüber dem Kernsubstrat minimiert sein kann. Das Cermet soll eine Hartstoffbeschichtung in einer Dicke von 0,5 bis 20 µm aus Carbiden, Nitriden, Oxiden und Boriden des Titans und Al2O3 aufweisen. Zur Herstellung dieses Körpers wird ein Grünling unter Vakuum zunächst auf eine Temperatur zwischen 1100°C und 1400°C erwärmt, anschließend Stickstoffgas eingelassen bis zu einem Druck, bei dem der Partialstickstoffdruck zwischen 5 und 10 Torr (665 und 1330 Pa) liegt, so daß die Substratoberfläche entstickt wird. Die Sinterung und die abschließende Abkühlung werden unter einer nicht oxidierenden Atmosphäre, wie dem Vakuum oder eine Inertgasatmosphäre, durchgeführt. Abschließend wird der Körper mittels CVD oder PVD beschichtet.EP 0 492 059 A2 describes a cermet body, the hardness of which is not less than 1 mm higher than in the interior of the cermet, the binder content being able to be minimized in a layer thickness of 0.5 to 3 μm compared to the core substrate. The cermet should have a hard material coating in a thickness of 0.5 to 20 μm made of carbides, nitrides, oxides and borides of titanium and Al 2 O 3 . To produce this body, a green compact is first heated to a temperature between 1100 ° C and 1400 ° C under vacuum, then nitrogen gas is admitted to a pressure at which the partial nitrogen pressure is between 5 and 10 Torr (665 and 1330 Pa), so that the substrate surface is denitrified. The sintering and the final cooling are carried out under a non-oxidizing atmosphere, such as a vacuum or an inert gas atmosphere. Finally, the body is coated using CVD or PVD.

Zur Herstellung eines hochzähen Cermets schlägt die EP 0 499 223 vor, die relative Konzentration des Binders in einer 10 µm dicken oberflächennahen Schicht auf 5 bis 50 % des durchschnittlichen mittleren Gehaltes an Binder im Cermetkern und in der darunterliegenden Schicht von 10 µm bis 100 µm Eindringtiefe den Bindergehalt auf 70 bis 100 % relativ zum Cermetkern einzustellen. Bei dem hierzu angewendeten Verfahren wird die Sinterung unter Stickstoffgas mit einem konstanten Druck von 5 bis 30 Torr (665 bis 3,99 x 103 Pa) und die Abkühlung unter Vakuum mit einer Kühlrate von 10 bis 20°C/min durchgeführt.To produce a high-viscosity cermet, EP 0 499 223 suggests that the relative concentration of the binder in a layer close to the surface 10 µm thick to 5 to 50% of the average mean content of binder in the cermet core and in the layer below it from 10 µm to 100 µm penetration depth adjust the binder content to 70 to 100% relative to the cermet core. In the process used for this purpose, the sintering is carried out under nitrogen gas at a constant pressure of 5 to 30 Torr (665 to 3.99 x 10 3 Pa) and the cooling under vacuum at a cooling rate of 10 to 20 ° C / min.

Die EP 0 519 895 A1 offenbart ein Cermet mit einer dreischichtigen Randzone, bei der die erste Schicht bis zu einer Tiefe von 50 µm TiN reicht, die nächste Schicht von 50 bis 150 µm Eindringtiefe mit einer Binderanreicherung und die nächste Schicht von 150 µm bis 400 µm mit einer Binderverarmung relativ zum Cermetkerninneren ausgebildet ist. Der Sinterkörper wird hierzu in einer Atmosphäre aus N2 und/oder NH3 ggf. in Kombination mit CH4, CO, CO2 bei 1100°C bis 1350°C 1 bis 25 Stunden bei Atmosphärendruck oder einem Druck oberhalb 1,1 bar (1,1 x 105 Pa) behandelt.EP 0 519 895 A1 discloses a cermet with a three-layer edge zone in which the first layer extends to a depth of 50 μm TiN, the next layer from 50 to 150 μm penetration depth with a binder enrichment and the next layer from 150 μm to 400 µm is formed with a binder depletion relative to the interior of the cermet core. For this purpose, the sintered body is in an atmosphere of N 2 and / or NH 3, optionally in combination with CH 4 , CO, CO 2 at 1100 ° C to 1350 ° C for 1 to 25 hours at atmospheric pressure or a pressure above 1.1 bar ( 1.1 x 10 5 Pa) treated.

Die nach dem Stand der Technik bekannten Cermets besitzen an der Oberfläche entweder unterschiedliche Bindergehalte, was durch fleckiges Aussehen erkennbar ist, oder neigen zu Anhaftungen des Binders mit der Sinterunterlage, was wegen der damit verbundenen Reaktion zu Änderungen der Zusammensetzung in der Kontaktzone führt. Ein weiterer Nachteil der bisher nach dem Stand der Technik bekannten Cermets ist die bei erhöhten Bindemetallgehalten in der Oberfläche schlechte Haftung von dort aufgebrachten Verschleißschutzschichten. Sofern Nickelanteile in der Oberfläche erhöht auftreten, ist erst gar keine CVD-Beschichtung möglich. Zur Beeinflussung der oberflächennahen Zone wird daher in der DE 44 23 451 A1 ein Cermet vorgeschlagen, das einen Hartstoffanteil von 95 bis 75 Massen% und 5 bis 25 Massen% Co und/oder Ni-Binder besitzt, wobei die Hartstoffphase aus Carbonitriden mit kubischer B1-Kristallstruktur besteht und 30 bis 60 Massen% Ti, 5 bis 25 Massen% W, 5 bis 15 Massen% Ta, wovon bis zu 70 Massen% durch Nb ersetzt sein können, 0 bis 12 Massen% Mo, 0 bis 5 Massen% V, 0 bis 2 Massen% Cr, 0 bis 1 Massen% Hf und/oder Zr enthält. Der (C+N)-Gehalt in der Carbonitridphase soll >80 Mol-% betragen, wobei der Stickstoffanteil N/(C+N) zwischen 0,15 und 0,7 liegt. In einer 0,01 bis 3 µm bestimmten Oberflächenschichttiefe ist der Gehalt der Binderphase in bezug auf die darunterliegenden Cermet-Kernbereich kleiner als 30 Massen%. In dieser Zone ist der Titan-Gehalt 1,1- bis 1,3mal so groß wie in darunterliegenden Cermetkernbereichen, wohingegen die Summe der Gehalte an Wolfram, Tantal sowie etwaige Anteile von Molybdän, Niob, Vanadium und/oder Chrom in nur 0,7- bis 1-facher Menge relativ zu den darunterliegenden Cermetkernbereichen vorliegen. In einer alternativen Ausführungsform dieses Cermets ist in derselben Oberflächenrandzone der relative Gehalt an Binderphase 90 Massen%, der relative Ti-Gehalt 100 % bis 120 % und die Summe der Gehalte an Wolfram, Tantal sowie ggf. Molybdän, Niob, Vanadium, Chrom zwischen 80 Massen% und 110 Massen%, jeweils relativ zum Cermet-Kerninneren. The cermets known from the prior art have the surface either different binder levels what is recognizable by spotty appearance, or tend to stick of the binder with the sinter pad, what because of that associated response to changes in composition in the Contact zone leads. Another disadvantage of the so far after Cermets known in the prior art are those with increased binding metal contents poor adhesion from there in the surface applied wear protection layers. If nickel shares occur in the surface is not a CVD coating at all possible. To influence the surface near Zone is therefore proposed in DE 44 23 451 A1 a cermet which has a hard material content of 95 to 75 mass% and 5 to Has 25% by mass of Co and / or Ni binder, the hard material phase made of carbonitrides with a cubic B1 crystal structure exists and 30 to 60 mass% Ti, 5 to 25 mass% W, 5 to 15 Mass% Ta, of which up to 70 mass% can be replaced by Nb, 0 to 12 mass% Mo, 0 to 5 mass% V, 0 to 2 mass% Cr, 0 to 1 mass% Hf and / or Zr contains. The (C + N) content in the carbonitride phase should be> 80 mol%, the nitrogen content N / (C + N) is between 0.15 and 0.7. In a 0.01 up to 3 µm determined surface layer depth is the content of Binder phase in relation to the underlying cermet core area less than 30 mass%. The titanium content is in this zone 1.1 to 1.3 times the size of the underlying cermet core areas, whereas the sum of the tungsten contents, Tantalum and any proportions of molybdenum, niobium, vanadium and / or chromium in only 0.7 to 1 times the amount relative to the underlying cermet core areas. In a alternative embodiment of this cermet is in the same Surface edge zone the relative content of binder phase 90 mass%, the relative Ti content 100% to 120% and the Sum of the contents of tungsten, tantalum and possibly molybdenum, niobium, Vanadium, chromium between 80 mass% and 110 mass%, each relative to the core of the cermet.

Diese Randstruktur nach der vorerwähnten Schrift wird durch ein Verfahren zur Cermetherstellung erzeugt, nach dem der durch Mischen, Mahlen, Granulieren und Pressen hergestellte Grünling zunächst bis zum Schmelzpunkt der Binderphase unter Vakuum mit einem Druck unter 10-1 mbar (10 Pa) aufgeheizt wird. Beim weiteren Aufheizen von der Schmelztemperatur der Binderphase bis zur Sintertemperatur, die 0,2 bis 2 Stunden gehalten wird, und einem anschließenden Abkühlen auf 1200°C ist in der Ofenatmosphäre ein Gasgemisch aus N2 und Co mit einem N2/(N2+CO)-Verhältnis zwischen 0,1 und 0,9 unter einem um einen mittleren Druck von 10 % bis 80 % eines Mittelwertes alternierend in einer Periodendauer zwischen 40 und 240 sec schwankt. Der mittlere Druck sowie das vorgenannte Verhältnis werden in Abhängig vom Bindergehalt gewählt.This edge structure according to the above-mentioned document is produced by a process for cermet production, according to which the green compact produced by mixing, grinding, granulating and pressing is first heated to the melting point of the binder phase under vacuum with a pressure below 10 -1 mbar (10 Pa). Upon further heating from the melting temperature of the binder phase to the sintering temperature, which is maintained for 0.2 to 2 hours, and a subsequent cooling to 1200 ° C., a gas mixture of N 2 and Co with an N 2 / (N 2 + is in the furnace atmosphere CO) ratio varies between 0.1 and 0.9 under an alternating around a mean pressure of 10% to 80% of an average value in a period between 40 and 240 sec. The mean pressure and the aforementioned ratio are selected depending on the binder content.

Die EP 0 687 744 A2 beschreibt ebenfalls eine Stickstoff enthaltende Sinterhartmetallegierung mit wenigstens 75 Gew.-% und maximal 95 Gew.-% Hartphasenanteil, der Titan, ein Element der Gruppe VIa des Periodensystemes und WC, Rest Binderphase aus Nickel und Cobalt enthält. Die Legierung weist 5 Gew.-% bis 60 Gew.-% Titan in Form von TiC und 30 Gew.-% bis 70 Gew.-% eines Metalles in Form eines Metallcarbides auf. Die Sinterhartmetallegierung soll eine weiche, äußerste Oberflächenschicht besitzen, die aus einer Binderphase und WC besteht. Unter dieser äußersten Schicht liegt eine 3 µm bis 30 µm dicke Schicht, die im wesentlichen aus WC mit geringen Bindermetallanteilen bestehen soll.EP 0 687 744 A2 also describes a nitrogen-containing one Sintered hard metal alloy with at least 75% by weight and maximum 95% by weight of hard phase, titanium, an element of Group VIa of the periodic table and WC, rest of the binder phase Contains nickel and cobalt. The alloy has 5 wt .-% to 60% by weight titanium in the form of TiC and 30% by weight to 70% by weight of a metal in the form of a metal carbide. The cemented carbide alloy supposed to be a soft, outermost surface layer own, which consists of a binder phase and toilet. Under this outermost layer is a 3 µm to 30 µm thick Layer consisting essentially of WC with low binder metal content should exist.

Eine Sinterhartmetallegierung der eingangs genannten Zusammensetzung beschreibt ebenfalls die EP 0 822 265 A2. Der hieraus hergestellte Sinterkörper soll einen Randbereich aufweisen, der sich in drei Schichten aufteilt, wovon die äußerste Schicht einen WC-Gehalt zwischen 0 und 30 Vol.-%, Rest Binderphase, die mittlere Schicht 50 Vol.-% bis 100 Vol.-% WC, Rest Binderphase, und eine dritte unterste Schicht einen WC-Volumenanteil zwischen 0 und 30 Vol.-%, Rest Binder aufweist.A cemented carbide alloy of the composition mentioned at the beginning also describes EP 0 822 265 A2. The one from here produced sintered body should have an edge area that divided into three layers, of which the outermost layer a WC content between 0 and 30 vol .-%, remainder binder phase, the middle layer 50 vol.% to 100 vol.% WC, remainder binder phase, and a third lowest layer has a toilet volume fraction between 0 and 30 vol .-%, the rest of the binder.

Es ist Aufgabe der vorliegenden Erfindung, einen für eine CVDoder PVD-Beschichtung geeigneten Hartmetall- oder Cermet-Körper zu schaffen, dessen Oberfläche eine verbesserte Haftung für die aus der Gasphase ausgeschiedenen Schichten aus kovalenten Hartstoffen wie z.B. Diamant, kubischem Bornitrid, Kohlenstoffnitrid, Fullerenen sowie metallischen Hartstoffen (Carbiden, Nitriden, Carbonitriden oder Oxicarbonitriden der Elemente der IVa- bis VIa-Gruppe des Periodensystemes) sowie sonstige Schichten, die zumindest eines der Elemente B, C, N oder O enthalten, gewährleistet.It is an object of the present invention, one for a CVD or PVD coating suitable carbide or cermet body to create an improved adhesion for the surface layers of covalent hard materials separated from the gas phase such as. Diamond, cubic boron nitride, carbon nitride, Fullerenes and metallic hard materials (carbides, Nitrides, carbonitrides or oxicarbonitrides of the elements of the IVa to VIa group of the periodic table) and others Layers which contain at least one of the elements B, C, N or O, guaranteed.

Diese Aufgabe wird durch einen Hartmetall- oder Cermet-Körper nach Anspruch 1 gelöst, der erfindungsgemäß dadurch gekennzeichnet ist, daß aus der Körperoberfläche um 2 bis 20 µm, vorzugsweise 5 bis 10 µm WC-Kristallite herausragen. Durch diese Kristalle wird eine grobkörnige Oberflächenmorphologie erzeugt, welche die Haftung von aufgetragenen Oberflächenschichten durch Verzahnung der Kristallite mit den abgeschiedenen Phasen schafft. Diese WC-Kristallite sind in die oberflächennahe Randzone derart fest eingebunden, daß sie auch bei probeweise durchgeführten Schleifarbeiten nicht ausbrachen. Die geschaffene Oberflächenrauhigkeit liefert somit eine ideale "Verankerung" für das Auftragen von Oberflächenbeschichtungen.This task is performed by a hard metal or cermet body solved according to claim 1, characterized in accordance with the invention is that from the body surface around 2 to 20 microns, preferably Project 5 to 10 µm WC crystallites. Through this Crystals a coarse-grained surface morphology is generated, which determines the adhesion of applied surface layers Interlocking of the crystallites with the separated phases creates. These WC crystallites are in the edge zone near the surface so firmly integrated that they can also be used as a trial performed grinding work did not break out. The created one Surface roughness thus provides an ideal "Anchoring" for the application of surface coatings.

Weiterbildungen der Erfindung sind in den Unteransprüchen 2 bis 7 beschrieben.Further developments of the invention are in the subclaims 2 to 7 described.

So liegt der WC-Anteil an der gesamten Hartstoffphase des Hartmetall- oder Cermetkörpers bei mindestens 50 Massen% und maximal 96 Massen%. Vorzugsweise sind die WC-Kristallite an der Körperrandzone bzw. -oberfläche mit bis zu 50 Vol.-% einer kubischen Phase eines weiteren Hartstoffes anderer Zusammensetzung und Bindemetallteilen verbunden. Diese kubische Phase kann im wesentlichen aus Carbiden, Nitriden, Carbonitriden und/oder Oxicarbonitriden mindestens eines der IVa-, Va- und/oder VIa-Elemente (ausgenommen W) des periodischen Systemes bestehen. Die kubische Phase kann ein- oder mehrphasig ausgebildet sein, insbesondere beispielsweise aus Ti(C,N) und (Ti,W)C bestehen. Ebenso können in das Gefüge des Hartmetall- oder Cermet-Körpers, insbesondere in der körperoberflächennahen Randzone auch Metalle der IVa-, Va- und/oder VIa-Gruppe des Periodensystemes, vorzugsweise W, Ta, Nb, Mo und Cr, eingebunden sein. Die kubischen Phasen in der Randzone können jeweils eine homogene Struktur oder eine lokale Kern-Randstruktur aufweisen, wie sie grundsätzlich bei Cermets bekannt ist.The proportion of WC in the entire hard material phase of the hard metal or cermet body with at least 50 mass% and maximum 96 mass%. The WC crystallites are preferably on the Body edge zone or surface with up to 50 vol .-% one cubic phase of another hard material of different composition and binder metal parts connected. This cubic phase can essentially of carbides, nitrides, carbonitrides and / or Oxicarbonitriden at least one of the IVa, Va and / or VIa elements (except W) of the periodic system. The cubic phase can be single or multi-phase, in particular, for example, consist of Ti (C, N) and (Ti, W) C. Likewise, in the structure of the hard metal or cermet body, especially in the marginal zone near the body surface also metals from the IVa, Va and / or VIa group of Periodic table, preferably W, Ta, Nb, Mo and Cr, included his. The cubic phases in the peripheral zone can each have a homogeneous structure or a local core-edge structure, as it is basically known at cermets.

Die vorliegende Erfindung umfaßt insbesondere Cermet-Körper, deren Phasen mit kubischer Kristallstruktur 30 bis 60 Massen% Titan, 5 bis 15 Massen% Tantal und/oder Niob, 0 bis 12 Massen% Molybdän, 0 bis 5 Massen% Vanadium, 0 bis 2 Massen% Chrom, 0 bis 1 Massen% Hafnium und/oder Zirkonium enthalten, wobei in der Binderphase bis zu 2 % Aluminium und/oder metallisches Wolfram, Titan, Molybdän, Vanadium und/oder Chrom gelöst sind.The present invention particularly includes cermet bodies, whose phases with a cubic crystal structure 30 to 60 mass% Titanium, 5 to 15 mass% tantalum and / or niobium, 0 to 12 mass% Molybdenum, 0 to 5 mass% vanadium, 0 to 2 mass% chromium, 0 contain up to 1 mass% hafnium and / or zirconium, in the binder phase up to 2% aluminum and / or metallic Tungsten, titanium, molybdenum, vanadium and / or chromium are dissolved.

Die oberflächennahen Randzonen können im wesentlichen homogen aufgebaut sein oder einen Gradienten in der Zusammensetzung aufweisen bzw. oberflächennahe Randzonen unterschiedlicher Zusammensetzung, wobei in einer äußeren, sich an die Körperoberfläche anschließenden und bis zu einer Tiefe zwischen 2 µm und 3 µm reichenden ersten Schicht eine im wesentlichen binderphasenfreie Carbonitridphase befindet, die an eine darunterliegende mittlere Schicht mit einer Dicke von 5 µm bis 150 µm aus einer im wesentlichen reinen WC-Co-Zusammensetzung angrenzt und woran sich eine dritte unterste Schicht mit einer Dicke von mindestens 10 µm und maximal 650 µm anschließt, die Anteile der Binderphase und der IVa- und/oder Va-Elemente auf den im Körperinneren vorliegenden, im wesentlichen konstanten Wert ansteigen und der Wolframanteil auf den im Körperinneren im wesentlichen konstanten Wert abfällt. Die unterschiedlichen Schichten des vorbeschriebenen Sinterkörpers gehen kontinuierlich ineinander über, wobei vorzugsweise als Metall der Carbonitridphase Titan verwendet wird. Der Gehalt an Titan und/oder einem weiteren Element der IVa- bis VIa-Gruppe des Periodensystemes, Wolfram ausgenommen, ist in der äußeren Schicht maximal, fällt dann beim Übergang in die mittlere Schicht steil auf einen minimalen Wert ab und steigt beim Übergang zu der dritten untersten Schicht bis zu einer Eindringtiefe von ca. 800 µm von der Oberfläche aus gemessen allmählich auf einen mittleren, dem Anteil an der Gesamtzusammensetzung entsprechenden Wert im Körperinneren wieder an, der jedoch unterhalb des Titan- oder sonstigen Metallanteiles in der äußeren Schicht liegt. In entsprechender Weise ist der Stickstoffgehalt in der mittleren Schicht minimal und steigt beim Übergang in die äußerste Schicht auf Anteile an, die über dem durchschnittlichen Stickstoffgehalt der Legierung liegen, die im Kerninneren vorhanden sind. Hierzu entgegengesetzt steigen beim Übergang von der äußersten Schicht zur mittleren Schicht die Gehalte an Wolfram und Cobalt deutlich an. Die Hartstoffphase WC kann ggf. erst beim Sintern aus (Ti,W)C oder (Ti,W)(C,N) gebildet werden. Vorzugsweise beträgt der Binderphasengehalt in der mittleren Schicht maximal das 0,9fache des Binderphasengehaltes im Körperinneren, während der Wolframanteil in dieser mittleren Schicht mindestens das 1,1fache des im Körperinneren liegenden Wolframanteiles beträgt.The edge zones near the surface can be essentially homogeneous be built or a gradient in the composition have or near-surface marginal zones different Composition, being in an outer, attached to the body surface subsequent and to a depth of between 2 µm and 3 µm first layer a substantially binder phase free Carbonitridphase is located on an underlying middle layer with a thickness of 5 microns to 150 microns adjoins an essentially pure WC-Co composition and which is followed by a third bottom layer with a thickness of at least 10 µm and a maximum of 650 µm, the proportions of Binder phase and the IVa and / or Va elements on the inside of the body present, substantially constant value and the proportion of tungsten on the inside of the body essentially constant value drops. The different layers of the sintered body described above merge continuously about, preferably as the metal of the carbonitride phase Titanium is used. The content of titanium and / or another Element of the IVa to VIa group of the periodic table, tungsten except, is maximum in the outer layer, then falls steeply to a minimum when transitioning to the middle layer Value decreases and increases with the transition to the third lowest Layer up to a penetration depth of approx. 800 µm from the Surface gradually measured from a medium to that Proportion of the total composition corresponding value inside the body back on, but below the titanium or other Metal content in the outer layer. In corresponding Is the nitrogen content in the middle Layer minimal and rises at the transition to the outermost Layer on proportions above average nitrogen content of the alloy that are present in the core interior are. Contrary to this, increase at the transition from the outermost layer to the middle layer the contents of tungsten and cobalt. The hard material phase WC can possibly only formed from (Ti, W) C or (Ti, W) (C, N) during sintering. Preferably is the binder phase content in the middle Layer maximum 0.9 times the binder phase content inside the body, while the tungsten portion in this middle Layer at least 1.1 times that inside the body Proportion of tungsten.

Alternativ hierzu sind auch solche Randzonenbereiche möglich, bei denen die einzelnen Schichten nicht scharf voneinander getrennt sind, sondern sich die jeweiligen Metall- und Nichtmetallanteile der Legierung graduell über weite Übergangsbereiche ändern. Der nach Anspruch 9 gekennzeichnete Körper erfüllt in drei den Randbereich bildenden Schichten folgende Bedingungen:As an alternative to this, such border zone areas are also possible, where the individual layers are not sharply apart are separated, but the respective metal and non-metal parts of the alloy gradually over wide transition areas to change. The body characterized according to claim 9 meets in three layers forming the edge area the following conditions:

In einer äußeren, sich an die Körperoberfläche oder an eine Randzone mit einer Eindringtiefe von 1 bis maximal 3 µm anschließenden und bis in eine Tiefe zwischen 10 µm bis 200 µm reichenden Schicht beträgt der Wolfram- und der Binderphasenanteil maximal das 0,8fache des sich aus der Gesamtzusammensetzung ergebenden Anteiles. In dieser Schicht steigt der Wolframund der Binderphasenanteil zum Körperinneren hin im wesentlichen kontinuierlich an, wohingegen der Stickstoffanteil zum Körperinneren hin im wesentlichen kontinuierlich abfällt. In einer darunterliegenden mittlere Schicht einer Dicke zwischen 20 µm und 400 µm durchlaufen mit fortschreitender Eindringtiefe die Wolfram- und die Binderphasengehalte eine Maximum und die Gehalte an Elementen der IVa- und/oder Va-Gruppe des Periodensystemes ein Minimum. In einer dritten, untersten Schicht, die bis zu einer von der Körperoberfläche gemessenen Eindringtiefe von maximal 1 mm reicht, fallen die Wolfram- und Binderphasenanteile auf im wesentlichen konstante Werte im Körperinneren ab, die dem Anteil an der Gesamtzusammensetzung entsprechen, und die Gehalte an Elementen der IVa- und Va-Gruppe des Periodensystemes, insbesondere des Titans steigen auf im wesentlichen konstante Werte an. Der Stickstoffgehalt bleibt beim Übergang von der mittleren Schicht zur untersten Schicht bis ins Körperinnere im wesentlichen konstant.In an outer, on the surface of the body or on one Edge zone with a penetration depth of 1 to a maximum of 3 µm subsequent and to a depth between 10 microns to 200 microns reaching the layer is the tungsten and the binder phase maximum 0.8 times that of the total composition resulting share. The tungsten mouth rises in this layer the binder phase portion to the inside of the body essentially continuously, whereas the nitrogen content at The body's interior essentially falls off continuously. In an underlying middle layer of a thickness between 20 µm and 400 µm pass through with increasing depth of penetration the tungsten and binder phase contents a maximum and Contents of elements of the IVa and / or Va group of the periodic table a minimum. In a third, lowest layer, the up to a depth of penetration measured from the body surface of a maximum of 1 mm, the tungsten and binder phase fractions fall to essentially constant values inside the body which correspond to the share in the total composition, and the contents of elements of the IVa and Va groups of the periodic table, Titanium in particular rise to essentially constant values. The nitrogen content remains at the transition from the middle layer to the lowest layer down to The inside of the body is essentially constant.

Die Legierungen der erfindungsgemäßen Körper können bis zu 2 Massen% an Chrom und/oder Molybdän sowie in der Hartstoffphase TiCN in einer Menge zwischen 3 bis 40 Massen% TiCN oder bis zu 40 Massen% TiC und/oder TiN enthalten.The alloys of the bodies according to the invention can be up to 2% by mass of chromium and / or molybdenum as well as in the hard material phase TiCN in an amount between 3 to 40 mass% TiCN or contain up to 40% by mass of TiC and / or TiN.

Vorzugsweise wird der erfindungsgemäße Hartmetall- oder Cermet-Körper mit mindestens einer Hartstoffschicht und/oder einer keramischen Schicht (Al2O3) oder Diamant, kubischem Bornitrid oder ähnlichen Schichten überzogen.The hard metal or cermet body according to the invention is preferably coated with at least one hard material layer and / or a ceramic layer (Al 2 O 3 ) or diamond, cubic boron nitride or similar layers.

Zur Herstellung des vorbeschriebenen Hartmetall- oder Cermet-Körpers wird nach Anspruch 8 oder 9 gearbeitet, wobei die dargelegten Verfahrenstechniken zwischen Ausgangsmischungen unterscheiden, in denen bereits Stickstoff enthalten ist und solchen, die frei von Stickstoff sind.For the production of the carbide or cermet body described above is worked according to claim 8 or 9, wherein the Process techniques set out between starting mixtures distinguish in which nitrogen is already contained and those that are free of nitrogen.

Bei stickstofffreien Mischungen aus Hartstoffen mit einem WC-Anteil zwischen 50 Massen% und 96 Massen% und Bindemetallen werden diese zu einem Grünling vorgepreßt und zunächst in einer Vakuum- bis etwa 1200°C und anschließend in einer Inertgasatmosphäre auf eine zwischen 1200°C und der Sintertemperatur liegende Temperatur aufgeheizt, wonach spätestens bei Erreichen der Sintertemperatur zumindest zeitweise eine stickstoff- und ggf. kohlenstoffhaltige Atmosphäre mit einem Druck zwischen 103 und 107 Pa, vorzugsweise zwischen 5 x 103 Pa und 5 x 104 Pa, eingestellt wird. Soweit nicht bereits die Sintertemperatur erreicht ist, wird weiterhin auf diese Temperatur aufgeheizt und diese über eine Haltezeit von mindestens 20 Minuten aufrechterhalten oder in dieser Zeit von mindestens 20 Minuten nur eine geringe Abkühlung von maximal 2°C/min durchgeführt. Bei der abschließenden Abkühlung des Sinterkörpers bleibt die eingestellte Stickstoff- und ggf. Kohlenstoff-enthaltende Gasatmosphäre so lange erhalten, bis mindestens 1000°C erreicht sind.In the case of nitrogen-free mixtures of hard materials with a WC content between 50 mass% and 96 mass% and binding metals, these are pressed into a green body and first in a vacuum to about 1200 ° C and then in an inert gas atmosphere to between 1200 ° C and Sintering temperature is heated, after which at the latest when the sintering temperature is reached, a nitrogen and possibly carbon-containing atmosphere is at least temporarily set at a pressure between 10 3 and 10 7 Pa, preferably between 5 x 10 3 Pa and 5 x 10 4 Pa. If the sintering temperature has not already been reached, the temperature is still increased to this temperature and maintained for a holding time of at least 20 minutes or only a slight cooling of at most 2 ° C./min is carried out in this time of at least 20 minutes. When the sintered body is finally cooled, the set nitrogen and possibly carbon-containing gas atmosphere is maintained until at least 1000 ° C. is reached.

Enthält die Ausgangsmischung Stickstoffanteile von mindestens 0,2 Massen% bezogen auf die Hartstoffgesamtmasse, kann das stickstoffhaltige Gas auch später, spätestens jedoch bei Erreichen der Sintertemperatur und entsprechend dem Stickstoffgehalt in der Ausgangsmischung auch zu einem geringeren Partialdruckanteil in die Ofenatmosphäre eingebracht werden. In jedem Falle muß über die Verfahrensführung und/oder die Ausgangsmischung sichergestellt sein, daß genügend hohe Kohlenstoff-Anteile und Wolfram-Anteile zur Bildung der WC-Kristallite an der Oberfläche vorhanden sind. Ggf. ist die Sinter-Haltezeit entsprechend zu verlängern.Contains at least a nitrogen content in the starting mixture 0.2 mass% based on the total hard material mass, that can Nitrogen-containing gas also later, but at the latest when it is reached the sintering temperature and the nitrogen content in the starting mixture also to a lesser degree of partial pressure be introduced into the furnace atmosphere. In any case must about the process and / or the starting mixture be sure that enough carbon and Tungsten components for the formation of the WC crystallites on the surface available. Possibly. the sinter hold time is corresponding to extend.

Weiterbildungen des Verfahrens sind im Anspruch 10 beschrieben.Developments of the method are described in claim 10.

So ist es in einer Variation des Verfahrens auch möglich, die Stickstoff- und ggf. Kohlenstoff-enthaltende Atmosphäre durch Einleitung von Präkursoren, d.h. stickstoff- und ggf. kohlenstoffhaltige Gase oder ggf. auch durch Kohlenstoff-enthaltende Tiegelmaterialien dadurch einzustellen, daß sich unter der herrschenden Temperatur und dem Druck Stickstoff und Kohlenstoff in situ bildet.So it is also possible in a variation of the method that Nitrogen and possibly carbon-containing atmosphere Introduction of precursors, i.e. containing nitrogen and possibly carbon Gases or possibly also those containing carbon Crucible materials to adjust that under prevailing temperature and pressure nitrogen and carbon forms in situ.

Mit der Zeitspanne und mit der Gaszusammensetzung, bei der sich der Sinterkörper bei über eutektischen Temperaturen befindet, kann die Größe und Häufigkeit der WC-Kristallite beeinflußt werden. Hierbei führen längere Behandlungszeiten und ein höherer Anteil an Kohlenstoff zu größeren und/oder häufiger auftretenden WC-Kristalliten.With the time span and with the gas composition at which the sintered body is at above eutectic temperatures, can affect the size and frequency of WC crystallites become. This leads to longer treatment times and a longer one Share of carbon to larger and / or more frequently occurring WC crystallites.

In einer Ausführungsvariante der Erfindung wird der Sinterkörper bis auf 1200°C während der Aufheizphase erwärmt und diese Temperatur eine Zeitdauer von mindestens 20 Minuten, vorzugsweise mehr als einer Stunde gehalten, bevor mit der weiteren Aufheizung auf die Sintertemperatur fortgefahren wird.In one embodiment variant of the invention, the sintered body heated up to 1200 ° C during the heating phase and this Temperature a period of at least 20 minutes, preferably held more than an hour before moving on to the next Heating to the sintering temperature is continued.

Im Rahmen der vorliegenden Erfindung liegt auch eine Verfahrensführung, bei der zunächst in der Aufwärmphase bis etwa 1200°C der Körper einem Vakuum ausgesetzt wird, das dann durch eine Inertgasatmosphäre (z.B. Edelgasatmosphäre) ersetzt wird. Within the scope of the present invention there is also a process control at first in the warm-up phase until about 1200 ° C the body is exposed to a vacuum, which then by an inert gas atmosphere (e.g. noble gas atmosphere) is replaced.

Der Inertgasdruck von 103 bis 104 Pa bleibt bis zum Erreichen der Sintertemperatur erhalten, wonach eine Stickstoff- und ggf. Kohlenstoff-enthaltende Atmosphäre bei höherem Druck von mehr als 104 Pa oberhalb von 1450°C, vorzugsweise nahe 1500°C eingestellt wird.The inert gas pressure of 10 3 to 10 4 Pa is maintained until the sintering temperature is reached, after which an atmosphere containing nitrogen and possibly carbon is set at a higher pressure of more than 10 4 Pa above 1450 ° C., preferably close to 1500 ° C. ,

Nach einer weiteren Ausführungsform kann der Sinterkörper aus einem Hartmetall oder einem Cermet nach einem mindestens 0,5-stündigen Halten der Sintertemperatur einer "Pendelglühung" unterzogen werden, d.h. einer Temperaturführung, bei der mindestens einmal, vorzugsweise mehrfach, der eutektische Schmelzpunkt oszillierend unter- und überschritten wird, wobei die Temperatur um mindestens 20°C, vorzugsweise mindestens 50°C, jeweils den eutektischen Punkt überschreitet und unterschreitet. Vorzugsweise liegen die Aufheiz- und Abkühlraten sowie die Geschwindigkeit, mit der die Temperatur den eutektischen Schmelzpunkt unter- und überschreitet bei maximal 10°C/min. Bevorzugt werden jedoch Abkühl- und/oder Aufheizgeschwindigkeiten zwischen 2°C/min und 5°C/min.According to a further embodiment, the sintered body can be made of a hard metal or a cermet after at least one Maintaining the sintering temperature of a "pendulum annealing" for 0.5 hours undergo, i.e. a temperature control in which at least once, preferably several times, the eutectic melting point is oscillating below and exceeded, the Temperature by at least 20 ° C, preferably at least 50 ° C, each exceeds and falls below the eutectic point. The heating and cooling rates and the Speed at which the temperature the eutectic Melting point falls below and exceeds at maximum 10 ° C / min. However, cooling and / or heating rates are preferred between 2 ° C / min and 5 ° C / min.

In einer weiteren Ausführungsvariante der Erfindung kann das nach Erreichen der Sintertemperatur eingestellte Atmosphärengasgemisch aus N2 und CO mit einem Verhältnis N2/(N2+CO) zwischen 0,1 und 0,9 gewählt werden.In a further embodiment of the invention, the atmospheric gas mixture set after reaching the sintering temperature can be selected from N 2 and CO with a ratio N 2 / (N 2 + CO) between 0.1 and 0.9.

Schließlich ist es im Rahmen der vorliegenden Erfindung möglich, nach Erreichen der Sintertemperatur um ein im Mittelwert schwankende Drücke der Stickstoff- und ggf. Kohlenstoff-enthaltenden Atmosphäre einzustellen, wobei die Drücke um 10 bis 80 % von einem Mittelwert abweichen, der in Abhängigkeit vom Bindergehalt gewählt wird. Eine entsprechende Verfahrensführung wird beispielsweise in der DE 44 23 451 A1 erläutert, auf die verwiesen wird. Finally, it is possible within the scope of the present invention after reaching the sintering temperature by an average fluctuating pressures of those containing nitrogen and possibly carbon Atmosphere, with pressures around 10 to 80% deviate from an average value which depends on the binder content is chosen. A corresponding procedure is explained for example in DE 44 23 451 A1, to which reference is made becomes.

Nach einer Weiterbildung der Erfindung kann die Oberfläche des fertig gesinterten Körpers mittels Gasen oder Flüssigkeiten einer Ätzbehandlung unterzogen werden, wodurch die WC-Kristallite deutlicher durch Reliefbildung hervortreten. Insbesondere kann diese Maßnahme zur Entfernung von Bindemetallanteilen an der Substratkörperoberfläche dienen, die bei einer Diamantbeschichtung unerwünscht sind.According to a development of the invention, the surface of the finished sintered body using gases or liquids are subjected to an etching treatment, whereby the WC crystallites emerge more clearly through relief formation. In particular, this measure can be used to remove binder metal components serve on the substrate body surface, which at a diamond coating is undesirable.

Die vorliegende Erfindung wird um folgenden anhand der Figuren weiter erläutert. Es zeigen

Fig. 1
ein Temperatur-Zeit-Diagramm,
Fig.2, 3
Gefügeausbildungen an einer Sinterkörper-Randzone mit unterschiedlichen WC-Kristalliten,
Fig. 4
eine rasterelektronenmikroskopische Aufnahme der Oberfläche des gesinterten Körpers nach Fig. 2,
Fig. 5
ein Diffraktogramm der Sinterkörperoberfläche eines Ausführungsbeispieles,
Fig. 6, 7
Abbildungen von Randzonen-Gefügen unterschiedlicher Sinterkörper,
Fig. 8
ein Temperatur-Zeit-Diagramm in einer weiteren Ausführungsvariante,
Fig. 9
eine Abbildung eines weiteren Randzonengefüges eines Sinterkörpers,
Fig. 10, 11
Temperatur-Zeit-Diagramme mit weiteren Beispielen zur Prozeßtemperaturführung.
The present invention is further explained in the following with reference to the figures. Show it
Fig. 1
a temperature-time diagram,
Fig. 2, 3
Microstructure formation on a sintered body edge zone with different WC crystallites,
Fig. 4
2 shows a scanning electron micrograph of the surface of the sintered body according to FIG. 2,
Fig. 5
1 shows a diffractogram of the sintered body surface of an exemplary embodiment,
6, 7
Images of marginal zone structures of different sintered bodies,
Fig. 8
a temperature-time diagram in a further embodiment,
Fig. 9
an image of another edge zone structure of a sintered body,
10, 11
Temperature-time diagrams with further examples for process temperature control.

Ein WC-TiC-TiN-TaC-NbC-Co-Grünling einer Zusammensetzung mit 1,3 Massen% TiC ist der Fig. 1 entnehmbaren Temperaturführung unterzogen worden. Zunächst wurde der Grünling ca. 3 Stunden in einer Vakuumatmosphäre auf eine Temperatur von 1200°C aufgeheizt, die dann ca. eine halbe Stunde aufrechterhalten wurde. Hiernach ist ein Inertgas unter einem Druck von 5 x 103 Pa eingelassen und die Aufheizung bis zum Erreichen des Sinterpunktes bei 1485°C fortgesetzt worden. Mit Erreichen des Sinterpunktes ist die Inertgasatmosphäre durch eine Stickstoffatmosphäre unter einem Druck von 5 x 104 Pa ersetzt worden. Die Sintertemperatur wurde etwa eine halbe Stunde beibehalten, wonach die Ofenatmosphäre auf 1400°C abgekühlt wurde. Die Temperatur von 1400°C wurde ca. 5 Stunden aufrechterhalten, wonach der Sinterkörper auf Raumtemperatur abgekühlt worden ist. Nach dem Erreichen der Sintertemperatur bis zum Erreichen von 1000°C in der Abkühlphase blieb die Stickstoffatmosphäre unter dem genannten Druck aufrechterhalten.A WC-TiC-TiN-TaC-NbC-Co green compact with a composition with 1.3 mass% TiC was subjected to the temperature control shown in FIG. 1. First, the green body was heated for about 3 hours in a vacuum atmosphere to a temperature of 1200 ° C, which was then maintained for about half an hour. An inert gas was then admitted at a pressure of 5 × 10 3 Pa and the heating was continued at 1485 ° C. until the sintering point was reached. When the sintering point was reached, the inert gas atmosphere was replaced by a nitrogen atmosphere under a pressure of 5 × 10 4 Pa. The sintering temperature was maintained for about half an hour after which the furnace atmosphere was cooled to 1400 ° C. The temperature of 1400 ° C was maintained for about 5 hours after which the sintered body was cooled to room temperature. After reaching the sintering temperature until reaching 1000 ° C in the cooling phase, the nitrogen atmosphere was maintained under the pressure mentioned.

Fig. 2 und 3 zeigen Gefügeausbildungen der derart behandelten Sinterkörper gleich quantitativer Zusammensetzung mit unterschiedlich großer WC-Kristallitbildung an der Oberfläche. Bei dem Sinterkörper nach Fig. 2 lag in der Ausgangsmischung und in der Gasatmosphäre ein höherer Kohlenstoff-Anteil vor, weshalb zum Sinterkörper nach Fig. 4 die WC-Kristallitbildung an der Körperoberfläche verstärkt auftrat. Der Sinterkörper nach Fig. 3 besitzt demgegenüber weniger und kleinere WC-Kristallite als derjenige nach Fig. 2.2 and 3 show microstructures of those treated in this way Sintered body same quantitative composition with different large WC crystallite formation on the surface. at 2 was in the starting mixture and in the gas atmosphere has a higher carbon content, which is why 4 the WC crystallite formation on the Body surface appeared more. The sintered body after 3 has fewer and smaller toilet crystallites than that of FIG. 2.

Fig. 4 zeigt eine Rasterelektronenmikroskopische Aufnahme der Oberfläche des Sinterkörpers nach Fig. 2, die erkennen läßt, daß die WC-Kristallite in die Oberflächenrandzonen fest eingebunden sind, aus der sie um 2 µm bis 20 µm herausragen. Zwischen den WC-Kristalliten liegen je nach Sinterbedingungen, d.h. nach Atmosphäreneinstellung mehr oder weniger große Anteile an kubisch-flächenzentrierter Phase (Ti,Ta,Nb,W)(C,N) sowie Binderphase vor. Bei derselben Sinterkörper-Legierung erkennt man aus dem Diffraktogramm nach Fig. 5 neben (hexagonalen) WC Anteilen kubisch-flächenzentrierten Phasen (gekennzeichnet durch kfz) mit einem Gitterparameter von 0,4368 nm. Der hiernach abschätzbare Anteil an Tantal und Niob-Carbiden beträgt etwa 20 mol%. Aus der Peakform der Diffraktionslinien kann ein inhomogener und/oder mindestens zweiphasiger Aufbau der kubisch flächenzentrierten Phase abgeleitet werden, ähnlich wie dieser bei Cermets mit einer Kern-Hülle-Struktur bekannt ist.Fig. 4 shows a scanning electron micrograph of the 2 that reveals the surface of the sintered body that the WC crystallites are firmly integrated into the surface edge zones from which they protrude by 2 µm to 20 µm. Between the WC crystallites are depending on the sintering conditions, i.e. after setting the atmosphere more or less large Proportion of face-centered cubic phase (Ti, Ta, Nb, W) (C, N) as well as binder phase. With the same sintered body alloy can be seen from the diffractogram according to FIG. 5 next to (hexagonal) WC proportions of face-centered cubic phases (marked by vehicle) with a lattice parameter of 0.4368 nm. The proportion of tantalum and niobium carbides that can be estimated according to this is about 20 mol%. From the peak shape of the diffraction lines can be an inhomogeneous and / or at least two-phase structure similar to the cubic face-centered phase as this is known from cermets with a core-shell structure is.

Fig. 6 zeigt ein Randzonengefüge eines Sinterkörpers einer anderen Mischung, die einen (größeren) Anteil an TiC, nämlich 6 Massen%, aufweist. Bei Behandlung dieses Sinterkörpers in der gleichen, vorbeschriebenen Weise bilden sich größere Anteile an kubisch-flächenzentrierter Phase zwischen den aus der Oberfläche herausragenden WC-Kristalliten aus. Die WC-Kristallite sind deutlich größer als bei Sinterkörpern, die nur einen geringeren Carbidanteil in der Ausgangsmischung aufweisen.6 shows an edge zone structure of a sintered body another mixture that contains a (larger) proportion of TiC, namely 6 mass%. When treating this sintered body in the In the same way as described above, larger portions form face-centered cubic phase between those from the surface outstanding WC crystallites. The toilet crystallites are significantly larger than with sintered bodies, which are only a smaller one Have carbide content in the starting mixture.

Ein Randzonengefüge einer weiteren Sinterprobe zeigt Fig. 7. Die dort verwendete Ausgangsmischung enthielt einen etwa doppelt so großen Anteil an TiN als die vorbehandelten Sinterkörper. Das Gefüge nach Fig. 7 wurde bei einer Behandlung des Körpers entsprechend Fig. 8 erhalten. Im Unterschied zu der Temperaturführung nach Fig. 1 ist im Anschluß an die Haltezeit auf der Sintertemperatur der Körper auf 1200°C abgekühlt und hiernach auf 1400°C erneut aufgeheizt worden. Die Temperatur von 1400°C ist etwa 2 1/2 Stunden aufrechterhalten worden, bevor der Körper abgekühlt worden ist.An edge zone structure of a further sintered sample is shown in FIG. 7. The starting mixture used there contained about twice as large a proportion of TiN as the pretreated sintered body. The structure according to Fig. 7 was during a treatment of the body obtained according to Fig. 8. In contrast to the temperature control 1 is after the hold time the sintering temperature of the body cooled to 1200 ° C and thereafter reheated to 1400 ° C. The temperature of 1400 ° C has been maintained for about 2 1/2 hours before the body has cooled down.

Wie aus Fig. 9 ersichtlich ragen aus der Oberflächenrandzone WC-Kristallite heraus, die in eine Zwischenschicht mit einer Anreicherung an kubisch-flächenzentrierter Phase aus Carbiden, Nitriden und Carbonitriden des Titans, Tantals, Niobs oder Wolframs angrenzt. Diese Schicht muß nicht streng einphasige oder homogen sein, sondern kann aus kohlenstoffreicheren und kohlenstoffärmeren Phasen bestehen. In die Zwischenschicht sind ebenfalls gewisse Anteile an Bindermaterial eingebunden. Im Körperinneren schließt sich an die Randzone der Sinterkern an, der in seiner Zusammensetzung und seinem Schichtaufbau der Gesamtzusammensetzung entspricht. Die geschilderte Randstruktur, die in ihrem Gefüge von darunterliegenden Schichten abweicht, wird insbesondere durch Wärmebehandlungen mit wechselnden Temperaturen, wie sie beispielsweise anhand von Fig. 8 erkennbar sind, ausgebildet. Wird hingegen mit einer konstanten Temperatur nach dem Hochsintern (siehe Fig. 1) gearbeitet, bildet sich eine solche kubisch-flächenzentrierte Phase kaum aus; ebenso sind Übergänge von WC-Co-Gefügebereichen zu (Ti,Ta,Nb,W)(C,N)-reichen Zwischenzonen kontinuierlicher und unschärfer. Es ist auch deutlich erkennbar, daß die bei einem Sinterkörper nach Fig. 7 erkennbaren WC-Kristallite weit weniger aus der Körperoberfläche herausragen und demgemäß mehr in den Oberflächenzonen eingebunden sind als in den übrigen dargestellten Fällen. Allerdings ist auch bei der Gefügestruktur nach Fig. 7 ein zur Oberfläche hin zunehmender WC-Kristallitanteil deutlich zu erkennen.As can be seen from Fig. 9 protrude from the surface edge zone WC crystallites out in an intermediate layer with a Enrichment of face-centered cubic phase from carbides, Nitrides and carbonitrides of titanium, tantalum, niobium or Wolframs adjoins. This layer does not have to be strictly single-phase or be homogeneous, but can be made of higher carbon and there are low-carbon phases. Are in the intermediate layer certain proportions of binder material are also incorporated. in the The interior of the body connects to the edge zone of the sintered core, which in its composition and its layer structure Overall composition corresponds. The outlined structure, those in their structure from layers below deviates, is particularly due to heat treatments with changing Temperatures such as those shown in FIG. 8 are recognizable, trained. In contrast, with a constant Temperature worked after high sintering (see Fig. 1) forms such a face-centered cubic phase is hardly apparent; transitions from WC-Co structural areas are also closed (Ti, Ta, Nb, W) (C, N) -rich intermediate zones more continuous and blurred. It is also clearly recognizable that the one The sintered body according to FIG. 7 recognizes WC crystallites far less protrude from the surface of the body and accordingly more in the surface zones are included as shown in the rest Cases. However, the structure is also 7 an increasing towards the surface WC crystallite content clearly visible.

Variationen der Temperaturführung sind Fig. 10 und 11 zu entnehmen. In dem in Fig. 10 dargestellten Temperaturprofil ist die Aufheizgeschwindigkeit auf Temperaturen bis 1200°C und bis 1485°C (Sintertemperatur) größer gewählt, nämlich mit 5°C/min im Vergleich zu der geringeren Aufheizgeschwindigkeit bei dem Temperaturprofil nach Fig. 8. Die sich an die Haltezeit auf Sintertemperatur anschließende Abkühlgeschwindigkeit wurde mit 2°C/min gewählt. Sowohl die Aufheizgeschwindigkeit von 1200°C bis 1400°C als auch die nach einer Haltezeit von ca. 2 1/2 Stunden gewählte Abkühlgeschwindigkeit beträgt 5°C/min. Variations in the temperature control are shown in FIGS. 10 and 11. In the temperature profile shown in Fig. 10 is the heating rate to temperatures up to 1200 ° C and up 1485 ° C (sintering temperature) chosen larger, namely with 5 ° C / min compared to the lower heating speed at the 8. The temperature profile according to Fig. 8. Which depends on the holding time Sintering temperature subsequent cooling rate was with 2 ° C / min selected. Both the heating rate of 1200 ° C up to 1400 ° C as well as after a holding time of approx. 2 1/2 The cooling rate selected for hours is 5 ° C / min.

Bei der Verfahrensführung nach Fig. 11 ist im Vergleich zu Fig. 1 ebenfalls eine höhere Aufheizgeschwindigkeit von 5°C/min in den beiden ersten Aufheizphasen anstelle der in Fig. 1 dargestellten deutlich geringeren Aufheizgeschwindigkeit gewählt worden.11 is compared to Fig. 1 also a higher heating rate of 5 ° C / min in the first two heating phases instead of that shown in Fig. 1 significantly lower heating rate selected Service.

Claims (10)

  1. Hard metal or cermet body with a hard material phase of WC and/or at least one carbide, nitride carbonitride and/or oxicarbonitride of at least one element of groups IVa , Va or VIa of the classification of elements and a binder metal phase of Fe, Co and/or Ni, whose proportion amounts to 3 to 25 % by mass,
    characterised in that
    WC crystallites project from the body surface by 2 to 20 µm, preferably by 5 to 10 µm.
  2. Hard metal or cermet body according to claim 1, characterised in that the WC-content in the hard material phase amounts to at least 50 % by mass and maximally to 96 % by mass and/or that in the texture of the hard metal or cermet body also metals of the groups IVa, Va and/or VIa of the classification of elements, preferably E, Ta, Nb, Mo and Cr are bound.
  3. Hard metal or cermet body according to claim 1 or 2, characterised in that the WC crystallites at the body surface rim form a compound with up to 50 % by volume of a cubic phase of further hard material of a different composition and with binder metal parts, whereby preferably the cubic phase consists substantially of carbides, nitrides, carbonitrides and/or oxicarbonitrides of at least one of the elements of groups IVa, Va and/or VIa of the classification of elements, particularly of Ti, whereby the cubic phase can be a single-phased or multiphased and/or that the cubic crystal structure of the hard material phase has a core-rim structure.
  4. Hart metal or cermet body according to one of claims 1 to 3, characterised in that the phases with cubic crystalline structure in the hard material phase contain 30 to 60 % by mass Ti, 5 to 15 % by mass Ta and/or Nb, 0 to 12 % by mass Mo, 0 to 5 % by mass V, 0 to 2 % by mass Cr, 0 to 1 % by mass Hf and/or Zr and/or in the binder phase up to 2 % Al and/or metallic W, Ti, Mo, V and/or Cr are dissolved.
  5. Hart metal or cermet body according to one of claims 1 to 4, characterised in that the body-rim area consists of several layers with different composition, whereby
    a) in a first outer layer adjacent to the body surface and reaching to a depth between 2 µm and 30 µm a carbonitride phase essentially free of binder phase is present, which
    b) borders on an underlying intermediate layer with a thickness of 5 µm to 150 µm of a substantially pure WC-Co composition and that
    c) in a third innermost layer with a thickness of at least 10 µm and maximum 650 µm the contents of a binder phase and of the elements of groups IVa and/or Va of the classification of elements increase to the substantially constant value existing in the body interior and the tungsten content decreases to the substantially constant value in the body interior.
  6. Hard metal or cermet body according to one of claims 1 to 4, characterised in that the body-rim-zone consists of several layers with different compositions, whereby,
    a) in an outer layer adjacent to the body surface or to a rim zone, with a penetration depth of 1 µm to maximum 3 µm, and reaching to a depth between 10 µm and 200 µm, in the hard material phase the content of tungsten and binder phase amounts maximally to 0,8 times the content resulting from the general composition and that in this layer the tungsten and binder phase content increases substantially continuously towards the body interior and the nitrogen content decreases substantially continuously towards the body interior,
    b) that in an underlying intermediate layer of a thickness between 20 µm and 400 µm, the tungsten and binder phase content run through a maximum with progressing depth and the contents of elements of the groups IVa and/or Va of the classification of elements run through a minimum and
    c) in a third innermost layer, which reaches to a penetration depth of maximum 1 µm measured from the body surface, the tungsten and binder phase contents decrease to the substantially constant values in the body interior and the contents of elements of groups IVa and/or Va of the classification of elements increase to substantially constant values.
  7. Hard metal or cermet body according to one of claims 1 to 6, characterised in that at least one layer consists of a carbide, nitride and/or carbonitride of titanium or zirconium and/or of Al2O3 and/or diamond, cubic boron nitride, carbon nitride (CNx), fuller's earth or another compound containing at least one of the elements B, C, N and/or O.
  8. Method for the production of a hard metal or cermet body with a WC-content in the hard material phase between 50 % by mass and 96 % by mass according to one of claims 1 to 7, characterised in that a nitrogen-free mixture of hard materials and binder metals is prepressed into a green compact and heated in a vacuum or inert gas atmosphere to a temperature lying between 1200°C and the sintering temperature, after which at the latest when the sintering temperature is reached, a nitrogen-containing and optionally a carbon-containing atmosphere with a pressure between 103 and 107 Pa, preferably between 5 x 103 Pa and 5 x 104 Pa is set at least temporarily, optionally heated subsequently to the sintering temperature and the latter maintained over a holding time of at least 20 min, or in this time of 20 min only a slight cooling of maximum 2°C/min is performed, and finally cooled down, whereby the nitrogen-containing and optionally carbon-containing gas atmosphere set during heating or the latest when the sintering temperature was reached, is maintained in the cooling phase until at least 1000°C are reached.
  9. Method for producing a hard metal or cermet body according to one of claims 1 to 7, characterised in that at least 0,2 % by mass of a nitrogen-containing mixture of hard materials and binder materials are preshaped into a body (green compact) and heated to the sintering temperature, whereby the inert gas atmosphere or vacuum set during heating, starting from a temperature of 1200°C to the sintering temperature, is at least temporarily replacing this gas pressure atmosphere by introducing nitrogen-containing and optionally in addition carbon-containing gases under a pressure of 103 Pa to 107 Pa, preferably of 104 Pa to 5 x 104, that the body is sintered for at least 0,5 hours, preferably for 1 hour and subsequently cooled down, whereby the nitrogen-containing atmosphere set during heating at 1200°C or later is maintained until in the cooling phase at least 1000°C are reached.
  10. Method according to claim 8 or 9, characterised in that the nitrogen-containing and optionally carbon-containing atmosphere is set by introducing precursors, i.e. N-containing and optionally C-containing gases, or optionally by introducing C-containing crucible materials, whereby nitrogen and carbon are formed in the gas atmosphere in situ and/or that during heating the temperature is increased up to 1200°C and this temperature is maintained for at least 20 min, preferably for more than 1 hour, before continuing the heating up to the sintering temperature.
EP99941397A 1998-07-08 1999-06-26 Hard metal or ceramet body and method for producing the same Revoked EP1095168B1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE19830385 1998-07-08
DE19830385 1998-07-08
DE19845376A DE19845376C5 (en) 1998-07-08 1998-10-02 Hard metal or cermet body
DE19845376 1998-10-02
DE19922057 1999-05-14
DE1999122057 DE19922057B4 (en) 1999-05-14 1999-05-14 Carbide or cermet body and process for its preparation
PCT/DE1999/001875 WO2000003047A1 (en) 1998-07-08 1999-06-26 Hard metal or ceramet body and method for producing the same

Publications (2)

Publication Number Publication Date
EP1095168A1 EP1095168A1 (en) 2001-05-02
EP1095168B1 true EP1095168B1 (en) 2002-07-24

Family

ID=27218491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99941397A Revoked EP1095168B1 (en) 1998-07-08 1999-06-26 Hard metal or ceramet body and method for producing the same

Country Status (4)

Country Link
US (1) US6506226B1 (en)
EP (1) EP1095168B1 (en)
AT (1) ATE221140T1 (en)
WO (1) WO2000003047A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472060B1 (en) 2000-01-19 2002-10-29 Seco Tools Ab Coated body with nanocrystalline CVD coating for enhanced edge toughness and reduced friction
AU4589301A (en) * 2000-03-24 2001-10-08 Kennametal Inc Cemented carbide tool and method of making
US6638474B2 (en) * 2000-03-24 2003-10-28 Kennametal Inc. method of making cemented carbide tool
WO2002019823A2 (en) * 2000-09-08 2002-03-14 Syngenta Participations Ag Mesotrione formulations
DE10244955C5 (en) * 2001-09-26 2021-12-23 Kyocera Corp. Cemented carbide, use of a cemented carbide and method for making a cemented carbide
US20050072269A1 (en) * 2003-10-03 2005-04-07 Debangshu Banerjee Cemented carbide blank suitable for electric discharge machining and cemented carbide body made by electric discharge machining
US20050241239A1 (en) * 2004-04-30 2005-11-03 Chien-Min Sung Abrasive composite tools having compositional gradients and associated methods
SE0700602L (en) * 2007-03-13 2008-09-14 Sandvik Intellectual Property Carbide inserts and method of manufacturing the same
DE102008048967A1 (en) * 2008-09-25 2010-04-01 Kennametal Inc. Carbide body and process for its production
WO2012004755A2 (en) * 2010-07-08 2012-01-12 Kennametal India Limited A die for manufacturing engine valve and a method of assembling
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
EP2650123A1 (en) 2012-04-10 2013-10-16 PinTail International B.V. Breathable artificial leather
JP6614491B2 (en) 2014-12-25 2019-12-04 三菱マテリアル株式会社 Composite sintered body cutting tool and surface-coated composite sintered body cutting tool

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2717842C2 (en) 1977-04-22 1983-09-01 Fried. Krupp Gmbh, 4300 Essen Process for the surface treatment of sintered hard metal bodies
US5147996A (en) * 1989-09-15 1992-09-15 Grant Tfw, Inc. Tool joint
US5181953A (en) 1989-12-27 1993-01-26 Sumitomo Electric Industries, Ltd. Coated cemented carbides and processes for the production of same
US5403373A (en) 1991-05-31 1995-04-04 Sumitomo Electric Industries, Ltd. Hard sintered component and method of manufacturing such a component
JPH05171442A (en) * 1991-12-25 1993-07-09 Sumitomo Electric Ind Ltd Coated sintered hard alloy and its manufacture
SE9200530D0 (en) * 1992-02-21 1992-02-21 Sandvik Ab HARD METAL WITH BINDING PHASE ENRICHED SURFACE
SE505425C2 (en) 1992-12-18 1997-08-25 Sandvik Ab Carbide metal with binder phase enriched surface zone
WO1994018351A1 (en) * 1993-02-05 1994-08-18 Sumitomo Electric Industries, Ltd. Nitrogen-containing hard sintered alloy
US5494635A (en) * 1993-05-20 1996-02-27 Valenite Inc. Stratified enriched zones formed by the gas phase carburization and the slow cooling of cemented carbide substrates, and methods of manufacture
US5370195A (en) * 1993-09-20 1994-12-06 Smith International, Inc. Drill bit inserts enhanced with polycrystalline diamond
DE4423451A1 (en) 1994-05-03 1995-11-09 Krupp Widia Gmbh Cermet and process for its manufacture
EP0687744B1 (en) 1994-05-19 1999-11-03 Sumitomo Electric Industries, Ltd. Nitrogen-containing sintered hard alloy
IL110663A (en) 1994-08-15 1997-09-30 Iscar Ltd Tungsten-based cemented carbide powder mix and cemented carbide products made therefrom
SE516071C2 (en) * 1999-04-26 2001-11-12 Sandvik Ab Carbide inserts coated with a durable coating

Also Published As

Publication number Publication date
EP1095168A1 (en) 2001-05-02
WO2000003047A1 (en) 2000-01-20
US6506226B1 (en) 2003-01-14
ATE221140T1 (en) 2002-08-15

Similar Documents

Publication Publication Date Title
DE3936129C2 (en) Blade part made of cemented carbide based on tungsten carbide for cutting tools and method for producing the same
DE69218210T2 (en) Multi-plated hard alloy cutting tool
DE69214655T2 (en) Multi-layer coated cutting tool made of hard metal alloy
DE69509035T2 (en) Coated cemented carbide blade based on tungsten carbide
DE3688999T2 (en) Sintered carbide body for tools.
DE69215168T2 (en) Improved cutting inserts coated with titanium carbonitride and processes for their production
DE69025582T2 (en) Coated hard metal body and process for its production
DE69527124T3 (en) Hard composite material for tools
DE2005707C3 (en) Hard material powder for the production of metal-bonded hard material alloys
DE69314223T2 (en) Coated carbide bodies and process for their manufacture
DE60126068T2 (en) CEMENTED CARBIDE TOOL AND METHOD OF MANUFACTURING THEREOF
DE69208520T2 (en) Titanium-based carbonitride with enrichment of the binder metal phase
DE3211047C2 (en)
EP1990438B1 (en) Tool with coating
DE69612376T2 (en) Blade made of titanium carbonitride cermet and blade made of coated cermet
EP1095168B1 (en) Hard metal or ceramet body and method for producing the same
DE68921246T2 (en) Sintered, surface-refined alloy with and without hard coating as well as a process for producing the alloy.
EP0330913B1 (en) Process for preparing a sintered hard metal, and sintered hard metal obtained thereby
EP1511870B1 (en) Hard metal substrate body and method for producing the same
EP1957429B1 (en) Coated hard metal member
DE2429074C2 (en) Sintered carbonitride cemented carbide and process for its production
DE19922057B4 (en) Carbide or cermet body and process for its preparation
EP0758407B1 (en) Cermet and process for producing it
DE2546623C2 (en)
DE19845376C5 (en) Hard metal or cermet body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT LU SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011128

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT LU SE

REF Corresponds to:

Ref document number: 221140

Country of ref document: AT

Date of ref document: 20020815

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020724

REF Corresponds to:

Ref document number: 59902135

Country of ref document: DE

Date of ref document: 20020829

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021024

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SANDVIK AB

Effective date: 20030423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030626

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030626

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SANDVIK AB

Effective date: 20030423

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SANDVIK AB

Effective date: 20030423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070615

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20070821

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20070821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070614

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070615

Year of fee payment: 9