EP1095168B1 - Corps en metal dur ou en cermet, et son procede de production - Google Patents

Corps en metal dur ou en cermet, et son procede de production Download PDF

Info

Publication number
EP1095168B1
EP1095168B1 EP99941397A EP99941397A EP1095168B1 EP 1095168 B1 EP1095168 B1 EP 1095168B1 EP 99941397 A EP99941397 A EP 99941397A EP 99941397 A EP99941397 A EP 99941397A EP 1095168 B1 EP1095168 B1 EP 1095168B1
Authority
EP
European Patent Office
Prior art keywords
phase
mass
nitrogen
binder
cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP99941397A
Other languages
German (de)
English (en)
Other versions
EP1095168A1 (fr
Inventor
Limin Chen
Walter Lengauer
Hans Werner Daub
Klaus Dreyer
Dieter Kassel
José Garcia
Georg Korb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widia GmbH
Original Assignee
Widia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27218491&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1095168(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19845376A external-priority patent/DE19845376C5/de
Priority claimed from DE1999122057 external-priority patent/DE19922057B4/de
Application filed by Widia GmbH filed Critical Widia GmbH
Publication of EP1095168A1 publication Critical patent/EP1095168A1/fr
Application granted granted Critical
Publication of EP1095168B1 publication Critical patent/EP1095168B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]

Definitions

  • the invention relates to a hard metal or cermet body a hard phase from WC and / or at least one carbide, Nitride, carbonitride and / or oxicarbonitride at least one the elements of the IVa, Va or VIa group of the periodic table and a binder metal phase on Fe, Co and / or Ni, their proportion 3 to 25 mass%.
  • the invention further relates to a method of manufacture of such a hard metal or cermet body with a WC content between 50 mass% and 96 mass% by mixing, Grinding, granulating and pressing a corresponding component containing starting mixture and subsequent sintering.
  • EP 0 344 421 A1 proposes a cermet which should either have an average grain size of the hard material phase in the surface layer compared to a core with a penetration depth of 0.05 mm, which is between 0.8 and 1.2 times that average grain size of the hard material phase in the cermet core or in the same penetration depth relates to a binder phase that corresponds to 0.7 to 1.2 times the average binder content of the cermet core or in which the hardness in the aforementioned penetration depth is between 0.95 and 1.1 times the average hardness of the cermet core.
  • the starting mixture is sintered after grinding, mixing and pre-pressing, sintering in a first stage up to 1300 ° C.
  • EP 0 368 336 B1 describes a cermet substrate with a hard surface layer in which the region with the maximum Hardness at a depth between 5 ⁇ m and 50 ⁇ m from the substrate surface is present, and the substrate surface has a hardness of 20 to 90% of the maximum hardness.
  • This Cermets becomes the pre-pressed mixture of an initial temperature increase to 1100 ° C in a vacuum, followed by an increase in temperature from 1100 ° C to a temperature range between 1400 ° C and 1500 ° C in a nitrogen atmosphere, and one then subjected to sintering in a vacuum.
  • EP 0 374 358 B1 describes a process for producing a cermet with 7 to 20% by weight binder phase and a hard phase made of titanium carbide, titanium nitride and / or titanium carbonitride with 35 to 59% by weight Ti, 9 to 29% by weight W, 0.4 to 3.5% by weight Mo, 4 to 24% by weight of at least one metal from Ta, Nb, V and Zr, 5.5 to 9.5% by weight N 2 and 4, 5 to 12 wt .-% C.
  • the formulated, mixed, dried and pre-pressed mass is sintered in such a way that the temperature is raised to 1350 ° C. in vacuo, the nitrogen atmosphere being set to 1 Torr (133 Pa) at 1350 ° C. , the nitrogen partial pressure is gradually increased together with the temperature increase from 1350 ° C. to the sintering temperature, the nitrogen atmosphere being set to 5 Torr (665 Pa) at the sintering temperature.
  • EP 0 492 059 A2 describes a cermet body, the hardness of which is not less than 1 mm higher than in the interior of the cermet, the binder content being able to be minimized in a layer thickness of 0.5 to 3 ⁇ m compared to the core substrate.
  • the cermet should have a hard material coating in a thickness of 0.5 to 20 ⁇ m made of carbides, nitrides, oxides and borides of titanium and Al 2 O 3 .
  • a green compact is first heated to a temperature between 1100 ° C and 1400 ° C under vacuum, then nitrogen gas is admitted to a pressure at which the partial nitrogen pressure is between 5 and 10 Torr (665 and 1330 Pa), so that the substrate surface is denitrified.
  • the sintering and the final cooling are carried out under a non-oxidizing atmosphere, such as a vacuum or an inert gas atmosphere.
  • the body is coated using CVD or PVD.
  • EP 0 499 223 suggests that the relative concentration of the binder in a layer close to the surface 10 ⁇ m thick to 5 to 50% of the average mean content of binder in the cermet core and in the layer below it from 10 ⁇ m to 100 ⁇ m penetration depth adjust the binder content to 70 to 100% relative to the cermet core.
  • the sintering is carried out under nitrogen gas at a constant pressure of 5 to 30 Torr (665 to 3.99 x 10 3 Pa) and the cooling under vacuum at a cooling rate of 10 to 20 ° C / min.
  • EP 0 519 895 A1 discloses a cermet with a three-layer edge zone in which the first layer extends to a depth of 50 ⁇ m TiN, the next layer from 50 to 150 ⁇ m penetration depth with a binder enrichment and the next layer from 150 ⁇ m to 400 ⁇ m is formed with a binder depletion relative to the interior of the cermet core.
  • the sintered body is in an atmosphere of N 2 and / or NH 3, optionally in combination with CH 4 , CO, CO 2 at 1100 ° C to 1350 ° C for 1 to 25 hours at atmospheric pressure or a pressure above 1.1 bar ( 1.1 x 10 5 Pa) treated.
  • the cermets known from the prior art have the surface either different binder levels what is recognizable by spotty appearance, or tend to stick of the binder with the sinter pad, what because of that associated response to changes in composition in the Contact zone leads.
  • Another disadvantage of the so far after Cermets known in the prior art are those with increased binding metal contents poor adhesion from there in the surface applied wear protection layers. If nickel shares occur in the surface is not a CVD coating at all possible.
  • a cermet which has a hard material content of 95 to 75 mass% and 5 to Has 25% by mass of Co and / or Ni binder, the hard material phase made of carbonitrides with a cubic B1 crystal structure exists and 30 to 60 mass% Ti, 5 to 25 mass% W, 5 to 15 Mass% Ta, of which up to 70 mass% can be replaced by Nb, 0 to 12 mass% Mo, 0 to 5 mass% V, 0 to 2 mass% Cr, 0 to 1 mass% Hf and / or Zr contains.
  • the (C + N) content in the carbonitride phase should be> 80 mol%, the nitrogen content N / (C + N) is between 0.15 and 0.7.
  • a 0.01 up to 3 ⁇ m determined surface layer depth is the content of Binder phase in relation to the underlying cermet core area less than 30 mass%.
  • the titanium content is in this zone 1.1 to 1.3 times the size of the underlying cermet core areas, whereas the sum of the tungsten contents, Tantalum and any proportions of molybdenum, niobium, vanadium and / or chromium in only 0.7 to 1 times the amount relative to the underlying cermet core areas.
  • this cermet is in the same Surface edge zone the relative content of binder phase 90 mass%, the relative Ti content 100% to 120% and the Sum of the contents of tungsten, tantalum and possibly molybdenum, niobium, Vanadium, chromium between 80 mass% and 110 mass%, each relative to the core of the cermet.
  • This edge structure according to the above-mentioned document is produced by a process for cermet production, according to which the green compact produced by mixing, grinding, granulating and pressing is first heated to the melting point of the binder phase under vacuum with a pressure below 10 -1 mbar (10 Pa). Upon further heating from the melting temperature of the binder phase to the sintering temperature, which is maintained for 0.2 to 2 hours, and a subsequent cooling to 1200 ° C., a gas mixture of N 2 and Co with an N 2 / (N 2 + is in the furnace atmosphere CO) ratio varies between 0.1 and 0.9 under an alternating around a mean pressure of 10% to 80% of an average value in a period between 40 and 240 sec. The mean pressure and the aforementioned ratio are selected depending on the binder content.
  • EP 0 687 744 A2 also describes a nitrogen-containing one Sintered hard metal alloy with at least 75% by weight and maximum 95% by weight of hard phase, titanium, an element of Group VIa of the periodic table and WC, rest of the binder phase Contains nickel and cobalt.
  • the alloy has 5 wt .-% to 60% by weight titanium in the form of TiC and 30% by weight to 70% by weight of a metal in the form of a metal carbide.
  • the cemented carbide alloy supposed to be a soft, outermost surface layer own, which consists of a binder phase and toilet. Under this outermost layer is a 3 ⁇ m to 30 ⁇ m thick Layer consisting essentially of WC with low binder metal content should exist.
  • a cemented carbide alloy of the composition mentioned at the beginning also describes EP 0 822 265 A2.
  • the one from here produced sintered body should have an edge area that divided into three layers, of which the outermost layer a WC content between 0 and 30 vol .-%, remainder binder phase, the middle layer 50 vol.% to 100 vol.% WC, remainder binder phase, and a third lowest layer has a toilet volume fraction between 0 and 30 vol .-%, the rest of the binder.
  • This task is performed by a hard metal or cermet body solved according to claim 1, characterized in accordance with the invention is that from the body surface around 2 to 20 microns, preferably Project 5 to 10 ⁇ m WC crystallites. Through this Crystals a coarse-grained surface morphology is generated, which determines the adhesion of applied surface layers Interlocking of the crystallites with the separated phases creates. These WC crystallites are in the edge zone near the surface so firmly integrated that they can also be used as a trial performed grinding work did not break out. The created one Surface roughness thus provides an ideal "Anchoring" for the application of surface coatings.
  • the WC crystallites are preferably on the Body edge zone or surface with up to 50 vol .-% one cubic phase of another hard material of different composition and binder metal parts connected.
  • This cubic phase can essentially of carbides, nitrides, carbonitrides and / or Oxicarbonitriden at least one of the IVa, Va and / or VIa elements (except W) of the periodic system.
  • the cubic phase can be single or multi-phase, in particular, for example, consist of Ti (C, N) and (Ti, W) C.
  • the hard metal or cermet body especially in the marginal zone near the body surface also metals from the IVa, Va and / or VIa group of Periodic table, preferably W, Ta, Nb, Mo and Cr, included his.
  • the cubic phases in the peripheral zone can each have a homogeneous structure or a local core-edge structure, as it is basically known at cermets.
  • the present invention particularly includes cermet bodies, whose phases with a cubic crystal structure 30 to 60 mass% Titanium, 5 to 15 mass% tantalum and / or niobium, 0 to 12 mass% Molybdenum, 0 to 5 mass% vanadium, 0 to 2 mass% chromium, 0 contain up to 1 mass% hafnium and / or zirconium, in the binder phase up to 2% aluminum and / or metallic Tungsten, titanium, molybdenum, vanadium and / or chromium are dissolved.
  • the edge zones near the surface can be essentially homogeneous be built or a gradient in the composition have or near-surface marginal zones different Composition, being in an outer, attached to the body surface subsequent and to a depth of between 2 ⁇ m and 3 ⁇ m first layer a substantially binder phase free Carbonitridphase is located on an underlying middle layer with a thickness of 5 microns to 150 microns adjoins an essentially pure WC-Co composition and which is followed by a third bottom layer with a thickness of at least 10 ⁇ m and a maximum of 650 ⁇ m, the proportions of Binder phase and the IVa and / or Va elements on the inside of the body present, substantially constant value and the proportion of tungsten on the inside of the body essentially constant value drops.
  • the different layers of the sintered body described above merge continuously about, preferably as the metal of the carbonitride phase Titanium is used.
  • the content of titanium and / or another Element of the IVa to VIa group of the periodic table, tungsten except, is maximum in the outer layer, then falls steeply to a minimum when transitioning to the middle layer Value decreases and increases with the transition to the third lowest Layer up to a penetration depth of approx. 800 ⁇ m from the Surface gradually measured from a medium to that Proportion of the total composition corresponding value inside the body back on, but below the titanium or other Metal content in the outer layer.
  • the nitrogen content in the middle Layer minimal and rises at the transition to the outermost Layer on proportions above average nitrogen content of the alloy that are present in the core interior are.
  • the hard material phase WC can possibly only formed from (Ti, W) C or (Ti, W) (C, N) during sintering.
  • the binder phase content in the middle Layer maximum 0.9 times the binder phase content inside the body, while the tungsten portion in this middle Layer at least 1.1 times that inside the body Proportion of tungsten.
  • border zone areas are also possible, where the individual layers are not sharply apart are separated, but the respective metal and non-metal parts of the alloy gradually over wide transition areas to change.
  • the body characterized according to claim 9 meets in three layers forming the edge area the following conditions:
  • the tungsten and the binder phase maximum 0.8 times that of the total composition resulting share In an outer, on the surface of the body or on one Edge zone with a penetration depth of 1 to a maximum of 3 ⁇ m subsequent and to a depth between 10 microns to 200 microns reaching the layer is the tungsten and the binder phase maximum 0.8 times that of the total composition resulting share.
  • the tungsten mouth rises in this layer the binder phase portion to the inside of the body essentially continuously, whereas the nitrogen content at The body's interior essentially falls off continuously.
  • an underlying middle layer of a thickness between 20 ⁇ m and 400 ⁇ m pass through with increasing depth of penetration the tungsten and binder phase contents a maximum and Contents of elements of the IVa and / or Va group of the periodic table a minimum.
  • the nitrogen content remains at the transition from the middle layer to the lowest layer down to The inside of the body is essentially constant.
  • the alloys of the bodies according to the invention can be up to 2% by mass of chromium and / or molybdenum as well as in the hard material phase TiCN in an amount between 3 to 40 mass% TiCN or contain up to 40% by mass of TiC and / or TiN.
  • the hard metal or cermet body according to the invention is preferably coated with at least one hard material layer and / or a ceramic layer (Al 2 O 3 ) or diamond, cubic boron nitride or similar layers.
  • nitrogen-free mixtures of hard materials with a WC content between 50 mass% and 96 mass% and binding metals these are pressed into a green body and first in a vacuum to about 1200 ° C and then in an inert gas atmosphere to between 1200 ° C and Sintering temperature is heated, after which at the latest when the sintering temperature is reached, a nitrogen and possibly carbon-containing atmosphere is at least temporarily set at a pressure between 10 3 and 10 7 Pa, preferably between 5 x 10 3 Pa and 5 x 10 4 Pa.
  • the temperature is still increased to this temperature and maintained for a holding time of at least 20 minutes or only a slight cooling of at most 2 ° C./min is carried out in this time of at least 20 minutes.
  • the set nitrogen and possibly carbon-containing gas atmosphere is maintained until at least 1000 ° C. is reached.
  • the sintered body heated up to 1200 ° C during the heating phase and this Temperature a period of at least 20 minutes, preferably held more than an hour before moving on to the next Heating to the sintering temperature is continued.
  • the inert gas pressure of 10 3 to 10 4 Pa is maintained until the sintering temperature is reached, after which an atmosphere containing nitrogen and possibly carbon is set at a higher pressure of more than 10 4 Pa above 1450 ° C., preferably close to 1500 ° C. ,
  • the sintered body can be made of a hard metal or a cermet after at least one Maintaining the sintering temperature of a "pendulum annealing" for 0.5 hours undergo, i.e. a temperature control in which at least once, preferably several times, the eutectic melting point is oscillating below and exceeded, the Temperature by at least 20 ° C, preferably at least 50 ° C, each exceeds and falls below the eutectic point.
  • the atmospheric gas mixture set after reaching the sintering temperature can be selected from N 2 and CO with a ratio N 2 / (N 2 + CO) between 0.1 and 0.9.
  • the surface of the finished sintered body using gases or liquids are subjected to an etching treatment, whereby the WC crystallites emerge more clearly through relief formation.
  • this measure can be used to remove binder metal components serve on the substrate body surface, which at a diamond coating is undesirable.
  • a WC-TiC-TiN-TaC-NbC-Co green compact with a composition with 1.3 mass% TiC was subjected to the temperature control shown in FIG. 1.
  • the green body was heated for about 3 hours in a vacuum atmosphere to a temperature of 1200 ° C, which was then maintained for about half an hour.
  • An inert gas was then admitted at a pressure of 5 ⁇ 10 3 Pa and the heating was continued at 1485 ° C. until the sintering point was reached.
  • the inert gas atmosphere was replaced by a nitrogen atmosphere under a pressure of 5 ⁇ 10 4 Pa.
  • the sintering temperature was maintained for about half an hour after which the furnace atmosphere was cooled to 1400 ° C.
  • the temperature of 1400 ° C was maintained for about 5 hours after which the sintered body was cooled to room temperature.
  • the nitrogen atmosphere was maintained under the pressure mentioned.
  • Fig. 4 shows a scanning electron micrograph of the 2 that reveals the surface of the sintered body that the WC crystallites are firmly integrated into the surface edge zones from which they protrude by 2 ⁇ m to 20 ⁇ m.
  • the WC crystallites are depending on the sintering conditions, i.e. after setting the atmosphere more or less large Proportion of face-centered cubic phase (Ti, Ta, Nb, W) (C, N) as well as binder phase.
  • Ti, Ta, Nb, W Proportion of face-centered cubic phase
  • C, N binder phase
  • the proportion of tantalum and niobium carbides that can be estimated according to this is about 20 mol%. From the peak shape of the diffraction lines can be an inhomogeneous and / or at least two-phase structure similar to the cubic face-centered phase as this is known from cermets with a core-shell structure is.
  • FIG. 6 shows an edge zone structure of a sintered body another mixture that contains a (larger) proportion of TiC, namely 6 mass%.
  • FIG. 7 An edge zone structure of a further sintered sample is shown in FIG. 7.
  • the structure according to Fig. 7 was during a treatment of the body obtained according to Fig. 8.
  • the temperature control 1 is after the hold time the sintering temperature of the body cooled to 1200 ° C and thereafter reheated to 1400 ° C.
  • the temperature of 1400 ° C has been maintained for about 2 1/2 hours before the body has cooled down.
  • Fig. 9 protrude from the surface edge zone WC crystallites out in an intermediate layer with a Enrichment of face-centered cubic phase from carbides, Nitrides and carbonitrides of titanium, tantalum, niobium or Wolframs adjoins.
  • This layer does not have to be strictly single-phase or be homogeneous, but can be made of higher carbon and there are low-carbon phases.
  • binder material are also incorporated.
  • the interior of the body connects to the edge zone of the sintered core, which in its composition and its layer structure Overall composition corresponds.
  • the outlined structure those in their structure from layers below deviates, is particularly due to heat treatments with changing Temperatures such as those shown in FIG.
  • FIGS. 10 and 11 Variations in the temperature control are shown in FIGS. 10 and 11.
  • the temperature profile according to Fig. 8. Which depends on the holding time Sintering temperature subsequent cooling rate was with 2 ° C / min selected. Both the heating rate of 1200 ° C up to 1400 ° C as well as after a holding time of approx. 2 1/2 The cooling rate selected for hours is 5 ° C / min.
  • FIG. 11 is compared to Fig. 1 also a higher heating rate of 5 ° C / min in the first two heating phases instead of that shown in Fig. 1 significantly lower heating rate selected Service.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Claims (10)

  1. Corps en métal dur ou en cermet avec une phase de matière dure en WC et/ou avec au moins un carbure, un nitrure, un carbonitrure et/ou un oxycarbonitrure d'au moins un des éléments du groupe IVa, Va ou VIa de la classification périodique des éléments et avec une phase de métal liant en Fe, Co et/ou Ni dont la part est comprise entre 3 et 25 % en masse,
    caractérisé par le fait que des cristallites de WC projettent de la surface du corps de 2 à 20 µm, de préférence de 5 à 10 µm.
  2. Corps en métal dur ou en cermet selon la revendication 1, caractérisé par le fait que la part de WC à la phase de matière dure est d'au moins 50 % en masse et de 96 % en masse au maximum, et/ou qu'aussi des métaux du groupe IVa, Va et/ou VIa de la classification périodique des éléments, de préférence W, Ta, Nb, Mo ou Cr sont intégrés dans la structure du corps en métal dur ou en cermet.
  3. Corps en métal dur ou en cermet selon la revendication 1 ou 2, caractérisé par le fait que les cristallites de WC sur la zone marginale du corps forment un composite avec jusqu'à 50 % volumétrique d'une phase cubique d'une autre matière dure d'une composition différente et avec des parts de métal liant, de préférence la phase cubique se composant pour l'essentiel de carbures, de nitrures, de carbonitrures et/ou d'oxycarbonitrures d'au moins un des éléments IVa, Va et/ou VIa de la classification périodique des éléments, en particulier du Ti, la phase cubique pouvant être réalisée à une ou à plusieurs phases et/ou la structure cristalline cubique de la phase de matière dure présentant une structure noyau-bord.
  4. Corps en métal dur ou en cermet selon l'une des revendications 1 à 3, caractérisé par le fait que les phases avec une structure cristalline cubique contiennent dans la phase de matière dure 30 à 60 % en masse de Ti, 5 à 15 % en masse de Ta et/ou de Nb, 0 à 12 % en masse de Mo, 0 à 5 % en masse de V, 0 à 2 % en masse de Cr, 0 à 1 % en masse de Hf et/ou de Zr, et/ou que jusqu'à 2 % de Al et/ou du W, Ti, Mo, V et/ou du Cr métallique(s) sont dissous dans phase liant.
  5. Corps en métal dur ou en cermet selon l'une des revendications 1 à 4, caractérisé par le fait que la zone marginale du corps se compose de plusieurs couches ayant des compositions différentes,
    a) dans une première couche extérieure qui est contiguë à la surface du corps et qui s'étend jusqu'à une profondeur comprise entre 2 µm et 30 µm, une phase de carbonitrure pour l'essentiel exempte de phase liant étant présente, qui
    b) est contiguë à une couche de milieu qui est située la-dessous et qui présente une épaisseur de 5 µm à 150 µm et une composition WC-Co pour l'essentiel pure, et que
    c) dans une troisième couche la plus inférieure présentant une épaisseur d'au moins 10 µm et de 650 µm au maximum, les parts de la phase liant et des éléments IVa et/ou Va de la classification périodique des éléments augmentent de manière à passer à la valeur pour l'essentiel constante existant à l'intérieur du corps, et la part de tungstène diminue de manière à passer à la valeur pour l'essentiel constante à l'intérieur du corps.
  6. Corps en métal dur ou en cermet selon l'une des revendications 1 à 4, caractérisé par le fait que la zone marginale du corps se compose de plusieurs couches ayant des compositions différentes,
    a) dans une couche extérieure qui est contiguë à la surface du corps ou à une zone marginale, avec une profondeur de pénétration de 1 µm à 3 µm au maximum, et qui s'étend jusqu'à une profondeur comprise entre 10 µm et 200 µm, la part de tungstène dans la phase de matière dure et la part de la phase liant étant au maximum 0,8 fois la part résultant de la composition totale, et dans cette couche la part de tungstène et la part de la phase liant augmentant pour l'essentiel continûment vers l'intérieur du corps et la part d'azote diminuant pour l'essentiel continûment vers l'intérieur du corps,
    b) que dans une couche de milieu située là-dessous et ayant une épaisseur comprise entre 20 µm et 400 µm, les teneurs en tungstène et de la phase liant passent - avec une profondeur progressive de pénétration - par un maximum et les teneurs en éléments du groupe IVa et/ou Va de la classification périodique des éléments passent par un minimum, et
    c) que dans une troisième couche la plus inférieure qui s'étend jusqu'à une profondeur de pénétration de 1 mm au maximum, mesurée depuis la surface du corps, les parts de tungstène et de la phase liant diminuent de manière à passer à des valeurs pour l'essentiel constantes à l'intérieur du corps et les teneurs en éléments du groupe IVa et/ou Va de la classification périodique des éléments augmentent de manière à passer à des valeurs pour l'essentiel constantes.
  7. Corps en métal dur ou en cermet selon l'une des revendications 1 à 6, caractérisé par le fait que du moins une couche se compose d'un carbure, d'un nitrure et/ou d'un carbonitrure du titane ou du zirconium et/ou de Al2O3 et/ou de diamant, de nitrure. de bore cubique, de nitrure de carbone (CNx), de clusters de carbone ou d'autres composés présentant au moins un des éléments tel que B, C, N et/ou O.
  8. Procédé de fabrication d'un corps en métal dur ou en cermet avec une part de WC à la phase de matière dure comprise entre 50 % en masse et 96 % en masse selon l'une des revendications 1 à 7, caractérisé par le fait qu'un mélange exempt d'azote de matières dures et de métaux liants est précomprimé en un compact vert et est chauffé dans une atmosphère à vide ou de gaz inerte à une température comprise entre 1200°C et la température de frittage, après quoi - au plus tard lorsque la température de frittage est atteinte - une atmosphère contenant de l'azote et, le cas échéant, du carbone avec une pression comprise entre 103 et 107 Pa, de préférence entre 5 x 103 Pa et 5 x 104 Pa, est réglée au moins temporairement, que, ensuite, on chauffé le cas échéant à la température de frittage et celle-ci est maintenue pendant une durée de maintien d'au moins 20 minutes ou seulement un faible refroidissement de 2°C/min au maximum est réalisé dans ce temps d'au moins 20 minutes, et que finalement on refroidit, l'atmosphère de gaz contenant de l'azote et, le cas échéant, du carbone qui est réglée lors de l'échauffement ou au plus tard lorsque la température de frittage est atteinte, étant maintenue jusqu'à ce qu'une température d'au moins 1000°C soit atteinte dans la phase de refroidissement.
  9. Procédé de fabrication d'un corps en métal dur ou en cermet selon l'une des revendications 1 à 8, caractérisé par le fait qu'un mélange de matières dures et de métaux liant, qui contient au moins 0,2 % en masse d'azote est préformé en un corps (compact vert) et est chauffé à la température de frittage, l'atmosphère de gaz inerte ou à vide réglée durant l'échauffement étant échangée - à partir du moment où une température comprise entre 1200°C et la température de frittage est atteinte - au moins temporairement contre cette atmosphère de pression de gaz en introduisant des gaz contenant de l'azote et, le cas échéant, en sus du carbone, sous une pression de 5 x 104 Pa et 107 Pa, que le corps est fritté au moins pour 0,5 heure, de préférence pour 1 heure, et est ensuite refroidi, l'atmosphère de gaz content de l'azote qui est réglée lors de l'échauffement à partir de 1200°C ou plus tard étant maintenue jusqu'à ce qu'une température d'au moins 1000°C soit atteinte dans la phase de refroidissement.
  10. Procédé selon la revendication 8 ou 9, caractérisé par le fait que l'atmosphère contenant de l'azote et, le cas échéant, du carbone est réglée par l'introduction de précurseurs, c'est-à-dire de gaz contenant N et, le cas échéant, C, ou, le cas échéant, par des matières au creuset contenant C, l'azote et le carbone est formé in situ dans l'atmosphère de gaz, et/ou que, durant la phase d'échauffement, la température est portée à 1200°C et que cette température est maintenue pour une durée d'au moins 20 minutes, de préférence de plus d'une heure, avant de continuer l'échauffement à la température de frittage.
EP99941397A 1998-07-08 1999-06-26 Corps en metal dur ou en cermet, et son procede de production Revoked EP1095168B1 (fr)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE19830385 1998-07-08
DE19830385 1998-07-08
DE19845376A DE19845376C5 (de) 1998-07-08 1998-10-02 Hartmetall- oder Cermet-Körper
DE19845376 1998-10-02
DE1999122057 DE19922057B4 (de) 1999-05-14 1999-05-14 Hartmetall- oder Cermet-Körper und Verfahren zu seiner Herstellung
DE19922057 1999-05-14
PCT/DE1999/001875 WO2000003047A1 (fr) 1998-07-08 1999-06-26 Corps en metal dur ou en cermet, et son procede de production

Publications (2)

Publication Number Publication Date
EP1095168A1 EP1095168A1 (fr) 2001-05-02
EP1095168B1 true EP1095168B1 (fr) 2002-07-24

Family

ID=27218491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99941397A Revoked EP1095168B1 (fr) 1998-07-08 1999-06-26 Corps en metal dur ou en cermet, et son procede de production

Country Status (4)

Country Link
US (1) US6506226B1 (fr)
EP (1) EP1095168B1 (fr)
AT (1) ATE221140T1 (fr)
WO (1) WO2000003047A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472060B1 (en) 2000-01-19 2002-10-29 Seco Tools Ab Coated body with nanocrystalline CVD coating for enhanced edge toughness and reduced friction
US6638474B2 (en) * 2000-03-24 2003-10-28 Kennametal Inc. method of making cemented carbide tool
CN100378239C (zh) * 2000-03-24 2008-04-02 钴碳化钨硬质合金公司 硬质合金工具及其制备方法
KR20030029942A (ko) * 2000-09-08 2003-04-16 신젠타 파티서페이션즈 아게 메소트리온 조제물
US6797369B2 (en) * 2001-09-26 2004-09-28 Kyocera Corporation Cemented carbide and cutting tool
US20050072269A1 (en) * 2003-10-03 2005-04-07 Debangshu Banerjee Cemented carbide blank suitable for electric discharge machining and cemented carbide body made by electric discharge machining
US20050241239A1 (en) * 2004-04-30 2005-11-03 Chien-Min Sung Abrasive composite tools having compositional gradients and associated methods
SE0700602L (sv) * 2007-03-13 2008-09-14 Sandvik Intellectual Property Hårdmetallskär och metod att tillverka detsamma
DE102008048967A1 (de) * 2008-09-25 2010-04-01 Kennametal Inc. Hartmetallkörper und Verfahren zu dessen Herstellung
WO2012004755A2 (fr) * 2010-07-08 2012-01-12 Kennametal India Limited Filière pour fabriquer une soupape de moteur et procédé d'assemblage
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
EP2650123A1 (fr) 2012-04-10 2013-10-16 PinTail International B.V. Cuir artificiel respirable
JP6614491B2 (ja) 2014-12-25 2019-12-04 三菱マテリアル株式会社 複合焼結体切削工具および表面被覆複合焼結体切削工具

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2717842C2 (de) 1977-04-22 1983-09-01 Fried. Krupp Gmbh, 4300 Essen Verfahren zur Oberflächenbehandlung von gesinterten Hartmetallkörpern
US5147996A (en) * 1989-09-15 1992-09-15 Grant Tfw, Inc. Tool joint
DE69025582T3 (de) 1989-12-27 2001-05-31 Sumitomo Electric Industries Beschichteter Hartmetallkörper und Verfahren zu seiner Herstellung
US5403373A (en) 1991-05-31 1995-04-04 Sumitomo Electric Industries, Ltd. Hard sintered component and method of manufacturing such a component
JPH05171442A (ja) * 1991-12-25 1993-07-09 Sumitomo Electric Ind Ltd 被覆超硬合金およびその製造方法
SE9200530D0 (sv) * 1992-02-21 1992-02-21 Sandvik Ab Haardmetall med bindefasanrikad ytzon
SE505425C2 (sv) 1992-12-18 1997-08-25 Sandvik Ab Hårdmetall med bindefasanrikad ytzon
EP0864661B1 (fr) * 1993-02-05 2003-10-01 Sumitomo Electric Industries, Ltd. Alliage dur fritté renfermant de l'azote
US5494635A (en) * 1993-05-20 1996-02-27 Valenite Inc. Stratified enriched zones formed by the gas phase carburization and the slow cooling of cemented carbide substrates, and methods of manufacture
US5370195A (en) * 1993-09-20 1994-12-06 Smith International, Inc. Drill bit inserts enhanced with polycrystalline diamond
DE4423451A1 (de) 1994-05-03 1995-11-09 Krupp Widia Gmbh Cermet und Verfahren zu seiner Herstellung
EP0822265B1 (fr) 1994-05-19 2001-10-17 Sumitomo Electric Industries, Ltd. Alliage dur fritté contenant de l'azote
IL110663A (en) 1994-08-15 1997-09-30 Iscar Ltd Tungsten-based cemented carbide powder mix and cemented carbide products made therefrom
SE516071C2 (sv) * 1999-04-26 2001-11-12 Sandvik Ab Hårdmetallskär belagt med en slitstark beläggning

Also Published As

Publication number Publication date
EP1095168A1 (fr) 2001-05-02
US6506226B1 (en) 2003-01-14
WO2000003047A1 (fr) 2000-01-20
ATE221140T1 (de) 2002-08-15

Similar Documents

Publication Publication Date Title
DE3936129C2 (de) Klingenteil aus zementiertem Carbid auf Basis von Wolframcarbid für Schneidwerkzeuge sowie Verfahren zur Herstellung desselben
DE69218210T2 (de) Mehrfach plattiertes Hartlegierungsschneidwerkzeug
DE69214655T2 (de) Mehrlagig beschichtetes Schneidwerkzeug aus Hartmetallegierung
DE3688999T2 (de) Sinterhartmetallkörper für Werkzeuge.
DE69215168T2 (de) Verbesserte, mit Titancarbonitrid überzogene Schneideinsätze sowie Verfahren zu deren Herstellung
DE69025582T2 (de) Beschichteter Hartmetallkörper und Verfahren zu seiner Herstellung
DE69527124T3 (de) Harter Verbundwerkstoff für Werkzeuge
DE2005707C3 (de) Hartstoffpulver zur Herstellung von metallgebundenen Hartstofflegierungen
DE60126068T2 (de) Werkzeug aus zementiertem karbid und verfahren seiner herstellung
DE69208520T2 (de) Karbonitrid auf Titanbasis mit Anreicherung der Bindemetallphase
DE3211047C2 (fr)
EP1990438B1 (fr) Outil doté d'un revêtement
DE68910081T2 (de) Schneidkörperblatt und Verfahren zu dessen Herstellung.
EP1095168B1 (fr) Corps en metal dur ou en cermet, et son procede de production
DE68921246T2 (de) Gesinterte, oberflächenveredelte Legierung mit und ohne Hartbeschichtung sowie Verfahren zur Herstellung der Legierung.
EP0330913B1 (fr) Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu
DE112004000720T5 (de) Aluminiumoxidschutzfilm und Herstellungsverfahren dafür
EP1511870B1 (fr) Corps substrat en metal dur et procede de fabrication
EP1957429B1 (fr) Corps en metal dur enduit
DE19922057B4 (de) Hartmetall- oder Cermet-Körper und Verfahren zu seiner Herstellung
EP0758407B1 (fr) Cermet et son procede de production
DE2546623C2 (fr)
DE19845376C5 (de) Hartmetall- oder Cermet-Körper
DE102008048967A1 (de) Hartmetallkörper und Verfahren zu dessen Herstellung
DE10117657B4 (de) Komplex-Borid-Cermet-Körper und Verwendung dieses Körpers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT LU SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011128

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT LU SE

REF Corresponds to:

Ref document number: 221140

Country of ref document: AT

Date of ref document: 20020815

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020724

REF Corresponds to:

Ref document number: 59902135

Country of ref document: DE

Date of ref document: 20020829

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021024

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SANDVIK AB

Effective date: 20030423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030626

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030626

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SANDVIK AB

Effective date: 20030423

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SANDVIK AB

Effective date: 20030423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070615

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20070821

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20070821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070614

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070615

Year of fee payment: 9