EP0330913B1 - Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu - Google Patents
Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu Download PDFInfo
- Publication number
- EP0330913B1 EP0330913B1 EP89102623A EP89102623A EP0330913B1 EP 0330913 B1 EP0330913 B1 EP 0330913B1 EP 89102623 A EP89102623 A EP 89102623A EP 89102623 A EP89102623 A EP 89102623A EP 0330913 B1 EP0330913 B1 EP 0330913B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nitride
- carbide
- aluminium
- process according
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 106
- 239000002184 metal Substances 0.000 title claims abstract description 105
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 150000004767 nitrides Chemical class 0.000 claims abstract description 54
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 40
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 39
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 26
- 150000002739 metals Chemical class 0.000 claims abstract description 24
- 239000004411 aluminium Substances 0.000 claims abstract 18
- 239000000203 mixture Substances 0.000 claims description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 22
- 229910052799 carbon Inorganic materials 0.000 claims description 20
- 150000003624 transition metals Chemical class 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 17
- 229910052723 transition metal Inorganic materials 0.000 claims description 17
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 229910009594 Ti2AlN Inorganic materials 0.000 claims description 14
- 239000013078 crystal Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 230000000737 periodic effect Effects 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 6
- 229910004447 Ta2AlC Inorganic materials 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 229910019637 Nb2AlC Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910019829 Cr2AlC Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- -1 V2AlC Inorganic materials 0.000 claims 2
- 239000011230 binding agent Substances 0.000 abstract description 33
- 238000005520 cutting process Methods 0.000 abstract description 30
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 abstract description 7
- 239000010936 titanium Substances 0.000 description 15
- 229910052719 titanium Inorganic materials 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000003801 milling Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910003310 Ni-Al Inorganic materials 0.000 description 2
- 208000012886 Vertigo Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000001995 intermetallic alloy Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/058—Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
Definitions
- the invention relates to a method for producing a sintered hard metal body, which consists of at least one hard material from the field of carbides, nitrides and / or carbonitrides of the transition metals of groups 4, 5 and / or 6 of the periodic table and at least one of the binder metals iron, nickel and Contains cobalt, the hard material being present as carbide and / or mixed carbide and / or nitride and / or mixed nitride in the form of cubic crystals or mixed crystals, and is produced by mixing and grinding powdered starting materials and by pressing and subsequent sintering of the starting powder mixture.
- the invention also relates to a sintered hard metal body which can be produced by means of the method according to the invention.
- a sintered body for a processing tool which consists of 80 to 95% by volume boron nitride and, moreover, a binder, the aluminum components and a carbide, nitride and / or carbonitride of IVa or Va transition metals of the periodic system, which may contain a complex nitride such as Ti2 AlN. Copper and / or metals of the iron group are proposed as binders.
- Processes for the production of sintered hard metal bodies are basically from e.g. Kieffer-Benesovsky, "Hartmetall”, 1965, Springer-Verlag, as well as “Hartmetall für die Praktiker, build, manufacture, properties and industrial application of a modern material group", VDI-Verlag GmbH, 1988, as well as the possible compositions of the carbide body .
- the proportion of binder is between 3 and 30% by mass.
- Sintered hard metals based on titanium carbide (US Pat. No. 2,967,349) or titanium carbonitride as hard material phase (AT-PS 2 99 561, US Pat. No. 3,994,692) - which are each bound by a nickel-molybdenum binder - are known to be distinguished compared to conventional hard metal with tungsten carbide as the one hard material phase and cubic titanium mixed carbides - in which some of the titanium atoms are replaced by tantalum, niobium, tungsten - as the second hard material phase and cobalt as binder metal due to increased wear resistance.
- titanium carbide and titanium carbonitride hard metal can only be used to a limited extent as cutting tools, especially at high cutting speeds and with cyclical thermal loads (such as during milling); under the effect of the high temperatures occurring at the cutting edge, the binder metal loses its strength and tends to undergo plastic deformation under the influence of the cutting forces.
- the significantly lower thermal conductivity of TiC-Mo, Ni and Ti (C, N) -Mo, Ni hard metals compared to tungsten carbide leads to heat build-up, especially at the most stressed point.
- US Pat. No. 3,971,656 describes a hard metal in which the hard material particles consist of two phases, namely a titanium and nitrogen-rich carbonitride mixed phase inside the hard material particle and another phase which is rich in metals of the 6th group in the periodic table and is low in nitrogen and which envelops the carbonitride mixed phase. It is known that titanium nitride increases the crust resistance of hard metals during cutting operations compared to titanium carbide. According to the teaching of US Pat. No. 3,971,656, it is assumed that the equilibrium is established within the hard material particle consisting of two mixed phases.
- the core of the hard material particle therefore consists of relatively carbon-rich carbonitride, since unalloyed titanium nitride cannot be in equilibrium with the required second (Mo, W) -rich phase. According to US Pat. No. 3,971,656, a hard metal is thus created whose wear resistance is not yet optimal.
- Another way to create cemented carbide with improved high temperature strength is to increase the heat resistance of the binder metal.
- the binder metal in addition to molybdenum, which nickel can harden through solid solution hardening, the binder metal was additionally alloyed with aluminum in order to emulate the effect of ⁇ ′-hardening (hardening by precipitation of coherent particles with a car structure) known from the superalloys in the binder phase.
- ⁇ ′-hardening hardening by precipitation of coherent particles with a car structure
- the occurrence of ⁇ ′-phases was demonstrated by electron microscopic investigations of aluminum alloy binder phases in Ti (C, N) -Mo, Ni hard metals.
- the addition of aluminum resulted in an increase in the hardness measured at room temperature, which, however, is associated with a decrease in the bending strength (H. Doi and K.
- the The prescribed carbon content of the sintered alloy is strictly observed so that the amount of titanium required for a coherent elimination of the ⁇ ′ phase from the hard material dissolves. Only when the ratio of the proportion of aluminum and titanium dissolved in the binder metal is approximately the same is a noticeable influence on the properties of the binder metal to be expected. If the titanium content is too high, the ⁇ ′ excretion becomes metastable; in the absence of titanium, the coherence voltage becomes too low, which reduces the hardening effect at medium temperatures.
- AlN is added to the binder described in DE-PS 28 30 010 to improve the heat resistance; this remains in the structure as a "dispersed phase" and improves hardness.
- AlN forms neither with TiC nor with TiN mixed crystals, is a non-metallic hard material that does not have good wetting properties, is also non-resistant to atmospheric moisture in finely divided form and decomposes under the action of it to Al (OH) 3 and NH3. This has a particularly disadvantageous effect when grinding with grinding liquids that are not entirely free of water.
- the object of the invention is to enable the production of a sintered hard metal which, while avoiding the disadvantages described above, has increased wear resistance even at higher temperatures.
- the sintered hard metal should in particular also be usable as a cutting tool or cutting plate and, particularly in the machining of short and long-chipping workpiece materials, should have significantly improved cutting performance.
- the task related to the method is achieved by the measures listed in claim 1.
- the object related to the product is achieved by the features of claim 15.
- Subclaims 2 to 14 describe further developments of this method.
- Aluminum-containing complex carbides or complex nitrides should preferably be used, furthermore those complex carbides or complex nitrides which contain substances which have the same or similar effects to aluminum.
- the substances NbCrN, TaCrN, V5Si3N 1-x , Mo5Si3C 0.6 offer.
- aluminum-containing complex carbides and / or nitrides from the family of the H phases and / or Chi phases and / or Kappa phases are used.
- the following compounds are suitable as aluminum-containing complex carbides or complex nitrides from the family of the H, Chi and Kappa phases: Ti2AlN, Ti2AlC, V2AlC, V2AlN, Nb2AlC, Ta2AlC, Cr2AlC, Nb3Al2C, Ta3Al2C, Nb3AlN, Mo3Al2C, MoCr2Al2C, Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W- Mn-Al-C, W-Fe-Al-C.
- the aluminum-containing complex carbides and nitrides are produced by reacting the nitride or carbide of aluminum with the powdery transition metals or by reacting the nitrides or carbides of the transition metals with aluminum. They are made according to the usual in the carbide industry Crushing methods are pulverized and processed with the other alloy components of the hard metal in a manner known per se to form a sintered hard metal body - in particular cutting tools or cutting plates.
- the relative proportions between the aluminum-containing complex carbide or nitride and binder metal are selected so as to achieve optimal properties so that - assuming that the entire aluminum content of the complex carbide or nitride remains in the sintered (i.e. finished) hard metal body - the aluminum content of the binder metal 20 Mass%, preferably 10 mass%, does not exceed; in the sintered hard metal body, the minimum aluminum content in the binder metal should be in the order of 1% by mass.
- the aluminum content of the binder metal is between 2 and 8% by mass.
- the complex carbides and nitrides are largely resistant to the commonly used grinding aids. A chemical attack on the complex carbides and nitrides or hydrolysis of these compounds is not to be feared.
- the complex carbides and nitrides in question decompose in the presence of nickel and / or cobalt at the sintering temperatures usually used (about 1350 to 1550 ° C.), the monocarbides or mononitrides of the transition metals of the 4th to 4th 6.
- Eliminate group of the periodic table while aluminum is dissolved in excess of the nickel cobalt, solidifies the binder by solid solution hardening and, if a minimum content of aluminum in the binder metal is exceeded, is excreted as a ⁇ '-phase when cooling (e.g. H. Nowotny et al : Montash. Chem. 114 (1985), 127-135).
- part of the transition metal diffuses into the hard material particles; another part remains dissolved in the binder metal and strengthens the binder metal by means of mixed crystal hardening.
- the monocarbides and nitrides of the transition metals which form during the reaction of the complex carbides and nitrides with the liquid binder metal are epitaxially deposited on the surface of the hard material particles and completely envelop the hard material particle.
- sintering temperatures between 1350 ° C and 1550 ° C and sintering times of up to 2 hours, the diffusion rates in the hard material particles are not sufficient to bring about a metallurgical equilibrium between the hard material particle in question and its shell made of monocarbides or nitrides of the transition metals.
- the shell made of monocarbides or nitrides of the transition metals forms a diffusion-inhibiting barrier layer, which also prevents further material exchange between the hard material particle in question and the binder metal.
- the chemical composition of the core of the coated hard material particle in the sintered hard metal is thus essentially identical to the chemical composition of the corresponding hard material particle in the starting powder mixture from which the hard metal body was produced by pressing and sintering.
- the cubic mixed crystal forming the coated hard material particle also remains in an imbalance state in the sintered hard metal body. This phenomenon is noticeable in metallographic grinding in that even fine-grained hard material particles have a clearly recognizable edge zone.
- this edge zone made of monocarbides and nitrides of the transition metals can be clearly distinguished both with regard to their metal components (generally: transition metals of the 4th and 6th group of the periodic table) and their non-metal components (carbon and nitrogen).
- the sintered hard metal according to the invention combines the favorable properties of the carbides of the transition metals in the peripheral zone, which are readily wettable by the conventional binder metals, with the high wear resistance of the nitrides in the core and, due to the content of titanium and aluminum in the binder metal, has such a high wear resistance that the cutting tools produced therefrom or cutting inserts have significantly improved cutting performance.
- Another advantage of the hard metal according to the invention is that during the implementation of the complex carbides and -ni tride with the liquid binder metal forming monocarbides and nitrides of the transition metals are epitaxially deposited on the surface of the hard material particles and thus prevent a further change in the hard material core under the effect of the liquid binder metal.
- the sintered hard metal body which can be produced by means of the method according to the invention, is essentially characterized in that hard materials forming the starting powder mixture are essentially present in their original composition in the sintered hard metal body (i.e. after completion of the manufacturing process):
- the existing carbides and / or mixed carbides and / or nitrides and / or mixed nitrides encased with a diffusion-inhibiting layer thus indicate from their structure that an equilibrium in the metallurgical sense has been avoided between the different hard materials within the hard material particle. This deliberately created imbalance condition results in the abovementioned improved wear resistance - even under extreme working conditions.
- the conventional hard metal used for comparison (see FIG. 1, left blocks) consists of 57% Tic, 10% TiN, 10% WC, 2% VC, 10% Mo as well as 5.5% Ni and 5.5% Co.
- the hard metals according to the invention with complex nitride-modified binder metal (cf. the blocks in the middle and on the right-hand side of FIG. 1) were made from the same base material with the addition of 0.6% or 2.2% Ti2AlN while simultaneously reducing the nickel and Cobalt content to 5.2% and 4.4% in a manner known per se; in the sintered hard metal, the associated aluminum content in the binder is about 2 or slightly more than 7%.
- the scour depth KT for cutting tests on the workpiece material Cm45N is at a cutting speed of 355 m / min, a cutting time of 12.5 min and a product of cutting depth and feed in the order of magnitude of 1.0 x 0, 1 mm2 / rev for the hard metals to be compared with one another in the range between approximately 30 to 35 ⁇ m.
- the open area wear VB for the conventional hard metal (left) is 450 ⁇ m and becomes smaller with increasing content of Ti2AlN (middle and right side of the illustration). While the crater depth KT could not be improved by the addition of Ti2AlN, the detected open area wear VB decreases with increasing Ti2AlN content from about 450 to 280 ⁇ m.
- FIG. 2 shows the number of strokes of 10 cutting edges for the three previously mentioned hard metals.
- the cutting test was carried out on a shaft made of workpiece material Ck45N, at a cutting speed of 200 m / min with a product of cutting depth and feed of 2.5 x 0.2 mm2 / rev.
- the conventional hard metal (left) only achieves a stroke rate of around 10,000, the addition of 0.6% Ti2AlN already doubles the number of strokes to 20,000; on the other hand, the hard metal, the starting mixture of which 2.2% Ti2AlN has been added (right block in the illustration), even withstands 160,000 blows.
- the hard metals designed according to the invention are clearly superior to the conventional hard metal.
- a tool or a cutting insert made of a hard metal designed according to the invention can achieve a considerably greater cutting performance than a tool made of conventional hard metal: by adding 0.6 or 2.2% Ti2AlN the milling path achieved increases from approximately 800 mm to 1200 mm or 1600 mm.
- the milling tests were carried out on a shaft made of tempered steel 42CrMo4 at a cutting speed of 250 m / min; the associated product of depth of cut, chip cross-section and feed per tooth is 1.0 x 120 x 0.1 mm / tooth.
- Tools or cutting inserts made of hard metal, to which aluminum-containing complex nitrides have been added, are - as the test results prove - clear in terms of cutting performance, especially when turning in interrupted cuts and when milling the tools or cutting inserts that have been made from conventional hard metals think.
- the improved wear resistance - which makes the hard metals according to the invention also interesting for other areas of application - is based on the fact that the starting mixture for producing the hard metal or hard metal body is composed in such a way that certain chemical reactions are initiated very quickly at the beginning of the melting of the binding phase, which result in the formation of a diffusion-inhibiting layer around the surface of the hard material particles of the starting mixture.
- the deliberate selection of the constituents forming the starting powder mixture therefore means that no metallurgical equilibrium can be established in the finished hard metal or hard metal body. This ensures that the optimum properties of the different hard material particles for the intended applications - such as the known wear resistance of the titanium nitride and the known excellent hardness of the titanium carbide - are retained in the finished hard metal.
- the metallurgical equilibrium which is usually given according to the prior art, these individual properties of the hard material particles according to the invention would at least partially be lost.
- the invention consists in the fact that no metallurgical equilibrium is expressly sought and is present.
- FIG. 4 shows a table with eight exemplary embodiments for the composition of the starting powder mixture of the hard metal body according to the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Powder Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
Claims (19)
- Procédé de fabrication d'un corps de métal dur fritté, dans le cas duquel un mélange initial de poudres, constitué par un corps dur du domaine des carbures, nitrures et/ou carbonitrures des métaux transitoires des groupes IV, V et/ou VI de la classification périodique des éléments, sous la forme d'un carbure, et/ou d'un mélange de carbures, et/ou d'un nitrure, et/ou d'un mélange de nitrures, se présentant en cristaux ou en cristaux composés cubiques, par au moins un métal de liaison, c'est-à-dire nickel et/ou cobalt et/ou fer, et par un carbure complexe et/ou un nitrure complexe, est mélangé, moulu, comprimé et ensuite fritté, étant entendu que le carbure complexe et le nitrure complexe, au début de la fusion de la phase de liaison, se décompose en formant un carbure et/ou un nitrure métallique de recouvrement, et se dépose sur la surface supérieure des particules de corps dur du mélange de poudre initial, en formant une couche empêchant la diffusion.
- Procédé suivant la revendication 1, caractérisé en ce qu'on ajoute du carbure et/ou du nitrure complexe jusqu'à 3 % en masse - rapporté à la totalité du mélange de poudre initial.
- Procédé suivant la revendication 1 ou la revendication 2, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium et/ou un carbure complexe contenant de l'aluminium.
- Procédé suivant au moins l'une des revendications 1 à 3, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium et/ou un carbure complexe contenant de l'aluminium de la famille des phases H.
- Procédé suivant la revendication 4, caractérisé en ce qu'on ajoute Ti₂AlC, Ti₂AlN, V₂AlC, Nb₂AlC, Ta₂AlC ou Cr₂AlC.
- Procédé suivant au moins l'une des revendications 1 à 3, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium ou un carbure complexe contenant de l'aluminium de la famille des phases Chi.
- Procédé suivant la revendication 6, caractérisé en ce qu'on ajoute Nb₃Al₂C, Ta₃Al₂C, Nb₃AlN ou Mo₃Al₂C.
- Procédé suivant au moins l'une des revendications 1 à 3, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium ou un carbure complexe contenant de l'aluminium de la famille des phases Kappa.
- Procédé suivant la revendication 8, caractérisé en ce qu'on ajoute Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W-Mn-Al-C ou W-Fe-Al-C.
- Procédé suivant au moins l'une des revendications 1 à 9, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium ou un carbure complexe contenant de l'aluminium dans une quantité telle que, dans le corps de métal dur fritté, la teneur en aluminium ne dépasse pas, dans le métal de liaison, 20 % en masse, de préférence 10 % en masse.
- Procédé suivant au moins l'une des revendications 1 à 10, caractérisé en ce qu'on ajoute le carbure complexe contenant de l'aluminium ou le nitrure complexe contenant de l'aluminium dans une quantité telle que, dans le corps de métal dur fritté, la teneur en aluminium ne dépasse pas dans le métal de liaison 2 à 8 % en masse.
- Procédé suivant au moins l'une des revendications 1 à 11, caractérisé en ce qu'au mélange de poudre initial, on ajoute un ou plusieurs des carbures ou nitrures complexes suivants: Ti₂AlN, Ti₂AlC, V₂AlC, Nb₂AlC, Ta₂AlC, Cr₂AlC, Nb₃Al₂C, Ta₃Al₂C, Nb₃AlN, Mo₃Al₂C, MoCr₂Al₂C, Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W-Mn-Al-C, W-Fe-AlC, NbCrN, TaCrN, V₅Si₃N1-x, Mo₅Si₃C0,6, Ni-Mo-N.
- Procédé suivant au moins l'une des revendications 1 à 12, caractérisé en ce qu'on ajoute un ou plusieurs des carbures ou nitrures complexes suivants: Ti₂AlC, Ti₂AlN, V₂AlC, Nb₂AlC, Ta₂AlC, NbCrN, TaCrN.
- Procédé suivant au moins l'une des revendications 1 à 13, caractérisé en ce qu'on ajoute un ou plusieurs des carbures ou nitrures complexes suivants: Ti₂AlC, Ti₂AlN, V₂AlC, Nb₂AlC, Ta₂AlC.
- Métal dur fritté, qui est fabriqué au moyen d'un procédé suivant au moins l'une des revendications 1 à 14 et qui se présente sous la forme d'un corps dur du domaine des carbures, nitrures et/ou carbonitrures des métaux transitoires des groupes IV, V et/ou VI de la classification périodique des éléments, sous la forme d'un carbure, et/ou d'un mélange de carbures, et/ou d'un nitrure, et/ou d'un mélange de nitrures, se présentant en cristaux ou en cristaux composés cubiques, et est constitué par au moins l'un des métaux de liaison fer, nickel et cobalt, et par au moins un carbure complexe et/ou un nitrure complexe, les corps dur du mélange de poudres final étant essentiellement contenu dans sa composition d'origine.
- Métal dur fritté suivant la revendication 15, caractérisé en ce que la matière dure du mélange de poudre initial est entouré par une enveloppe de monocarbures, et/ou de mononitrures, et/ou de carbures mélangés, et/ou de nitrures mélangés, précipités de façon épitaxique sur sa surface.
- Métal dur fritté suivant la revendication 15 ou la revendication 16, caractérisé en ce que la teneur en carbures complexes, et/ou en nitrures complexes, est de 3 %, rapportée à l'ensemble du mélange initial.
- Métal dur fritté suivant l'une des revendications 11 à 17, caractérisé en ce que, dans le corps de métal dur fritté, la teneur en aluminium ne dépasse pas 20 % en poids, de préférence 10 % en poids, dans le métal de liaison.
- Métal dur fritté suivant l'une des revendications 15 à 18, caractérisé en ce que, dans le corps de métal dur fritté, la teneur en aluminium ne dépasse pas 2 à 8 % en poids dans le métal de liaison.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT89102623T ATE89329T1 (de) | 1988-03-02 | 1989-02-16 | Verfahren zur herstellung eines gesinterten hartmetallkoerpers und gesinterter hartmetallkoerper. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3806602 | 1988-03-02 | ||
DE3806602A DE3806602A1 (de) | 1988-03-02 | 1988-03-02 | Hartmetallkoerper |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0330913A2 EP0330913A2 (fr) | 1989-09-06 |
EP0330913A3 EP0330913A3 (en) | 1990-06-13 |
EP0330913B1 true EP0330913B1 (fr) | 1993-05-12 |
Family
ID=6348548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89102623A Expired - Lifetime EP0330913B1 (fr) | 1988-03-02 | 1989-02-16 | Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu |
Country Status (7)
Country | Link |
---|---|
US (1) | US4944800A (fr) |
EP (1) | EP0330913B1 (fr) |
JP (1) | JPH0711042B2 (fr) |
AT (1) | ATE89329T1 (fr) |
DD (1) | DD279031A5 (fr) |
DE (2) | DE3806602A1 (fr) |
ES (1) | ES2054893T3 (fr) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT392929B (de) * | 1989-03-06 | 1991-07-10 | Boehler Gmbh | Verfahren zur pulvermetallurgischen herstellung von werkstuecken oder werkzeugen |
SE467257B (sv) * | 1989-06-26 | 1992-06-22 | Sandvik Ab | Sintrad titanbaserad karbonitridlegering med duplexa strukturer |
SE469386B (sv) * | 1990-12-21 | 1993-06-28 | Sandvik Ab | Saett att framstaella en sintrad karbonitridlegering foer skaerande bearbetning |
SE9004118D0 (sv) * | 1990-12-21 | 1990-12-21 | Sandvik Ab | Saett foer framstaellning av en sintrad karbonitridlegering foer fin till medelgrov fraesning |
SE469384B (sv) * | 1990-12-21 | 1993-06-28 | Sandvik Ab | Saett att framstaella en sintrad karbonitridlegering foer finfraesning |
US5552108A (en) * | 1990-12-21 | 1996-09-03 | Sandvik Ab | Method of producing a sintered carbonitride alloy for extremely fine machining when turning with high cutting rates |
US5581798A (en) * | 1990-12-21 | 1996-12-03 | Sandvik Ab | Method of producing a sintered carbonitride alloy for intermittent machining of materials difficult to machine |
SE9101385D0 (sv) * | 1991-05-07 | 1991-05-07 | Sandvik Ab | Sintrad karbonitridlegering med styrd korn- storlek |
EP0556788B1 (fr) * | 1992-02-20 | 1997-05-14 | Mitsubishi Materials Corporation | Alliage dur |
US5451365A (en) * | 1993-05-24 | 1995-09-19 | Drexel University | Methods for densifying and strengthening ceramic-ceramic composites by transient plastic phase processing |
JPH06346184A (ja) * | 1993-06-11 | 1994-12-20 | Hitachi Metals Ltd | ベーン用材料およびその製造方法 |
DE9402109U1 (de) * | 1994-02-09 | 1994-03-31 | Maartens Kleinmetaal B.V., Haarlem | Rotationsschneidwerkzeug |
AU1576297A (en) * | 1996-01-16 | 1997-08-22 | Drexel University | Synthesis of h-phase products |
US6228484B1 (en) | 1999-05-26 | 2001-05-08 | Widia Gmbh | Composite body, especially for a cutting tool |
US7572313B2 (en) * | 2004-05-26 | 2009-08-11 | Drexel University | Ternary carbide and nitride composites having tribological applications and methods of making same |
US20080035567A1 (en) * | 2006-08-08 | 2008-02-14 | Sabottke Craig Y | Enhanced membrane separation system |
US8778259B2 (en) | 2011-05-25 | 2014-07-15 | Gerhard B. Beckmann | Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques |
KR102372737B1 (ko) * | 2013-03-14 | 2022-03-10 | 메사추세츠 인스티튜트 오브 테크놀로지 | 소결된 나노결정 합금 |
US10794210B2 (en) | 2014-06-09 | 2020-10-06 | Raytheon Technologies Corporation | Stiffness controlled abradeable seal system and methods of making same |
US11644288B2 (en) | 2015-09-17 | 2023-05-09 | Massachusetts Institute Of Technology | Nanocrystalline alloy penetrators |
CN114150176A (zh) * | 2021-12-02 | 2022-03-08 | 常州市博斯特精密机械有限公司 | 一种抗冲击性能好的钻头生产工艺 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2967349A (en) * | 1959-06-22 | 1961-01-10 | Ford Motor Co | Metallic compositions |
US3507682A (en) * | 1967-06-19 | 1970-04-21 | Ncr Co | Process and apparatus for coating thin film substrates |
BE756565A (fr) * | 1969-09-30 | 1971-03-01 | Ugine Carbone | Alliages durs a base de nitrures |
BE794383A (fr) * | 1972-02-14 | 1973-07-23 | Teledyne Ind | Alliages de carbures pour outils de coupe |
US4347083A (en) * | 1973-03-12 | 1982-08-31 | Union Carbide Corporation | Chemically bonded aluminum coating for carbon via monocarbides |
US4402744A (en) * | 1973-03-12 | 1983-09-06 | Union Carbide Corporation | Chemically bonded aluminum coating for carbon via monocarbides |
US3971656A (en) * | 1973-06-18 | 1976-07-27 | Erwin Rudy | Spinodal carbonitride alloys for tool and wear applications |
US3994692A (en) * | 1974-05-29 | 1976-11-30 | Erwin Rudy | Sintered carbonitride tool materials |
US4049876A (en) * | 1974-10-18 | 1977-09-20 | Sumitomo Electric Industries, Ltd. | Cemented carbonitride alloys |
AU501073B2 (en) * | 1974-10-18 | 1979-06-07 | Sumitomo Electric Industries, Ltd. | Cemented carbonitride alloys |
US4019874A (en) * | 1975-11-24 | 1977-04-26 | Ford Motor Company | Cemented titanium carbide tool for intermittent cutting application |
JPS5823457B2 (ja) * | 1977-08-11 | 1983-05-16 | 三菱マテリアル株式会社 | 強靭サ−メット |
GB2048956B (en) * | 1979-03-29 | 1983-02-16 | Sumitomo Electric Industries | Sintered compact for a machining tool |
GB2063922A (en) * | 1979-11-20 | 1981-06-10 | Metallurg Inc | Sintered hard metals |
GB2070646B (en) * | 1980-03-04 | 1985-04-03 | Metallurg Inc | Sintered hardmetals |
JPS60176973A (ja) * | 1984-02-22 | 1985-09-11 | 三菱マテリアル株式会社 | 切削工具用立方晶窒化硼素基超高圧焼結材料の製造法 |
JPS6177670A (ja) * | 1984-09-25 | 1986-04-21 | 三菱マテリアル株式会社 | 切削工具用立方晶窒化硼素基焼結体の製造方法 |
JPS6183681A (ja) * | 1984-09-27 | 1986-04-28 | 三菱マテリアル株式会社 | 切削工具用立方晶窒化硼素基焼結体の製造方法 |
-
1988
- 1988-03-02 DE DE3806602A patent/DE3806602A1/de active Granted
-
1989
- 1989-02-16 EP EP89102623A patent/EP0330913B1/fr not_active Expired - Lifetime
- 1989-02-16 ES ES89102623T patent/ES2054893T3/es not_active Expired - Lifetime
- 1989-02-16 DE DE8989102623T patent/DE58904302D1/de not_active Expired - Lifetime
- 1989-02-16 AT AT89102623T patent/ATE89329T1/de not_active IP Right Cessation
- 1989-02-28 DD DD89326090A patent/DD279031A5/de not_active IP Right Cessation
- 1989-03-02 JP JP1048663A patent/JPH0711042B2/ja not_active Expired - Lifetime
- 1989-03-02 US US07/318,177 patent/US4944800A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US4944800A (en) | 1990-07-31 |
ATE89329T1 (de) | 1993-05-15 |
DE58904302D1 (de) | 1993-06-17 |
DE3806602A1 (de) | 1988-07-07 |
JPH0711042B2 (ja) | 1995-02-08 |
DD279031A5 (de) | 1990-05-23 |
EP0330913A2 (fr) | 1989-09-06 |
DE3806602C2 (fr) | 1991-04-04 |
ES2054893T3 (es) | 1994-08-16 |
EP0330913A3 (en) | 1990-06-13 |
JPH01294842A (ja) | 1989-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0330913B1 (fr) | Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu | |
DE60000522T2 (de) | Verfahren zur Herstellung von einem zementierten Submicron-Karbid mit erhöhter Zähigkeit | |
DE3346873C2 (fr) | ||
DE69025582T2 (de) | Beschichteter Hartmetallkörper und Verfahren zu seiner Herstellung | |
DE3211047C2 (fr) | ||
DE69224747T2 (de) | Sinterkeramik auf Basis von kubischem Bornitrid für Schneidwerkzeuge | |
DE3232869C2 (fr) | ||
DE4100706C2 (de) | Verfahren zur Herstellung eines gesinterten Gegenstands aus Hochdruckphasen-Bornitrid zur Verwendung bei Schneidwerkzeugen | |
DE69334012T2 (de) | Zementiertes karbid mit binderphase angereicherter oberflächenzone | |
DE69132337T2 (de) | Beschichtete Cermetklinge | |
DE69314223T2 (de) | Beschichtete Hartmetallkörper und Verfahren zu ihrer Herstellung | |
DE69227503T2 (de) | Hartlegierung und deren herstellung | |
DE3016971C2 (fr) | ||
DE10135790A1 (de) | Feinkörniges Sinterhartmetall, Verfahren zu seiner Herstellung und Verwendung | |
DE69310568T2 (de) | Hartmetallegierung | |
DE2407410B2 (de) | Karbidhartmetall mit ausscheidungshärtbarer metallischer Matrix | |
DE69612376T2 (de) | Schneidblatt aus Titancarbonitrid-Cermet und Schneidblatt aus beschichtetes Cermet | |
DE3781773T2 (de) | Legierung aus verformungsbestaendigem, metallisch verbundenem karbonitrid. | |
DE69105477T2 (de) | Verfahren zur Herstellung einer feinkörnigen Titaniumbasiscarbonitridlegierung. | |
DE68922195T2 (de) | Sinterkörper für Präzisionswerkzeuge. | |
DE3884310T2 (de) | Verbundlegierung. | |
DE69203652T2 (de) | Gesinterte Karbonitridlegierung mit hochlegierter Bindemetallphase. | |
DE69320633T2 (de) | Gesinterte karbonitridlegierung auf titanbasis mit extrem feiner korngrösse mit hoher zähigkeit und/oder verschleissfestigkeit | |
DE68927586T2 (de) | Cermet und dessen Herstellungsverfahren | |
DE69205075T2 (de) | Hartgesinterter Presskörper für Werkzeuge. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19900720 |
|
D17Q | First examination report despatched (deleted) | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 89329 Country of ref document: AT Date of ref document: 19930515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 58904302 Country of ref document: DE Date of ref document: 19930617 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930607 |
|
ITF | It: translation for a ep patent filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 89102623.9 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Free format text: WIDIA GMBH |
|
ITPR | It: changes in ownership of a european patent |
Owner name: CAMBIO RAGIONE SOCIALE;WIDIA GMBH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: WIDIA GMBH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: WIDIA GMBH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050208 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20050210 Year of fee payment: 17 Ref country code: FR Payment date: 20050210 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20050211 Year of fee payment: 17 Ref country code: NL Payment date: 20050211 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20050217 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060216 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060228 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060216 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20061031 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20060217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080214 Year of fee payment: 20 Ref country code: DE Payment date: 20080319 Year of fee payment: 20 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070216 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |