EP0330913B1 - Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu - Google Patents

Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu Download PDF

Info

Publication number
EP0330913B1
EP0330913B1 EP89102623A EP89102623A EP0330913B1 EP 0330913 B1 EP0330913 B1 EP 0330913B1 EP 89102623 A EP89102623 A EP 89102623A EP 89102623 A EP89102623 A EP 89102623A EP 0330913 B1 EP0330913 B1 EP 0330913B1
Authority
EP
European Patent Office
Prior art keywords
nitride
carbide
aluminium
process according
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89102623A
Other languages
German (de)
English (en)
Other versions
EP0330913A2 (fr
EP0330913A3 (en
Inventor
Hans Kolaska
P. Prof. Dr. Ettmayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widia GmbH
Original Assignee
Krupp Widia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Widia GmbH filed Critical Krupp Widia GmbH
Priority to AT89102623T priority Critical patent/ATE89329T1/de
Publication of EP0330913A2 publication Critical patent/EP0330913A2/fr
Publication of EP0330913A3 publication Critical patent/EP0330913A3/de
Application granted granted Critical
Publication of EP0330913B1 publication Critical patent/EP0330913B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a method for producing a sintered hard metal body, which consists of at least one hard material from the field of carbides, nitrides and / or carbonitrides of the transition metals of groups 4, 5 and / or 6 of the periodic table and at least one of the binder metals iron, nickel and Contains cobalt, the hard material being present as carbide and / or mixed carbide and / or nitride and / or mixed nitride in the form of cubic crystals or mixed crystals, and is produced by mixing and grinding powdered starting materials and by pressing and subsequent sintering of the starting powder mixture.
  • the invention also relates to a sintered hard metal body which can be produced by means of the method according to the invention.
  • a sintered body for a processing tool which consists of 80 to 95% by volume boron nitride and, moreover, a binder, the aluminum components and a carbide, nitride and / or carbonitride of IVa or Va transition metals of the periodic system, which may contain a complex nitride such as Ti2 AlN. Copper and / or metals of the iron group are proposed as binders.
  • Processes for the production of sintered hard metal bodies are basically from e.g. Kieffer-Benesovsky, "Hartmetall”, 1965, Springer-Verlag, as well as “Hartmetall für die Praktiker, build, manufacture, properties and industrial application of a modern material group", VDI-Verlag GmbH, 1988, as well as the possible compositions of the carbide body .
  • the proportion of binder is between 3 and 30% by mass.
  • Sintered hard metals based on titanium carbide (US Pat. No. 2,967,349) or titanium carbonitride as hard material phase (AT-PS 2 99 561, US Pat. No. 3,994,692) - which are each bound by a nickel-molybdenum binder - are known to be distinguished compared to conventional hard metal with tungsten carbide as the one hard material phase and cubic titanium mixed carbides - in which some of the titanium atoms are replaced by tantalum, niobium, tungsten - as the second hard material phase and cobalt as binder metal due to increased wear resistance.
  • titanium carbide and titanium carbonitride hard metal can only be used to a limited extent as cutting tools, especially at high cutting speeds and with cyclical thermal loads (such as during milling); under the effect of the high temperatures occurring at the cutting edge, the binder metal loses its strength and tends to undergo plastic deformation under the influence of the cutting forces.
  • the significantly lower thermal conductivity of TiC-Mo, Ni and Ti (C, N) -Mo, Ni hard metals compared to tungsten carbide leads to heat build-up, especially at the most stressed point.
  • US Pat. No. 3,971,656 describes a hard metal in which the hard material particles consist of two phases, namely a titanium and nitrogen-rich carbonitride mixed phase inside the hard material particle and another phase which is rich in metals of the 6th group in the periodic table and is low in nitrogen and which envelops the carbonitride mixed phase. It is known that titanium nitride increases the crust resistance of hard metals during cutting operations compared to titanium carbide. According to the teaching of US Pat. No. 3,971,656, it is assumed that the equilibrium is established within the hard material particle consisting of two mixed phases.
  • the core of the hard material particle therefore consists of relatively carbon-rich carbonitride, since unalloyed titanium nitride cannot be in equilibrium with the required second (Mo, W) -rich phase. According to US Pat. No. 3,971,656, a hard metal is thus created whose wear resistance is not yet optimal.
  • Another way to create cemented carbide with improved high temperature strength is to increase the heat resistance of the binder metal.
  • the binder metal in addition to molybdenum, which nickel can harden through solid solution hardening, the binder metal was additionally alloyed with aluminum in order to emulate the effect of ⁇ ′-hardening (hardening by precipitation of coherent particles with a car structure) known from the superalloys in the binder phase.
  • ⁇ ′-hardening hardening by precipitation of coherent particles with a car structure
  • the occurrence of ⁇ ′-phases was demonstrated by electron microscopic investigations of aluminum alloy binder phases in Ti (C, N) -Mo, Ni hard metals.
  • the addition of aluminum resulted in an increase in the hardness measured at room temperature, which, however, is associated with a decrease in the bending strength (H. Doi and K.
  • the The prescribed carbon content of the sintered alloy is strictly observed so that the amount of titanium required for a coherent elimination of the ⁇ ′ phase from the hard material dissolves. Only when the ratio of the proportion of aluminum and titanium dissolved in the binder metal is approximately the same is a noticeable influence on the properties of the binder metal to be expected. If the titanium content is too high, the ⁇ ′ excretion becomes metastable; in the absence of titanium, the coherence voltage becomes too low, which reduces the hardening effect at medium temperatures.
  • AlN is added to the binder described in DE-PS 28 30 010 to improve the heat resistance; this remains in the structure as a "dispersed phase" and improves hardness.
  • AlN forms neither with TiC nor with TiN mixed crystals, is a non-metallic hard material that does not have good wetting properties, is also non-resistant to atmospheric moisture in finely divided form and decomposes under the action of it to Al (OH) 3 and NH3. This has a particularly disadvantageous effect when grinding with grinding liquids that are not entirely free of water.
  • the object of the invention is to enable the production of a sintered hard metal which, while avoiding the disadvantages described above, has increased wear resistance even at higher temperatures.
  • the sintered hard metal should in particular also be usable as a cutting tool or cutting plate and, particularly in the machining of short and long-chipping workpiece materials, should have significantly improved cutting performance.
  • the task related to the method is achieved by the measures listed in claim 1.
  • the object related to the product is achieved by the features of claim 15.
  • Subclaims 2 to 14 describe further developments of this method.
  • Aluminum-containing complex carbides or complex nitrides should preferably be used, furthermore those complex carbides or complex nitrides which contain substances which have the same or similar effects to aluminum.
  • the substances NbCrN, TaCrN, V5Si3N 1-x , Mo5Si3C 0.6 offer.
  • aluminum-containing complex carbides and / or nitrides from the family of the H phases and / or Chi phases and / or Kappa phases are used.
  • the following compounds are suitable as aluminum-containing complex carbides or complex nitrides from the family of the H, Chi and Kappa phases: Ti2AlN, Ti2AlC, V2AlC, V2AlN, Nb2AlC, Ta2AlC, Cr2AlC, Nb3Al2C, Ta3Al2C, Nb3AlN, Mo3Al2C, MoCr2Al2C, Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W- Mn-Al-C, W-Fe-Al-C.
  • the aluminum-containing complex carbides and nitrides are produced by reacting the nitride or carbide of aluminum with the powdery transition metals or by reacting the nitrides or carbides of the transition metals with aluminum. They are made according to the usual in the carbide industry Crushing methods are pulverized and processed with the other alloy components of the hard metal in a manner known per se to form a sintered hard metal body - in particular cutting tools or cutting plates.
  • the relative proportions between the aluminum-containing complex carbide or nitride and binder metal are selected so as to achieve optimal properties so that - assuming that the entire aluminum content of the complex carbide or nitride remains in the sintered (i.e. finished) hard metal body - the aluminum content of the binder metal 20 Mass%, preferably 10 mass%, does not exceed; in the sintered hard metal body, the minimum aluminum content in the binder metal should be in the order of 1% by mass.
  • the aluminum content of the binder metal is between 2 and 8% by mass.
  • the complex carbides and nitrides are largely resistant to the commonly used grinding aids. A chemical attack on the complex carbides and nitrides or hydrolysis of these compounds is not to be feared.
  • the complex carbides and nitrides in question decompose in the presence of nickel and / or cobalt at the sintering temperatures usually used (about 1350 to 1550 ° C.), the monocarbides or mononitrides of the transition metals of the 4th to 4th 6.
  • Eliminate group of the periodic table while aluminum is dissolved in excess of the nickel cobalt, solidifies the binder by solid solution hardening and, if a minimum content of aluminum in the binder metal is exceeded, is excreted as a ⁇ '-phase when cooling (e.g. H. Nowotny et al : Montash. Chem. 114 (1985), 127-135).
  • part of the transition metal diffuses into the hard material particles; another part remains dissolved in the binder metal and strengthens the binder metal by means of mixed crystal hardening.
  • the monocarbides and nitrides of the transition metals which form during the reaction of the complex carbides and nitrides with the liquid binder metal are epitaxially deposited on the surface of the hard material particles and completely envelop the hard material particle.
  • sintering temperatures between 1350 ° C and 1550 ° C and sintering times of up to 2 hours, the diffusion rates in the hard material particles are not sufficient to bring about a metallurgical equilibrium between the hard material particle in question and its shell made of monocarbides or nitrides of the transition metals.
  • the shell made of monocarbides or nitrides of the transition metals forms a diffusion-inhibiting barrier layer, which also prevents further material exchange between the hard material particle in question and the binder metal.
  • the chemical composition of the core of the coated hard material particle in the sintered hard metal is thus essentially identical to the chemical composition of the corresponding hard material particle in the starting powder mixture from which the hard metal body was produced by pressing and sintering.
  • the cubic mixed crystal forming the coated hard material particle also remains in an imbalance state in the sintered hard metal body. This phenomenon is noticeable in metallographic grinding in that even fine-grained hard material particles have a clearly recognizable edge zone.
  • this edge zone made of monocarbides and nitrides of the transition metals can be clearly distinguished both with regard to their metal components (generally: transition metals of the 4th and 6th group of the periodic table) and their non-metal components (carbon and nitrogen).
  • the sintered hard metal according to the invention combines the favorable properties of the carbides of the transition metals in the peripheral zone, which are readily wettable by the conventional binder metals, with the high wear resistance of the nitrides in the core and, due to the content of titanium and aluminum in the binder metal, has such a high wear resistance that the cutting tools produced therefrom or cutting inserts have significantly improved cutting performance.
  • Another advantage of the hard metal according to the invention is that during the implementation of the complex carbides and -ni tride with the liquid binder metal forming monocarbides and nitrides of the transition metals are epitaxially deposited on the surface of the hard material particles and thus prevent a further change in the hard material core under the effect of the liquid binder metal.
  • the sintered hard metal body which can be produced by means of the method according to the invention, is essentially characterized in that hard materials forming the starting powder mixture are essentially present in their original composition in the sintered hard metal body (i.e. after completion of the manufacturing process):
  • the existing carbides and / or mixed carbides and / or nitrides and / or mixed nitrides encased with a diffusion-inhibiting layer thus indicate from their structure that an equilibrium in the metallurgical sense has been avoided between the different hard materials within the hard material particle. This deliberately created imbalance condition results in the abovementioned improved wear resistance - even under extreme working conditions.
  • the conventional hard metal used for comparison (see FIG. 1, left blocks) consists of 57% Tic, 10% TiN, 10% WC, 2% VC, 10% Mo as well as 5.5% Ni and 5.5% Co.
  • the hard metals according to the invention with complex nitride-modified binder metal (cf. the blocks in the middle and on the right-hand side of FIG. 1) were made from the same base material with the addition of 0.6% or 2.2% Ti2AlN while simultaneously reducing the nickel and Cobalt content to 5.2% and 4.4% in a manner known per se; in the sintered hard metal, the associated aluminum content in the binder is about 2 or slightly more than 7%.
  • the scour depth KT for cutting tests on the workpiece material Cm45N is at a cutting speed of 355 m / min, a cutting time of 12.5 min and a product of cutting depth and feed in the order of magnitude of 1.0 x 0, 1 mm2 / rev for the hard metals to be compared with one another in the range between approximately 30 to 35 ⁇ m.
  • the open area wear VB for the conventional hard metal (left) is 450 ⁇ m and becomes smaller with increasing content of Ti2AlN (middle and right side of the illustration). While the crater depth KT could not be improved by the addition of Ti2AlN, the detected open area wear VB decreases with increasing Ti2AlN content from about 450 to 280 ⁇ m.
  • FIG. 2 shows the number of strokes of 10 cutting edges for the three previously mentioned hard metals.
  • the cutting test was carried out on a shaft made of workpiece material Ck45N, at a cutting speed of 200 m / min with a product of cutting depth and feed of 2.5 x 0.2 mm2 / rev.
  • the conventional hard metal (left) only achieves a stroke rate of around 10,000, the addition of 0.6% Ti2AlN already doubles the number of strokes to 20,000; on the other hand, the hard metal, the starting mixture of which 2.2% Ti2AlN has been added (right block in the illustration), even withstands 160,000 blows.
  • the hard metals designed according to the invention are clearly superior to the conventional hard metal.
  • a tool or a cutting insert made of a hard metal designed according to the invention can achieve a considerably greater cutting performance than a tool made of conventional hard metal: by adding 0.6 or 2.2% Ti2AlN the milling path achieved increases from approximately 800 mm to 1200 mm or 1600 mm.
  • the milling tests were carried out on a shaft made of tempered steel 42CrMo4 at a cutting speed of 250 m / min; the associated product of depth of cut, chip cross-section and feed per tooth is 1.0 x 120 x 0.1 mm / tooth.
  • Tools or cutting inserts made of hard metal, to which aluminum-containing complex nitrides have been added, are - as the test results prove - clear in terms of cutting performance, especially when turning in interrupted cuts and when milling the tools or cutting inserts that have been made from conventional hard metals think.
  • the improved wear resistance - which makes the hard metals according to the invention also interesting for other areas of application - is based on the fact that the starting mixture for producing the hard metal or hard metal body is composed in such a way that certain chemical reactions are initiated very quickly at the beginning of the melting of the binding phase, which result in the formation of a diffusion-inhibiting layer around the surface of the hard material particles of the starting mixture.
  • the deliberate selection of the constituents forming the starting powder mixture therefore means that no metallurgical equilibrium can be established in the finished hard metal or hard metal body. This ensures that the optimum properties of the different hard material particles for the intended applications - such as the known wear resistance of the titanium nitride and the known excellent hardness of the titanium carbide - are retained in the finished hard metal.
  • the metallurgical equilibrium which is usually given according to the prior art, these individual properties of the hard material particles according to the invention would at least partially be lost.
  • the invention consists in the fact that no metallurgical equilibrium is expressly sought and is present.
  • FIG. 4 shows a table with eight exemplary embodiments for the composition of the starting powder mixture of the hard metal body according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Claims (19)

  1. Procédé de fabrication d'un corps de métal dur fritté, dans le cas duquel un mélange initial de poudres, constitué par un corps dur du domaine des carbures, nitrures et/ou carbonitrures des métaux transitoires des groupes IV, V et/ou VI de la classification périodique des éléments, sous la forme d'un carbure, et/ou d'un mélange de carbures, et/ou d'un nitrure, et/ou d'un mélange de nitrures, se présentant en cristaux ou en cristaux composés cubiques, par au moins un métal de liaison, c'est-à-dire nickel et/ou cobalt et/ou fer, et par un carbure complexe et/ou un nitrure complexe, est mélangé, moulu, comprimé et ensuite fritté, étant entendu que le carbure complexe et le nitrure complexe, au début de la fusion de la phase de liaison, se décompose en formant un carbure et/ou un nitrure métallique de recouvrement, et se dépose sur la surface supérieure des particules de corps dur du mélange de poudre initial, en formant une couche empêchant la diffusion.
  2. Procédé suivant la revendication 1, caractérisé en ce qu'on ajoute du carbure et/ou du nitrure complexe jusqu'à 3 % en masse - rapporté à la totalité du mélange de poudre initial.
  3. Procédé suivant la revendication 1 ou la revendication 2, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium et/ou un carbure complexe contenant de l'aluminium.
  4. Procédé suivant au moins l'une des revendications 1 à 3, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium et/ou un carbure complexe contenant de l'aluminium de la famille des phases H.
  5. Procédé suivant la revendication 4, caractérisé en ce qu'on ajoute Ti₂AlC, Ti₂AlN, V₂AlC, Nb₂AlC, Ta₂AlC ou Cr₂AlC.
  6. Procédé suivant au moins l'une des revendications 1 à 3, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium ou un carbure complexe contenant de l'aluminium de la famille des phases Chi.
  7. Procédé suivant la revendication 6, caractérisé en ce qu'on ajoute Nb₃Al₂C, Ta₃Al₂C, Nb₃AlN ou Mo₃Al₂C.
  8. Procédé suivant au moins l'une des revendications 1 à 3, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium ou un carbure complexe contenant de l'aluminium de la famille des phases Kappa.
  9. Procédé suivant la revendication 8, caractérisé en ce qu'on ajoute Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W-Mn-Al-C ou W-Fe-Al-C.
  10. Procédé suivant au moins l'une des revendications 1 à 9, caractérisé en ce qu'au mélange de poudre initial, on ajoute un nitrure complexe contenant de l'aluminium ou un carbure complexe contenant de l'aluminium dans une quantité telle que, dans le corps de métal dur fritté, la teneur en aluminium ne dépasse pas, dans le métal de liaison, 20 % en masse, de préférence 10 % en masse.
  11. Procédé suivant au moins l'une des revendications 1 à 10, caractérisé en ce qu'on ajoute le carbure complexe contenant de l'aluminium ou le nitrure complexe contenant de l'aluminium dans une quantité telle que, dans le corps de métal dur fritté, la teneur en aluminium ne dépasse pas dans le métal de liaison 2 à 8 % en masse.
  12. Procédé suivant au moins l'une des revendications 1 à 11, caractérisé en ce qu'au mélange de poudre initial, on ajoute un ou plusieurs des carbures ou nitrures complexes suivants: Ti₂AlN, Ti₂AlC, V₂AlC, Nb₂AlC, Ta₂AlC, Cr₂AlC, Nb₃Al₂C, Ta₃Al₂C, Nb₃AlN, Mo₃Al₂C, MoCr₂Al₂C, Mo-Ni-Al-C, Mo-Co-Al-C, Mo-Mn-Al-C, W-Mn-Al-C, W-Fe-AlC, NbCrN, TaCrN, V₅Si₃N1-x, Mo₅Si₃C0,6, Ni-Mo-N.
  13. Procédé suivant au moins l'une des revendications 1 à 12, caractérisé en ce qu'on ajoute un ou plusieurs des carbures ou nitrures complexes suivants: Ti₂AlC, Ti₂AlN, V₂AlC, Nb₂AlC, Ta₂AlC, NbCrN, TaCrN.
  14. Procédé suivant au moins l'une des revendications 1 à 13, caractérisé en ce qu'on ajoute un ou plusieurs des carbures ou nitrures complexes suivants: Ti₂AlC, Ti₂AlN, V₂AlC, Nb₂AlC, Ta₂AlC.
  15. Métal dur fritté, qui est fabriqué au moyen d'un procédé suivant au moins l'une des revendications 1 à 14 et qui se présente sous la forme d'un corps dur du domaine des carbures, nitrures et/ou carbonitrures des métaux transitoires des groupes IV, V et/ou VI de la classification périodique des éléments, sous la forme d'un carbure, et/ou d'un mélange de carbures, et/ou d'un nitrure, et/ou d'un mélange de nitrures, se présentant en cristaux ou en cristaux composés cubiques, et est constitué par au moins l'un des métaux de liaison fer, nickel et cobalt, et par au moins un carbure complexe et/ou un nitrure complexe, les corps dur du mélange de poudres final étant essentiellement contenu dans sa composition d'origine.
  16. Métal dur fritté suivant la revendication 15, caractérisé en ce que la matière dure du mélange de poudre initial est entouré par une enveloppe de monocarbures, et/ou de mononitrures, et/ou de carbures mélangés, et/ou de nitrures mélangés, précipités de façon épitaxique sur sa surface.
  17. Métal dur fritté suivant la revendication 15 ou la revendication 16, caractérisé en ce que la teneur en carbures complexes, et/ou en nitrures complexes, est de 3 %, rapportée à l'ensemble du mélange initial.
  18. Métal dur fritté suivant l'une des revendications 11 à 17, caractérisé en ce que, dans le corps de métal dur fritté, la teneur en aluminium ne dépasse pas 20 % en poids, de préférence 10 % en poids, dans le métal de liaison.
  19. Métal dur fritté suivant l'une des revendications 15 à 18, caractérisé en ce que, dans le corps de métal dur fritté, la teneur en aluminium ne dépasse pas 2 à 8 % en poids dans le métal de liaison.
EP89102623A 1988-03-02 1989-02-16 Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu Expired - Lifetime EP0330913B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89102623T ATE89329T1 (de) 1988-03-02 1989-02-16 Verfahren zur herstellung eines gesinterten hartmetallkoerpers und gesinterter hartmetallkoerper.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3806602 1988-03-02
DE3806602A DE3806602A1 (de) 1988-03-02 1988-03-02 Hartmetallkoerper

Publications (3)

Publication Number Publication Date
EP0330913A2 EP0330913A2 (fr) 1989-09-06
EP0330913A3 EP0330913A3 (en) 1990-06-13
EP0330913B1 true EP0330913B1 (fr) 1993-05-12

Family

ID=6348548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89102623A Expired - Lifetime EP0330913B1 (fr) 1988-03-02 1989-02-16 Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu

Country Status (7)

Country Link
US (1) US4944800A (fr)
EP (1) EP0330913B1 (fr)
JP (1) JPH0711042B2 (fr)
AT (1) ATE89329T1 (fr)
DD (1) DD279031A5 (fr)
DE (2) DE3806602A1 (fr)
ES (1) ES2054893T3 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392929B (de) * 1989-03-06 1991-07-10 Boehler Gmbh Verfahren zur pulvermetallurgischen herstellung von werkstuecken oder werkzeugen
SE467257B (sv) * 1989-06-26 1992-06-22 Sandvik Ab Sintrad titanbaserad karbonitridlegering med duplexa strukturer
SE469386B (sv) * 1990-12-21 1993-06-28 Sandvik Ab Saett att framstaella en sintrad karbonitridlegering foer skaerande bearbetning
SE9004118D0 (sv) * 1990-12-21 1990-12-21 Sandvik Ab Saett foer framstaellning av en sintrad karbonitridlegering foer fin till medelgrov fraesning
SE469384B (sv) * 1990-12-21 1993-06-28 Sandvik Ab Saett att framstaella en sintrad karbonitridlegering foer finfraesning
US5552108A (en) * 1990-12-21 1996-09-03 Sandvik Ab Method of producing a sintered carbonitride alloy for extremely fine machining when turning with high cutting rates
US5581798A (en) * 1990-12-21 1996-12-03 Sandvik Ab Method of producing a sintered carbonitride alloy for intermittent machining of materials difficult to machine
SE9101385D0 (sv) * 1991-05-07 1991-05-07 Sandvik Ab Sintrad karbonitridlegering med styrd korn- storlek
EP0556788B1 (fr) * 1992-02-20 1997-05-14 Mitsubishi Materials Corporation Alliage dur
US5451365A (en) * 1993-05-24 1995-09-19 Drexel University Methods for densifying and strengthening ceramic-ceramic composites by transient plastic phase processing
JPH06346184A (ja) * 1993-06-11 1994-12-20 Hitachi Metals Ltd ベーン用材料およびその製造方法
DE9402109U1 (de) * 1994-02-09 1994-03-31 Maartens Kleinmetaal B.V., Haarlem Rotationsschneidwerkzeug
AU1576297A (en) * 1996-01-16 1997-08-22 Drexel University Synthesis of h-phase products
US6228484B1 (en) 1999-05-26 2001-05-08 Widia Gmbh Composite body, especially for a cutting tool
US7572313B2 (en) * 2004-05-26 2009-08-11 Drexel University Ternary carbide and nitride composites having tribological applications and methods of making same
US20080035567A1 (en) * 2006-08-08 2008-02-14 Sabottke Craig Y Enhanced membrane separation system
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
KR102372737B1 (ko) * 2013-03-14 2022-03-10 메사추세츠 인스티튜트 오브 테크놀로지 소결된 나노결정 합금
US10794210B2 (en) 2014-06-09 2020-10-06 Raytheon Technologies Corporation Stiffness controlled abradeable seal system and methods of making same
US11644288B2 (en) 2015-09-17 2023-05-09 Massachusetts Institute Of Technology Nanocrystalline alloy penetrators
CN114150176A (zh) * 2021-12-02 2022-03-08 常州市博斯特精密机械有限公司 一种抗冲击性能好的钻头生产工艺

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2967349A (en) * 1959-06-22 1961-01-10 Ford Motor Co Metallic compositions
US3507682A (en) * 1967-06-19 1970-04-21 Ncr Co Process and apparatus for coating thin film substrates
BE756565A (fr) * 1969-09-30 1971-03-01 Ugine Carbone Alliages durs a base de nitrures
BE794383A (fr) * 1972-02-14 1973-07-23 Teledyne Ind Alliages de carbures pour outils de coupe
US4347083A (en) * 1973-03-12 1982-08-31 Union Carbide Corporation Chemically bonded aluminum coating for carbon via monocarbides
US4402744A (en) * 1973-03-12 1983-09-06 Union Carbide Corporation Chemically bonded aluminum coating for carbon via monocarbides
US3971656A (en) * 1973-06-18 1976-07-27 Erwin Rudy Spinodal carbonitride alloys for tool and wear applications
US3994692A (en) * 1974-05-29 1976-11-30 Erwin Rudy Sintered carbonitride tool materials
US4049876A (en) * 1974-10-18 1977-09-20 Sumitomo Electric Industries, Ltd. Cemented carbonitride alloys
AU501073B2 (en) * 1974-10-18 1979-06-07 Sumitomo Electric Industries, Ltd. Cemented carbonitride alloys
US4019874A (en) * 1975-11-24 1977-04-26 Ford Motor Company Cemented titanium carbide tool for intermittent cutting application
JPS5823457B2 (ja) * 1977-08-11 1983-05-16 三菱マテリアル株式会社 強靭サ−メット
GB2048956B (en) * 1979-03-29 1983-02-16 Sumitomo Electric Industries Sintered compact for a machining tool
GB2063922A (en) * 1979-11-20 1981-06-10 Metallurg Inc Sintered hard metals
GB2070646B (en) * 1980-03-04 1985-04-03 Metallurg Inc Sintered hardmetals
JPS60176973A (ja) * 1984-02-22 1985-09-11 三菱マテリアル株式会社 切削工具用立方晶窒化硼素基超高圧焼結材料の製造法
JPS6177670A (ja) * 1984-09-25 1986-04-21 三菱マテリアル株式会社 切削工具用立方晶窒化硼素基焼結体の製造方法
JPS6183681A (ja) * 1984-09-27 1986-04-28 三菱マテリアル株式会社 切削工具用立方晶窒化硼素基焼結体の製造方法

Also Published As

Publication number Publication date
US4944800A (en) 1990-07-31
ATE89329T1 (de) 1993-05-15
DE58904302D1 (de) 1993-06-17
DE3806602A1 (de) 1988-07-07
JPH0711042B2 (ja) 1995-02-08
DD279031A5 (de) 1990-05-23
EP0330913A2 (fr) 1989-09-06
DE3806602C2 (fr) 1991-04-04
ES2054893T3 (es) 1994-08-16
EP0330913A3 (en) 1990-06-13
JPH01294842A (ja) 1989-11-28

Similar Documents

Publication Publication Date Title
EP0330913B1 (fr) Procédé de préparation d'un métal dur fritté et métal dur fritté ainsi obtenu
DE60000522T2 (de) Verfahren zur Herstellung von einem zementierten Submicron-Karbid mit erhöhter Zähigkeit
DE3346873C2 (fr)
DE69025582T2 (de) Beschichteter Hartmetallkörper und Verfahren zu seiner Herstellung
DE3211047C2 (fr)
DE69224747T2 (de) Sinterkeramik auf Basis von kubischem Bornitrid für Schneidwerkzeuge
DE3232869C2 (fr)
DE4100706C2 (de) Verfahren zur Herstellung eines gesinterten Gegenstands aus Hochdruckphasen-Bornitrid zur Verwendung bei Schneidwerkzeugen
DE69334012T2 (de) Zementiertes karbid mit binderphase angereicherter oberflächenzone
DE69132337T2 (de) Beschichtete Cermetklinge
DE69314223T2 (de) Beschichtete Hartmetallkörper und Verfahren zu ihrer Herstellung
DE69227503T2 (de) Hartlegierung und deren herstellung
DE3016971C2 (fr)
DE10135790A1 (de) Feinkörniges Sinterhartmetall, Verfahren zu seiner Herstellung und Verwendung
DE69310568T2 (de) Hartmetallegierung
DE2407410B2 (de) Karbidhartmetall mit ausscheidungshärtbarer metallischer Matrix
DE69612376T2 (de) Schneidblatt aus Titancarbonitrid-Cermet und Schneidblatt aus beschichtetes Cermet
DE3781773T2 (de) Legierung aus verformungsbestaendigem, metallisch verbundenem karbonitrid.
DE69105477T2 (de) Verfahren zur Herstellung einer feinkörnigen Titaniumbasiscarbonitridlegierung.
DE68922195T2 (de) Sinterkörper für Präzisionswerkzeuge.
DE3884310T2 (de) Verbundlegierung.
DE69203652T2 (de) Gesinterte Karbonitridlegierung mit hochlegierter Bindemetallphase.
DE69320633T2 (de) Gesinterte karbonitridlegierung auf titanbasis mit extrem feiner korngrösse mit hoher zähigkeit und/oder verschleissfestigkeit
DE68927586T2 (de) Cermet und dessen Herstellungsverfahren
DE69205075T2 (de) Hartgesinterter Presskörper für Werkzeuge.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900720

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 89329

Country of ref document: AT

Date of ref document: 19930515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58904302

Country of ref document: DE

Date of ref document: 19930617

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930607

ITF It: translation for a ep patent filed
EAL Se: european patent in force in sweden

Ref document number: 89102623.9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: WIDIA GMBH

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;WIDIA GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: WIDIA GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: WIDIA GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050208

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050210

Year of fee payment: 17

Ref country code: FR

Payment date: 20050210

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050211

Year of fee payment: 17

Ref country code: NL

Payment date: 20050211

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050217

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060216

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060216

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080214

Year of fee payment: 20

Ref country code: DE

Payment date: 20080319

Year of fee payment: 20

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT