JPH1112758A - Metallic parts coated with cermet sintered compact, and their production - Google Patents
Metallic parts coated with cermet sintered compact, and their productionInfo
- Publication number
- JPH1112758A JPH1112758A JP16917397A JP16917397A JPH1112758A JP H1112758 A JPH1112758 A JP H1112758A JP 16917397 A JP16917397 A JP 16917397A JP 16917397 A JP16917397 A JP 16917397A JP H1112758 A JPH1112758 A JP H1112758A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cermet
- metal
- cermet sintered
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はサーメット焼結体が
被覆された耐熱性、耐摩耗性、耐食性及び耐衝撃性を有
し、かつ良好な施工性を有するサーメット被覆金属部品
とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cermet-coated metal part coated with a cermet sintered body, having heat resistance, abrasion resistance, corrosion resistance and impact resistance and having good workability, and a method for producing the same. .
【0002】[0002]
【従来の技術】金属や鉄鋼母材の表面に各種の合金やセ
ラミックスを被覆し、耐熱性、耐摩耗性や耐食性を付与
する試みが種々行われている。いわゆる窒化処理は、加
熱した金属の表面をガスや金属塩などと反応させて皮膜
を形成する方法の代表的なものであり、古くから実用に
供されてきた。しかし、このような方法で被覆できる皮
膜の種類は限られており、皮膜の緻密さも得にくいこと
から、その効果は限られている。2. Description of the Related Art Various attempts have been made to coat a metal or a steel base material with various alloys or ceramics to impart heat resistance, wear resistance and corrosion resistance. The so-called nitriding treatment is a typical method of forming a film by reacting the surface of a heated metal with a gas, a metal salt, or the like, and has been used for a long time. However, the types of films that can be coated by such a method are limited, and it is difficult to obtain denseness of the film, so that the effect is limited.
【0003】このため、比較的広範囲な種類の皮膜が形
成でき、緻密な皮膜が得られる手段として、物理的又は
化学的な蒸着法(PVD法又はCVD法)が提案され、
近年これらの方法による金属表面の改質が広く行われて
いる。しかし、PVDやCVDによって形成できる皮膜
の厚さは、最大で数μmでしかないうえ、皮膜と金属母
材の冶金的反応がないために皮膜の密着力は低い。した
がって、過酷な使用条件、すなわち過大な負荷や機械的
又は熱的な衝撃がその被覆した表面に付与される場合に
おいては効果の持続を期待できない。For this reason, a physical or chemical vapor deposition method (PVD method or CVD method) has been proposed as a means for forming a relatively wide variety of films and obtaining a dense film.
In recent years, metal surface modification by these methods has been widely performed. However, the thickness of a film that can be formed by PVD or CVD is only a few μm at the maximum, and the adhesion of the film is low because there is no metallurgical reaction between the film and the metal base material. Therefore, the effect cannot be expected to be maintained under severe use conditions, that is, when an excessive load or mechanical or thermal shock is applied to the coated surface.
【0004】各種の合金からきわめて高い融点を有する
セラミックスまで広範な種類の皮膜を形成する方法とし
て溶射法がある。溶射法は金属やセラミックスの主に粉
末を、高温の炎のなかに供給し溶融させると同時に、高
圧ガスでその溶融した材料を母材にたたきつけ皮膜化す
る方法であり、原料粉末を溶かす熱源の種類によって多
くの方式があり、いくつかの手法によれば数mmの厚さ
を有する皮膜が得られる。しかし一般に、皮膜の効果を
大きくするには母材の金属と大きく特性の隔たった材料
を溶射する必要があり、この種の皮膜を溶射する場合に
は皮膜の厚さを大きくすることはきわめて困難である。[0004] There is a thermal spraying method as a method for forming a wide variety of films from various alloys to ceramics having an extremely high melting point. The thermal spraying method is a method in which mainly powders of metals and ceramics are supplied and melted in a high-temperature flame, and at the same time, the molten material is beaten to a base material by a high-pressure gas to form a film. There are many types depending on the type. According to some types, a film having a thickness of several mm can be obtained. However, in general, to increase the effect of the coating, it is necessary to spray a material that has properties greatly different from the base metal, and it is extremely difficult to increase the thickness of the coating when spraying this type of coating. It is.
【0005】また、古くから実施されている金属表面の
被覆方法の一つに肉盛り方法がある。この肉盛り法は皮
膜化する原料を母材の表面上で溶融し、母材と一体化さ
せる方法であり、この方法によると皮膜を厚くすること
は比較的容易であり、皮膜の密着性も充分に高い。しか
し、肉盛りが実施できる材料の範囲は限られており、工
業的に確立されているものは数種類の合金でしかない。One of the metal surface coating methods that has been practiced for a long time is a cladding method. This build-up method is a method in which the raw material to be formed into a film is melted on the surface of the base material and integrated with the base material. According to this method, it is relatively easy to make the film thicker and the adhesion of the film is also improved. High enough. However, the range of materials that can be overlaid is limited, and only a few alloys are industrially established.
【0006】[0006]
【発明が解決しようとする課題】金属の表面に皮膜を形
成し、金属の機械的、熱的耐衝撃性を維持したまま、耐
熱性、耐摩耗性、耐食性を飛躍的に改善するためには、
耐熱性や硬度が金属に比べてきわめて高いセラミックス
を多量に含有する皮膜を金属の表面に、充分に厚く、強
固な密着させなくてはならない。しかし、窒化処理、P
VD、CVD、溶射や肉盛り法は、基本的にこの条件を
満たす皮膜を形成できる方法ではない。そこで、この要
求を満たす可能性がある方法の一つとして、カプセルH
IP(熱間静水圧プレス)処理による皮膜形成法が提案
されている。In order to dramatically improve heat resistance, wear resistance and corrosion resistance while forming a film on the metal surface and maintaining the mechanical and thermal shock resistance of the metal, ,
A coating containing a large amount of ceramics, whose heat resistance and hardness are much higher than that of metal, must be sufficiently thick and firmly adhered to the metal surface. However, nitriding, P
VD, CVD, thermal spraying and overlaying are basically not methods that can form a film satisfying this condition. Therefore, one of the methods that may satisfy this requirement is capsule H
A film forming method by IP (hot isostatic pressing) processing has been proposed.
【0007】このカプセルHIP処理による皮膜生成は
次のようにして実施できる。まず皮膜を形成する母材の
表面に原料粉末を充填する空間を準備し、原料充填の後
に脱気する。その後、全体をHIP装置に装填して、高
温と高圧を付加して粉末を焼結させると同時に母材表面
と密着させる。原料の種類と原料を充填する空間の厚さ
を自由に変えることができ、高温と高圧の作用で皮膜の
焼結体と母材は強固に密着することが期待できる。この
方法の優位性を生かすために、各種のセラミックスやセ
ラミックスを主体とする金属との複合材料(サーメッ
ト)のカプセルHIP処理による皮膜形成が試みられて
いる。[0007] The film formation by the capsule HIP process can be performed as follows. First, a space for filling the raw material powder on the surface of the base material on which the film is formed is prepared, and after the raw material is filled, degassing is performed. Thereafter, the whole is loaded into a HIP device, and the powder is sintered by applying a high temperature and a high pressure, and at the same time, is brought into close contact with the surface of the base material. The type of the raw material and the thickness of the space filled with the raw material can be freely changed, and it can be expected that the sintered body of the film and the base material are firmly adhered by the action of high temperature and high pressure. In order to make use of the superiority of this method, attempts have been made to form a film by a capsule HIP treatment of various ceramics or a composite material (cermet) with a metal mainly composed of ceramics.
【0008】しかし、セラミックスやサーメットの熱
的、機械的性質は、母材である金属とは大きく異なるた
め、強固に密着した皮膜は、温度の変化や機械的応力の
負荷により容易に割れたり、剥離したりする。この割れ
や剥離を防止するには、セラミックスやサーメットの皮
膜と母材の中間に、充分な厚さを有する軟質な金属の層
を介在させることが有効である。しかし、厚く軟質な層
は外部から大きな負荷を受けると、容易に変形するた
め、精密な形状を維持する必要のある金型等には、この
改善手段は採用できない。However, since the thermal and mechanical properties of ceramics and cermets are significantly different from those of the base metal, a firmly adhered film is easily cracked by a change in temperature or a load of mechanical stress. Or peel off. In order to prevent such cracking and peeling, it is effective to interpose a soft metal layer having a sufficient thickness between the ceramic or cermet film and the base material. However, since a thick and soft layer is easily deformed when subjected to a large external load, this means of improvement cannot be adopted in a mold or the like that needs to maintain a precise shape.
【0009】結果的に、金属の機械的、熱的耐衝撃性を
維持したまま、耐熱性、耐摩耗性、耐食性を飛躍的に改
善できる、耐熱性や硬度が金属に比べてきわめて高いセ
ラミックスを多量に含有する皮膜が強固に密着した被覆
金属部品を、カプセルHIP処理によって得ることには
多くの困難がある。As a result, it is possible to dramatically improve heat resistance, abrasion resistance, and corrosion resistance while maintaining the mechanical and thermal shock resistance of the metal. There are many difficulties in obtaining a coated metal part in which a coating containing a large amount is firmly adhered by capsule HIP processing.
【0010】[0010]
【課題を解決するための手段】本発明はこれらの課題を
解決するためになされたものであり、Fe系金属母材の
表面に、NiとMo及び又はWとの複合硼化物(すなわ
ち、NiとMo複硼化物、NiとWの複硼化物及びNi
とMoとWの複硼化物から選ばれる1種以上)を主体と
するセラミックス相とMoを含むNiを主体とする金属
結合相とからなるサーメット焼結体層と、前記サーメッ
ト焼結体層からFe系金属母材側にMoが拡散しさらに
Fe系金属母材からサーメット焼結体層側にFeが濃度
勾配を有して拡散しているNi、Fe、Moを主体とす
る中間層、とが形成されていることを特徴とするサーメ
ット焼結体被覆金属部品を提供する。DISCLOSURE OF THE INVENTION The present invention has been made to solve these problems, and a composite boride of Ni, Mo and / or W (namely, Ni And Mo double borides, Ni and W double borides and Ni
A cermet sintered body layer composed of a ceramic phase mainly composed of at least one selected from double borides of Mo and W) and a metal bonded phase mainly composed of Ni containing Mo; An intermediate layer mainly composed of Ni, Fe, and Mo in which Mo is diffused into the Fe-based metal base material and Fe is diffused from the Fe-based metal base material to the cermet sintered body layer side with a concentration gradient; The present invention provides a metal part coated with a cermet sintered body, wherein a metal part is formed.
【0011】また、NiとMo及び又はWとの複合硼化
物を主体とするセラミックス粉末又は該セラミックスを
生成しうる組成の粉末とNi及びMoを主体とする金属
粉末とからなる複合粉末を、被覆されるべきFe系金属
母材の表面に設けた空間に充填し、該空間の内部を真空
引きした後、熱間静水圧プレス(HIP)処理すること
を特徴とする上記サーメット焼結体被覆金属部品の製造
方法を提供する。A ceramic powder mainly composed of a composite boride of Ni, Mo and / or W or a composite powder composed of a powder having a composition capable of producing the ceramic and a metal powder mainly composed of Ni and Mo is coated. A space provided on the surface of an Fe-based metal base material to be filled, the inside of the space being evacuated, and then subjected to hot isostatic pressing (HIP) treatment. Provided is a method for manufacturing a part.
【0012】NiとMo及び又はWとの複合硼化物を主
体とするセラミックス相と、Niを主体とする金属結合
相とからなるサーメット焼結体(以下、単にサーメット
ともいう)は様々な用途分野において超硬合金に代わり
うる材料であり、耐熱性、耐摩耗性、耐食性及び耐衝撃
性に優れた材料である。Cermet sintered bodies (hereinafter also simply referred to as cermets) composed of a ceramic phase mainly composed of a composite boride of Ni, Mo and / or W and a metal binding phase mainly composed of Ni are used in various fields of application. Is a material that can be used in place of cemented carbide, and is excellent in heat resistance, abrasion resistance, corrosion resistance and impact resistance.
【0013】このサーメットの高温における硬度、強度
などはNi基自溶性合金、Co基超合金など表面被覆用
合金に比べ充分に大きく、その熱膨張係数はセラミック
スや超硬合金よりも鉄鋼材料などの金属に近い。このた
め、このサーメットからなる皮膜を鉄鋼材料などの金属
材料上に形成すれば、硬く、耐熱強度や耐食性に優れた
金属部品が形成できると期待される。しかし、このサー
メットの被覆層を直接に母材である鉄鋼材料等の金属材
料等上に形成しただけでは、衝撃力が加わった際にサー
メット層と母材の界面に亀裂が生じやすく、サーメット
層は容易に剥離してしまう。The hardness and strength of this cermet at a high temperature are sufficiently higher than those of surface coating alloys such as Ni-based self-fluxing alloys and Co-based superalloys, and its thermal expansion coefficient is higher than that of ceramics and cemented carbides. Close to metal. For this reason, if a film made of the cermet is formed on a metal material such as a steel material, it is expected that a hard metal component having excellent heat resistance and corrosion resistance can be formed. However, if the coating layer of the cermet is formed directly on a metal material such as a steel material as a base material, cracks are likely to occur at the interface between the cermet layer and the base material when an impact force is applied. Easily peels off.
【0014】本発明においては、図1に模式的に示すよ
うに、サーメット層1の成分が母材であるFe系金属層
2と反応してなる中間層3をサーメット層と金属母材と
の間に形成しているため、この中間層が両材料の結晶格
子の整合性や特性差を徐々に調整する緩衝層として機能
し、サーメット層が剥離するのを防止している。ただ
し、この中間層3が緩衝層としての効果を充分に発揮す
るためには、中間層自体が傾斜組成を有することが重要
である。In the present invention, as schematically shown in FIG. 1, the intermediate layer 3 formed by reacting the component of the cermet layer 1 with the Fe-based metal layer 2 serving as the base material is used to form the intermediate layer 3 between the cermet layer and the metal base material. Since the intermediate layer is formed between the two layers, the intermediate layer functions as a buffer layer for gradually adjusting the matching and the characteristic difference between the crystal lattices of the two materials, thereby preventing the cermet layer from peeling off. However, in order for the intermediate layer 3 to sufficiently exhibit the effect as a buffer layer, it is important that the intermediate layer itself has a gradient composition.
【0015】すなわち、本発明による被覆金属部品にお
ける中間層3は、図1及び図2に説明するように母材金
属層2側からサーメット層1側に対し、Feの含有率が
比例的に減じている濃度勾配を有することが望ましい。
また、図2(a)に示すようにMo含有率は逆にサーメ
ット層側に徐々に増していることが好ましいが、図2
(b)に示すNiの含有率と同様特に中間層全域で濃度
勾配がついている必要はなく、Feに比べ急激に変化し
ていても支障ない。このようなサーメット層と中間層を
有するサーメット被覆金属部品は、加熱処理条件を正確
に管理したカプセルHIP処理による表面被覆法によっ
て形成できるものであり、母材の大きさ、形状が変化す
る場合には熱投入量を厳密に管理することが困難な溶射
法や肉盛り法では実現不可能である。That is, in the intermediate layer 3 in the coated metal part according to the present invention, as shown in FIGS. 1 and 2, the content of Fe decreases proportionally from the base metal layer 2 side to the cermet layer 1 side. It is desirable to have a concentration gradient that is
Also, as shown in FIG. 2A, it is preferable that the Mo content is gradually increased in the cermet layer side.
As in the case of the Ni content shown in (b), there is no need to have a concentration gradient especially in the entire intermediate layer, and there is no problem even if the concentration changes abruptly as compared with Fe. Such a cermet-coated metal part having a cermet layer and an intermediate layer can be formed by a surface coating method using a capsule HIP process in which heating conditions are accurately controlled, and when the size and shape of the base material change. Cannot be realized by the thermal spraying method or the overlay method in which it is difficult to strictly control the heat input.
【0016】本発明において、Fe系金属母材としては
Feを主成分とするものであればどのようなものでもよ
く、通常は各種のステンレス鋼、炭素鋼、合金鋼などを
用いうる。なお、合金工具鋼や高速度鋼などの熱処理に
よる割れが生じやすい材料は好ましくない。In the present invention, any Fe-based metal base material may be used as long as it contains Fe as a main component, and various stainless steels, carbon steels, alloy steels and the like can be used in general. Note that materials such as alloy tool steel and high-speed steel that are easily cracked by heat treatment are not preferable.
【0017】本発明において、サーメット層を構成する
セラミックス相のうち、85重量%以上がNiとMo及
び又はWとの複合硼化物であることが望ましい。85重
量%未満ではサーメット層の耐熱強度が低下し、高温に
曝された場合にサーメット層の変形、脱落が生じやす
い。In the present invention, 85% by weight or more of the ceramic phase constituting the cermet layer is preferably a composite boride of Ni, Mo and / or W. If the amount is less than 85% by weight, the heat resistance of the cermet layer is reduced, and the cermet layer is likely to be deformed or dropped off when exposed to a high temperature.
【0018】本発明の被覆金属部品のサーメット層の成
分のうち、セラミックス相は30〜70重量%、特には
40〜60重量%、を占めることが好ましい。セラミッ
クス相が30重量%未満では、複合硼化物の優れた性質
をサーメット層に付与できず硬度や高温強度が低下する
ことがある。セラミックス相が70重量%超では、サー
メット層の耐衝撃性が低下し、サーメット層内に亀裂が
生じやすくなる。In the cermet layer component of the coated metal part of the present invention, the ceramic phase preferably accounts for 30 to 70% by weight, particularly 40 to 60% by weight. If the amount of the ceramic phase is less than 30% by weight, the excellent properties of the composite boride cannot be imparted to the cermet layer, and the hardness and high-temperature strength may decrease. If the amount of the ceramic phase exceeds 70% by weight, the impact resistance of the cermet layer is reduced, and cracks are easily generated in the cermet layer.
【0019】また、サーメット層を構成する金属結合相
の成分のうち60重量%以上、特には65重量%以上、
がNiであることが好ましい。金属結合相中にNiが6
0重量%以上含まれていると、好ましくない特性を付与
する第三相の生成を抑制でき、65重量%以上であると
安定して優れた特性を示す肉盛り層が得られる。Further, 60% by weight or more, particularly 65% by weight or more of the components of the metal binder phase constituting the cermet layer,
Is preferably Ni. 6 Ni in the metal binding phase
When the content is 0% by weight or more, the formation of the third phase imparting undesired properties can be suppressed, and when the content is 65% by weight or more, a build-up layer stably exhibiting excellent properties can be obtained.
【0020】サーメット層の金属結合相中にはMoが含
まれていることが必要で、その割合は金属結合相中12
重量%以上、特には15重量%以上、であることが好ま
しい。金属結合相中にMoが重量12%以上固溶してい
ることにより、サーメット被覆と母材の金属の界面にお
いての拡散が促進され、好ましい中間層の形成が制御さ
れる。一方、金属結合相中のMo固溶量の上限は金属相
全体に対するMoの冶金学的最大固溶量で決定される。It is necessary that Mo is contained in the metal binding phase of the cermet layer.
It is preferably at least 15% by weight, especially at least 15% by weight. When Mo is dissolved in the metal binding phase by 12% by weight or more, diffusion at the interface between the cermet coating and the base metal is promoted, and the formation of a preferable intermediate layer is controlled. On the other hand, the upper limit of the amount of Mo dissolved in the metal binding phase is determined by the maximum metallurgical solid solution of Mo in the entire metal phase.
【0021】本発明の被覆金属部品のサーメット層を構
成する好ましい材質は、セラミックス相の70重量%以
上がMoX NiY B2 又は(Mo,W)X NiY B2
(ただしXが1.8〜2.2、Yが0.9〜1.1)で
あり、金属結合相の60重量%以上がNiである。な
お、サーメット層の組成が上記XとYで表される範囲内
にあるとき、サーメット層のX線回折パターンはほとん
ど変化しない。MoX NiY B2 及び(Mo,W)X N
iY B2 はNi基金属相との結合強度がきわめて高いセ
ラミックスであり、これらのセラミックスの相が70重
量%以上、より好ましくは75重量%以上含まれている
ことによってサーメット焼結体の強度が安定して高くな
る。The preferred material of the cermet layer of the coated metal component of the present invention, more than 70 wt% of the ceramic phase is Mo X Ni Y B 2 or (Mo, W) X Ni Y B 2
(Where X is 1.8 to 2.2 and Y is 0.9 to 1.1), and 60% by weight or more of the metal binding phase is Ni. When the composition of the cermet layer is within the range represented by X and Y, the X-ray diffraction pattern of the cermet layer hardly changes. Mo X Ni Y B 2 and (Mo, W) X N
i Y B 2 is a very high ceramic bond strength between the Ni-based metal phase, these phases of ceramic 70 wt% or more, the strength of the cermet sintered body by more preferably contains more than 75 wt% Stable and high.
【0022】また、本発明の被覆金属部品において、サ
ーメット層の厚さは1.0〜5.0mmであることが好
ましい。サーメット層の厚さを1.0mm以上とするこ
とによって肉盛り層にサーメットの好ましい特性が付与
される。しかし、5.0mmを超えて厚くすることはカ
プセル設計の点でも難しくコストの点でも好ましくな
い。また、中間層の厚さは0.01〜0.2mmである
ことが好ましい。中間層の厚さを0.01〜0.2mm
とすることによって優れた密着性が得られる。より好ま
しいサーメット層の厚さは1.5〜4.0mmであり、
より好ましい中間層の厚さは0.02〜0.1mmであ
る。[0022] In the coated metal part of the present invention, the thickness of the cermet layer is preferably 1.0 to 5.0 mm. By setting the thickness of the cermet layer to 1.0 mm or more, preferable characteristics of the cermet are imparted to the build-up layer. However, increasing the thickness beyond 5.0 mm is difficult in terms of capsule design and cost, which is not preferable in terms of cost. Further, the thickness of the intermediate layer is preferably from 0.01 to 0.2 mm. The thickness of the intermediate layer is 0.01 to 0.2 mm
By doing so, excellent adhesion can be obtained. More preferably, the thickness of the cermet layer is 1.5 to 4.0 mm,
A more preferred thickness of the intermediate layer is 0.02 to 0.1 mm.
【0023】なお、本発明において中間層はFe系金属
母材及びサーメット層から拡散してきたFe、Mo及び
Niからなる合金層であり、概略FeとNiが主成分で
あってそれにMoが固溶した状態となっていることが多
い。In the present invention, the intermediate layer is an alloy layer composed of Fe, Mo, and Ni diffused from the Fe-based metal base material and the cermet layer. In many cases, it is in a state of having been done.
【0024】本発明のサーメット被覆金属部品は次のよ
うにして得ることができる。MoB、WB等の硼化物粉
末及びMo、Ni等の金属粉末を秤取し、これらを回転
ボールミルやアトリションミル等を用いて、エタノール
などの有機溶媒中で混合粉砕して得られたスラリを減圧
中で乾燥し、これをカプセルHIPの原料として用い
る。The cermet-coated metal part of the present invention can be obtained as follows. Slurry obtained by weighing boride powders such as MoB and WB and metal powders such as Mo and Ni and mixing and pulverizing them in an organic solvent such as ethanol using a rotary ball mill or an attrition mill. Dry under reduced pressure and use this as a raw material for capsule HIP.
【0025】ここで用いる原料粉末は前述のように硼化
物粉末と金属粉末の組み合わせである必要はなく、例え
ば、Ni−B合金とMo粉及びW粉との組み合わせ、又
はアトマイズ法やその他の方法で合成した複合硼化物粉
末と金属粉末の組み合わせ、さらにはNi、Mo、W等
の単体の金属粉末とB粉末の組み合わせであってもよ
い。一般的にこれらの原料粉末はできる限り純度が高
く、微細である方が優れた特性の被覆層を得るうえで有
利である。特に形成する被覆層の均質性を確保するため
に、硼化物粉末の平均粒径は10μm以下とするのが好
ましい。The raw material powder used here does not need to be a combination of a boride powder and a metal powder as described above. For example, a combination of a Ni—B alloy with Mo powder and W powder, or an atomizing method or another method A combination of a composite boride powder synthesized with the above and a metal powder, or a combination of a single metal powder such as Ni, Mo, W or the like and a B powder may be used. Generally, these raw material powders are as pure as possible, and the finer the powder, the more advantageous it is in obtaining a coating layer having excellent properties. In particular, in order to ensure the uniformity of the coating layer to be formed, the average particle size of the boride powder is preferably set to 10 μm or less.
【0026】前述の方法で得た原料粉末を、被覆される
金属母材の表面側に設けた空間に充填する。この空間の
厚さは結果的に得ようとする被覆層の厚さをもとに設定
する必要があり、原料粉末の充填率はできるだけ高いこ
とが望ましく、通常、50%以上とされる。次いで原料
粉末を充填した層の内部を脱気し、真空引きを行う。結
果的に得られる被覆層の特性を高めるためには、この真
空引きによる到達真空度はできるかぎり高いほうがよ
く、圧力として1×10-3Torr以下であるのが好ま
しい。また、当該真空引きの工程で、原料粉末充填層か
ら吸着水分等を除去するための加熱を実施するのは効果
的である。こうして真空引きを実施した原料充填室を封
止した後、カプセルHIP処理に供する。The raw material powder obtained by the above-described method is filled in a space provided on the surface side of the metal base material to be coated. The thickness of this space needs to be set based on the thickness of the coating layer to be obtained as a result, and the filling rate of the raw material powder is desirably as high as possible, and is usually 50% or more. Next, the inside of the layer filled with the raw material powder is evacuated and evacuated. In order to enhance the characteristics of the resulting coating layer, the ultimate degree of vacuum by this evacuation is preferably as high as possible, and the pressure is preferably 1 × 10 −3 Torr or less. In addition, in the vacuuming step, it is effective to perform heating for removing adsorbed moisture and the like from the raw material powder packed bed. After sealing the evacuated raw material filling chamber, it is subjected to capsule HIP processing.
【0027】本発明のサーメット被覆金属部品を得るた
めのHIP処理は、加圧媒体にアルゴンガス等を用いて
行う。当該処理時の最高温度は、好ましくは1050〜
1250℃、より好ましくは1100〜1200℃と
し、1〜5時間この温度に保持する。また、印加する圧
力は好ましくは800〜1800気圧、より好ましくは
1200〜1600気圧とする。これらの温度や圧力が
低すぎると、サーメット層の充分な機械的特性と、被覆
層と母材の強固な密着が得られず、逆に高すぎると被覆
層と母材の界面で脆弱な反応層が生じるようになる。The HIP treatment for obtaining the cermet-coated metal part of the present invention is performed using an argon gas or the like as a pressurized medium. The maximum temperature during the treatment is preferably 1050 to
The temperature is 1250 ° C., more preferably 1100 to 1200 ° C., and the temperature is maintained for 1 to 5 hours. The pressure to be applied is preferably 800 to 1800 atm, more preferably 1200 to 1600 atm. If these temperatures and pressures are too low, sufficient mechanical properties of the cermet layer and strong adhesion between the coating layer and the base material cannot be obtained. Conversely, if the temperature and pressure are too high, fragile reactions occur at the interface between the coating layer and the base material. Layers come into being.
【0028】[0028]
【実施例】以下に本発明の実施例(例1〜8)及び比較
例(例9〜12)を説明するが、本発明はこれらに限定
されない。EXAMPLES Examples of the present invention (Examples 1 to 8) and comparative examples (Examples 9 to 12) will be described below, but the present invention is not limited thereto.
【0029】(例1)MoB粉末(純度約99.5重量
%、平均粒径4μm)40重量%、WB粉末(純度9
9.6重量%、平均粒径3μm)3重量%、Mo粉末
(純度約99.8%重量%、平均粒径7μm)9重量%
及びNi粉末(純度約99.6重量%、平均粒径10μ
m)48重量%からなる原料を、混合・粉砕、乾燥の工
程を経て、カプセルHIP用合金粉末とした。(Example 1) MoB powder (purity: about 99.5% by weight, average particle size: 4 μm) 40% by weight, WB powder (purity: 9
9.6% by weight, average particle size 3 μm) 3% by weight, Mo powder (purity about 99.8% weight%, average particle size 7 μm) 9% by weight
And Ni powder (purity: about 99.6% by weight, average particle size: 10μ)
m) A raw material consisting of 48% by weight was subjected to mixing, pulverizing and drying steps to obtain an alloy powder for capsule HIP.
【0030】この合金粉末を、クロムモリブデン鋼(S
CM440)円筒とその外側に配した炭素鋼外筒の間の
空間に充填し、真空封止した後、最高温度1120℃、
保持時間3時間、加圧圧力1500気圧の条件でHIP
処理を行った。HIP処理の後、内外径などの加工を行
い、図3に示すダイカスト用のサーメット被覆スリーブ
を作製した。なお、このスリーブの被覆層の厚さは約3
mmであった。This alloy powder was converted to chromium molybdenum steel (S
CM440) After filling the space between the cylinder and the carbon steel outer cylinder arranged outside thereof and sealing it by vacuum, the maximum temperature is 1120 ° C.
HIP under the conditions of a holding time of 3 hours and a pressure of 1500 atm.
Processing was performed. After the HIP treatment, the inner and outer diameters and the like were processed to produce a cermet-coated sleeve for die casting shown in FIG. The thickness of the coating layer of this sleeve is about 3
mm.
【0031】このサーメット被覆スリーブを長手方向に
垂直に数箇所切断し、断面を金属顕微鏡で観察したとこ
ろ、サーメット層の厚さは約2.8〜3.2mmであ
り、サーメット層と炭素鋼の間に形成された中間層の厚
さは約0.02〜0.03mmであった。被覆サーメッ
ト層及び中間層の組成を湿式抽出法、定性X線解析及び
X線マイクロアナライザを用いて分析したところ、次の
とおりであった。The cermet-coated sleeve was cut at several points perpendicular to the longitudinal direction and the section was observed with a metallographic microscope. The thickness of the cermet layer was about 2.8 to 3.2 mm. The thickness of the intermediate layer formed between them was about 0.02-0.03 mm. When the compositions of the coated cermet layer and the intermediate layer were analyzed using a wet extraction method, qualitative X-ray analysis, and an X-ray microanalyzer, the results were as follows.
【0032】・サーメット層 セラミックス相の比率:54重量%、 セラミックス相の状態:Mo2 NiB2 及び(Mo,
W)2 NiB2 、 金属結合相の比率:46重量%、 金属結合相の状態:Ni−Mo合金相(Ni:80重量
%、Mo:17重量%)。Cermet layer Ceramic phase ratio: 54% by weight, Ceramic phase state: Mo 2 NiB 2 and (Mo,
W) 2 NiB 2 , ratio of metal binding phase: 46% by weight, state of metal binding phase: Ni—Mo alloy phase (Ni: 80% by weight, Mo: 17% by weight).
【0033】・中間層 主体はFe−Ni合金であり、さらにMoが固溶してい
る。図2に模式的に示したように、この3成分が層内で
それぞれ濃度勾配を示しており、特にFeは金属母材側
からサーメット側にほぼ直線的に減じる濃度勾配を有す
る。中間層のほぼ中心でこれらの成分を定量化すると、
Ni:約37%、Fe:52%、Mo:8%であった。-Intermediate layer The main component is an Fe-Ni alloy, and Mo is dissolved in a solid solution. As schematically shown in FIG. 2, these three components each show a concentration gradient in the layer. In particular, Fe has a concentration gradient that decreases almost linearly from the metal base material side to the cermet side. Quantifying these components at about the center of the middle layer,
Ni: about 37%, Fe: 52%, Mo: 8%.
【0034】このスリーブを、溶融温度680℃のAl
ダイカスト用合金(ADC12合金)を成形するアルミ
ダイカスト射出スリーブとして用いる試験を行ったとこ
ろ、被覆層の一部が剥離して欠け落ち使用不能となるま
でに460,000回の成形ができ、同一の成形試験を
合金工具鋼(SKD61)製射出スリーブ(窒化処理
品)を用いて実施した場合の6.6倍であった。This sleeve is made of Al having a melting temperature of 680 ° C.
When a test was performed using an aluminum die-casting injection sleeve for forming a die-casting alloy (ADC12 alloy), 460,000 moldings could be performed before a part of the coating layer was peeled off and became unusable. The molding test was 6.6 times that in the case of using an injection sleeve (nitrided product) made of alloy tool steel (SKD61).
【0035】(例2〜8)例1で用いたと同じMoB、
WB、Mo及びNi粉末と各種の添加原料(いずれも純
度99、5%以上、平均粒径8μm以下)を用い、HI
P用原料を作製した。この原料を用いてカプセルHIP
処理を行い、例1で作製したと同一のダイカスト射出ス
リーブを製作し、例1と同様の条件で行う成形試験に供
した。結果を表1、表2に示す。(Examples 2 to 8) The same MoB as used in Example 1
Using WB, Mo and Ni powders and various additional raw materials (all having a purity of 99% or more and an average particle size of 8 μm or less),
A raw material for P was produced. Capsule HIP using this raw material
After performing the treatment, the same die casting injection sleeve as that manufactured in Example 1 was manufactured and subjected to a molding test performed under the same conditions as in Example 1. The results are shown in Tables 1 and 2.
【0036】(例9〜12)例1〜8で行ったと同様な
試験を、各種の複合ダイカストスリーブ(Al溶湯が入
る内面に表面処理や焼き嵌めによって高耐食性材料を配
したもの)を用いて行った結果を表3に示す。(Examples 9 to 12) The same tests as those performed in Examples 1 to 8 were carried out using various composite die-casting sleeves (in which a high corrosion-resistant material was provided by surface treatment or shrink fitting on the inner surface into which an aluminum melt enters). Table 3 shows the results.
【0037】例9及び10のような高耐食材料層材料を
焼き嵌めする方法では緩衝層となる中間層が存在しない
ため、加工精度や成形実施時の温度の不均一による割れ
が生じやすい。一方、高耐食材料として金属系材料を用
いる例11や12の場合には、肉盛りやカプセルHIP
の中間緩衝層を形成できる製造方法の適用が容易であ
る。しかし、ステライトやTi系複合材のAl溶湯に対
する耐食性は、本発明が提供するサーメット被覆層より
劣り、成形可能数は合金工具剛性スリーブを大幅に凌駕
するものではない。In the method of shrink-fitting a high corrosion resistant material layer material as in Examples 9 and 10, since there is no intermediate layer serving as a buffer layer, cracks are likely to occur due to uneven processing accuracy and uneven temperature during molding. On the other hand, in the case of Examples 11 and 12 in which a metal-based material is used as the high corrosion-resistant material,
It is easy to apply a manufacturing method capable of forming an intermediate buffer layer. However, the corrosion resistance of stellite and Ti-based composite materials to molten aluminum is inferior to that of the cermet coating layer provided by the present invention, and the number of moldable shapes does not significantly exceed that of alloy tool rigid sleeves.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【表2】 [Table 2]
【0040】[0040]
【表3】 [Table 3]
【0041】[0041]
【発明の効果】本発明のサーメット被覆金属部品が有す
る、NiとMo及び又はWとの複合硼化物を主体とする
セラミックス相とMoを含むNiを主体とする金属結合
相とからなるサーメット焼結体層と、前記サーメット焼
結体層からFe系金属母材側にMoが拡散し、さらにF
e系金属母材からサーメット焼結体層側にFeが濃度勾
配を有して拡散しているNi、Fe、Moを主体とする
中間層とが形成されている被覆層は、ダイカスト用射出
スリーブ等に多用されている鉄鋼材の窒化層に比べると
緻密で充分な厚さを有し、同用途に肉盛りされることの
多いステライトなどのCo系合金や、メカニカルシール
やポンプスリーブに汎用されている(Bの含有量が少な
くサーメットではない)Ni−Cr−B自溶性合金の肉
盛り層と比べ、格段に大きい高温強度や硬度を有し、密
着性、耐食性や耐熱衝撃性において遜色がない。The cermet-sintered metal part of the present invention comprises a ceramic phase mainly composed of a composite boride of Ni and Mo and / or W and a metal-bound phase mainly composed of Ni containing Mo. Mo diffuses from the body layer and the cermet sintered body layer to the Fe-based metal base material side,
The coating layer in which an intermediate layer mainly composed of Ni, Fe, and Mo in which Fe is diffused with a concentration gradient from the e-base metal base material to the cermet sintered body layer side is formed is an injection sleeve for die casting. It is denser and has a sufficient thickness compared to the nitrided layer of iron and steel materials that are frequently used for etc.It is widely used for Co-based alloys such as stellite which is often overlaid for the same application, mechanical seals and pump sleeves Compared to the build-up layer of a Ni-Cr-B self-fluxing alloy that has a low content of B and is not a cermet, it has significantly higher high-temperature strength and hardness, and is inferior in adhesion, corrosion resistance and thermal shock resistance. Absent.
【0042】さらにまた、本発明のサーメット被覆金属
部品が有するサーメット層とサーメット層の成分が金属
の母材と反応してなる中間層とからなる被覆層の密着力
は、溶射法によるサーメット層のみからなる皮膜の密着
力と比べて顕著に大きい。また、セラミックス焼結体を
機械的に金属部材と複合した層に比べ、本発明が提供す
る被覆層は外力による割れの発生や、脱落がきわめて生
じ難い。Furthermore, the adhesion of the coating layer comprising the cermet layer and the intermediate layer formed by the reaction of the component of the cermet layer with the metal base material of the cermet-coated metal part of the present invention is such that only the cermet layer formed by the thermal spraying method is used. Remarkably greater than the adhesion of a film consisting of Further, as compared with a layer in which a ceramic sintered body is mechanically combined with a metal member, the coating layer provided by the present invention is extremely unlikely to be cracked or fall off due to an external force.
【0043】したがって、本発明が提供する被覆は、様
々な形状や種々の大きさを有する金属部品に適用しう
る。このため、本発明によるサーメット被覆金属部品
は、アルミニウムダイカスト用射出スリーブに代表され
るような、耐食性と強度が要求されるのみではなく、熱
的及び又は機械的衝撃力が繰り返し印加される用途にお
いて、優れた耐用を示し、これらの機器のコストパフォ
ーマンスを大幅に改善する。また、本発明のサーメット
被覆金属部品は、高い耐摩耗性を有し、摺動性にも優れ
るため、さらに広範な用途において製品の品質とコスト
の低減で大きな改善効果をもたらすと考えられる。Therefore, the coating provided by the present invention can be applied to metal parts having various shapes and various sizes. For this reason, the cermet-coated metal parts according to the present invention are not only required to have corrosion resistance and strength as represented by an injection sleeve for aluminum die casting, but also used in applications where thermal and / or mechanical impact force is repeatedly applied. Shows excellent service life and greatly improves the cost performance of these devices. In addition, the cermet-coated metal part of the present invention has high wear resistance and excellent slidability, and is expected to bring about a great improvement effect by reducing product quality and cost in a wider range of applications.
【図1】本発明のサーメット焼結体被覆金属部品を模式
的に説明する断面図。FIG. 1 is a sectional view schematically illustrating a metal part coated with a cermet sintered body according to the present invention.
【図2】本発明におけるサーメット焼結体層と金属母材
の中間に形成される中間層の成分組成の変化を示す説明
図。FIG. 2 is an explanatory diagram showing a change in component composition of an intermediate layer formed between a cermet sintered body layer and a metal base material in the present invention.
【図3】本発明の実施例及び比較例を説明するための図
であり、ダイカスト用射出スリーブの模式図。FIG. 3 is a view for explaining an example and a comparative example of the present invention, and is a schematic view of an injection sleeve for die casting.
1:被覆サーメット層 2:母材金属 3:中間層 1: coated cermet layer 2: base metal 3: intermediate layer
Claims (8)
又はWとの複合硼化物を主体とするセラミックス相とM
oを含むNiを主体とする金属結合相とからなるサーメ
ット焼結体層と、前記サーメット焼結体層からFe系金
属母材側にMoが拡散しさらにFe系金属母材からサー
メット焼結体層側にFeが濃度勾配を有して拡散してい
るNi、Fe、Moを主体とする中間層、とが形成され
ていることを特徴とするサーメット焼結体被覆金属部
品。1. A ceramic phase mainly composed of a composite boride of Ni and Mo and / or W is formed on a surface of an Fe-based metal base material.
a cermet sintered body layer composed of a metal binding phase mainly composed of Ni containing o, Mo diffuses from the cermet sintered body layer to the Fe-based metal base material side, and further, the cermet sintered body is formed from the Fe-based metal base material. A metal part coated with a cermet sintered body, characterized in that an intermediate layer mainly composed of Ni, Fe and Mo in which Fe is diffused with a concentration gradient is formed on the layer side.
クス相が30〜70重量%含まれている請求項1記載の
サーメット焼結体被覆金属部品。2. The metal part coated with a cermet sintered body according to claim 1, wherein the ceramic phase is contained in the cermet sintered body layer in an amount of 30 to 70% by weight.
NiとMo及び又はWとの複合硼化物である請求項1又
は2記載のサーメット焼結体被覆金属部品。(3) at least 85% by weight of the ceramic phase is
The metal part coated with a cermet sintered body according to claim 1 or 2, which is a composite boride of Ni, Mo and / or W.
oX NiY B2 又は(Mo,W)XNiY B2 (ただし
Xは1.8〜2.2、Yは0.9〜1.1)であり、前
記金属結合相の60重量%以上がNiである請求項1又
は2記載のサーメット焼結体被覆金属部品。4. A ceramic phase comprising at least 70% by weight of M
o X Ni Y B 2 or (Mo, W) X Ni Y B 2 ( where X is 1.8 to 2.2, Y 0.9 to 1.1), and 60 wt% of said metal binder phase The cermet sintered body-coated metal part according to claim 1, wherein the metal part is Ni.
ある請求項1、2、3又は4記載のサーメット焼結体被
覆金属部品。5. The metal part coated with a cermet sintered body according to claim 1, wherein at least 12% by weight of said metal binder phase is Mo.
5.0mmであり、前記中間層の厚さが0.01〜0.
2mmである請求項1、2、3、4又は5記載のサーメ
ット焼結体被覆金属部品。6. The cermet sintered body layer has a thickness of 1.0 to 1.0.
5.0 mm, and the thickness of the intermediate layer is 0.01 to 0.5 mm.
The cermet sintered body-coated metal part according to claim 1, 2, 3, 4, or 5, which has a diameter of 2 mm.
体とするセラミックス粉末又は該セラミックスを生成し
うる組成の粉末とNi及びMoを主体とする金属粉末と
からなる複合粉末を、被覆されるべきFe系金属母材の
表面に設けた空間に充填し、該空間の内部を真空引きし
た後、熱間静水圧プレス(HIP)処理することを特徴
とする請求項1、2、3、4、5又は6記載のサーメッ
ト焼結体被覆金属部品の製造方法。7. A ceramic powder mainly composed of a composite boride of Ni, Mo and / or W or a composite powder composed of a metal powder mainly composed of Ni and Mo and a powder having a composition capable of producing said ceramic. 4. A hot isostatic press (HIP) process after filling a space provided on the surface of the Fe-based metal base material to be formed, evacuating the inside of the space, and performing a hot isostatic pressing (HIP) process. 7. The method for producing a metal part coated with a cermet sintered body according to 4, 5, 5 or 6.
0℃であり、HIP処理の圧力が800〜1800気圧
である、請求項7記載のサーメット焼結体被覆金属部品
の製造方法。8. The maximum temperature of the HIP processing is 1050 to 125.
The method for producing a metal part coated with a cermet sintered body according to claim 7, wherein the temperature is 0 ° C and the pressure of the HIP treatment is 800 to 1800 atm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16917397A JPH1112758A (en) | 1997-06-25 | 1997-06-25 | Metallic parts coated with cermet sintered compact, and their production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16917397A JPH1112758A (en) | 1997-06-25 | 1997-06-25 | Metallic parts coated with cermet sintered compact, and their production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1112758A true JPH1112758A (en) | 1999-01-19 |
Family
ID=15881611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16917397A Pending JPH1112758A (en) | 1997-06-25 | 1997-06-25 | Metallic parts coated with cermet sintered compact, and their production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1112758A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001220605A (en) * | 2000-02-08 | 2001-08-14 | Kubota Corp | Sliding member excellent in wear resistance |
WO2011108974A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A reactor component |
WO2011108975A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A neutron absorbing component and a method for producing a neutron absorbing component |
WO2011108973A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A neutron absorbing component and a method for producing of a neutron absorbing component |
JP2012117121A (en) * | 2010-12-01 | 2012-06-21 | Sumitomo Electric Hardmetal Corp | Cermet |
CN106435568A (en) * | 2016-10-18 | 2017-02-22 | 东北大学 | Mo-Ni-ZrN2 gradient coating layer and laser direct deposition preparation method |
-
1997
- 1997-06-25 JP JP16917397A patent/JPH1112758A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001220605A (en) * | 2000-02-08 | 2001-08-14 | Kubota Corp | Sliding member excellent in wear resistance |
WO2011108974A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A reactor component |
WO2011108975A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A neutron absorbing component and a method for producing a neutron absorbing component |
WO2011108973A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A neutron absorbing component and a method for producing of a neutron absorbing component |
JP2015148617A (en) * | 2010-03-01 | 2015-08-20 | ウェスティングハウス エレクトリック スウェーデン アーベー | reactor component |
JP2012117121A (en) * | 2010-12-01 | 2012-06-21 | Sumitomo Electric Hardmetal Corp | Cermet |
CN106435568A (en) * | 2016-10-18 | 2017-02-22 | 东北大学 | Mo-Ni-ZrN2 gradient coating layer and laser direct deposition preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5593726A (en) | Hot isostatic pressing process for applying wear and corrosion resistant coatings | |
US6451249B1 (en) | Composite and method for producing the same | |
US6183690B1 (en) | Method of bonding a particle material to near theoretical density | |
JP2622386B2 (en) | Complex of tissue to be classified | |
US4317850A (en) | Method for applying a dense, hard, adhesive and wear-resistant layer of cermets or ceramic material on a metal object | |
US4851267A (en) | Method of forming wear-resistant material | |
JP2863675B2 (en) | Manufacturing method of particle reinforced composite material | |
JP3916465B2 (en) | Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same | |
JP2988281B2 (en) | Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating | |
JPH1112758A (en) | Metallic parts coated with cermet sintered compact, and their production | |
JPH06228676A (en) | Combined sintered alloy excellent in corrosion and wear resistance and production thereof | |
US20110052441A1 (en) | Method and device for hot isostatic pressing of alloyed materials | |
CN114951656A (en) | Preparation method of high-entropy alloy-ceramic coating composite material | |
JP5268771B2 (en) | Method for producing sputtering target, method for forming hard film using the same, and hard film coated member | |
US6821313B2 (en) | Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys | |
JP4976626B2 (en) | Sintered alloy material, method for producing the same, and mechanical structural member using the same | |
JP2959912B2 (en) | Discharge coating composite | |
JPH10310840A (en) | Superhard composite member and its production | |
JPS61143547A (en) | Cylinder for plastic molding apparatus | |
JP2000144298A (en) | Diamond-containing hard member and its production | |
JPH0941115A (en) | Thermal spray coating film and its forming method | |
JP3092887B2 (en) | Surface-finished sintered alloy and method for producing the same | |
JP2569614B2 (en) | Energizing roll | |
JPH08260129A (en) | Cubic boron nitride composite cermet tool and its production | |
US7270782B2 (en) | Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys |