JPH08260129A - Cubic boron nitride composite cermet tool and its production - Google Patents

Cubic boron nitride composite cermet tool and its production

Info

Publication number
JPH08260129A
JPH08260129A JP7086496A JP8649695A JPH08260129A JP H08260129 A JPH08260129 A JP H08260129A JP 7086496 A JP7086496 A JP 7086496A JP 8649695 A JP8649695 A JP 8649695A JP H08260129 A JPH08260129 A JP H08260129A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
particles
cermet tool
composite cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7086496A
Other languages
Japanese (ja)
Inventor
Masaru Matsubara
優 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP7086496A priority Critical patent/JPH08260129A/en
Publication of JPH08260129A publication Critical patent/JPH08260129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To produce a CBN composite cermet tool high in hardness, having a long service life and furthermore excellent in cuttability by mixing CBN particles stuck with the fine particles of TiN, Ni or the like and a base material made of Ti, N, and Ni, etc., under specified conditions and executing sintering. CONSTITUTION: The fine particles of one or more kinds selected from among TiN, TiC, Ni and Co are physically stuck to the particles of cubic boron nitride (CBN) (having about 0.5 to 5μm average particle size) by plasma coating. This CBN particles, 1 to 60vol.%, and the balance base material (having <=2μm average particle size) composed of one or more kinds among TiN, TiC, TiCN, NbC, WC and Mo2 C and one or more kinds of Ni and Co are mixed. Next, this mixture is sintered by HIP at <=1600 deg.C under <=2000 atmospheric pressure in an inert gas. Thus, the cubic boron nitride composite cermet tool excellent in strength and wear resistance can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、立方晶窒化ホウ素複
合サーメット工具とその製造方法に関する。この発明の
工具は、普通鋳鉄、ダクタイル鋳鉄、高硬度材及び耐熱
合金の切削加工に好適に利用されうる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cubic boron nitride composite cermet tool and its manufacturing method. INDUSTRIAL APPLICABILITY The tool of the present invention can be suitably used for cutting of ordinary cast iron, ductile cast iron, high hardness materials and heat resistant alloys.

【0002】[0002]

【従来の技術】立方晶窒化ホウ素(以下、「CBN」と
いう。)は、ダイヤモンドに次ぐ高硬度であって、高熱
伝導性及び高電気絶縁性を有し、しかも鉄族金属との親
和性の高いダイヤモンドと異なり鉄系金属との反応が少
ないことから、焼き入れ鋼等の高硬度材やニッケル基合
金、コバルト基合金等の耐熱合金を切削又は研削する工
具材料として利用されている。
2. Description of the Related Art Cubic boron nitride (hereinafter referred to as "CBN") has the second highest hardness after diamond, high thermal conductivity and high electrical insulation, and has an affinity with iron group metals. It is used as a tool material for cutting or grinding high hardness materials such as hardened steel and heat resistant alloys such as nickel-based alloys and cobalt-based alloys because they have little reaction with ferrous metals unlike high diamonds.

【0003】従来、この種の工具材料の製造方法として
は、CBNが脆性材料であり、しかも難焼結材料である
ため、CBNに金属(Al)をコーティングし、超高圧
焼結する方法(特開平3−205364号)、CBNに
炭窒酸化物をコーティングし、超高圧焼結する方法(特
開平5−51267号)、CBNに金属(V,Nb,T
a,W,Cr)の窒化物もしくはホウ化物をコーティン
グし、これを4a,5a,6a族金属の炭化物,窒化
物,酸化物等の結合相形成物質と混合し、熱間静水圧
(HIP)もしくは熱間加圧(HP)で成形する方法
(特開平5−163071号)、CBNにTi化合物の
第1層及びAl化合物の第2層をコーティングし、これ
をTi化合物及びAl化合物のうち1種以上の結合相形
成物質と混合し、超高圧焼結する方法(特開平5−31
0474号)等、CBNをコーティング後、加圧焼結す
る方法が採用されてきた。
Conventionally, as a method of manufacturing a tool material of this type, since CBN is a brittle material and is a material that is difficult to sinter, a method of coating CBN with metal (Al) and sintering it at an ultrahigh pressure (special (Kaihei 3-205364), a method in which CBN is coated with carbonitride oxide, and ultra-high pressure sintering (Japanese Patent Laid-Open No. 5-51267), and CBN is made of metal (V, Nb, T)
a, W, Cr) nitride or boride is coated, and this is mixed with a binder phase forming substance such as a carbide, nitride, or oxide of a 4a, 5a, or 6a group metal, and hot isostatic pressure (HIP) is applied. Alternatively, a method of forming by hot pressing (HP) (Japanese Patent Laid-Open No. 5-163071), CBN is coated with a first layer of a Ti compound and a second layer of an Al compound, and one of Ti compound and Al compound is coated. A method of mixing with one or more kinds of binder phase forming substances and performing ultra-high pressure sintering (JP-A-5-31
No. 0474), a method has been adopted in which CBN is coated and then pressure-sintered.

【0004】[0004]

【発明が解決しようとする課題】上記従来の製造方法
は、いずれもCBNに他の物質をコーティングする手段
が、化学気相析出(CVD)法である。従って、コーテ
ィング材料が気相成長するため、膜生成速度が遅く、し
かも膜の核が、CBN粒子の角部や粗面に優先的に生成
されるため、コーティング後に剥離が生じたり、膜の性
質が不均一となる。その結果、コーティング後のCBN
粒子を焼結して得られる工具は、強度や耐磨耗性に劣っ
ていた。
In any of the above-mentioned conventional manufacturing methods, the means for coating the CBN with another substance is the chemical vapor deposition (CVD) method. Therefore, the coating material is vapor-deposited so that the film formation rate is slow, and the film nuclei are preferentially formed on the corners and rough surfaces of the CBN particles, so that peeling may occur after coating or the film properties may be deteriorated. Becomes uneven. As a result, CBN after coating
The tool obtained by sintering the particles was inferior in strength and wear resistance.

【0005】本発明者は、CBNに如何にして均質な皮
膜又は粒子の囲いを形成するかについて種々の実験を試
みた。その結果、CBN粒子をある厚みをもった層で覆
うのではなく、ある種の方法を用いて微粒子を物理的に
付着させたほうが、均一に被覆でき焼結性や特性の向上
が著しいことが判った。それ故、この発明の目的は、他
の物質で均一に覆われたCBN粒子から強度及び耐磨耗
性に優れた工具材料を提供することにある。
The inventor has tried various experiments on how to form a homogeneous coating or particle enclosure on the CBN. As a result, if the CBN particles are not covered with a layer having a certain thickness but the particles are physically attached using a certain method, it is possible to uniformly coat the particles and the sinterability and the characteristics are significantly improved. understood. Therefore, an object of the present invention is to provide a tool material excellent in strength and wear resistance from CBN particles uniformly covered with another substance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、この発明の立方晶窒化ホウ素複合サーメット工具
は、4a,5a及び6a族金属の窒化物、炭化物及び炭
窒化物から選ばれる1種以上の微粒子及び/又は鉄族金
属から選ばれる1種以上の層によって被覆された硬質分
散相としての立方晶窒化ホウ素粒子1〜60vol%
と、残部母材として4a,5a及び6a族金属の窒化
物、炭化物及び炭窒化物から選ばれる1種以上並びに鉄
族金属から選ばれる1種以上とからなることを特徴とす
る。
In order to achieve the above object, the cubic boron nitride composite cermet tool of the present invention is one kind selected from nitrides, carbides and carbonitrides of 4a, 5a and 6a group metals. 1 to 60 vol% of cubic boron nitride particles as a hard dispersed phase covered with one or more layers selected from the above fine particles and / or iron group metals
And at least one selected from the group consisting of nitrides, carbides, and carbonitrides of 4a, 5a, and 6a metals as the balance base material, and at least one selected from iron group metals.

【0007】微粒子又は層の成分としては、例えばTi
N、TiC、Ni及びCoのいずれか1種以上が挙げら
れる。母材としては、TiN、TiC、TiCN、Nb
C、WC及びMo2Cから選ばれる1種以上並びにNi
及びCoのいずれか1種以上の組み合わせが挙げられ
る。上記のうち、特に、立方晶窒化ホウ素粒子の平均粒
径が0.5μm以上5μm以下、母材の平均粒子径が2
μm以下であると望ましい。
The fine particles or layer components include, for example, Ti.
Any one or more of N, TiC, Ni and Co may be mentioned. As the base material, TiN, TiC, TiCN, Nb
At least one selected from C, WC and Mo 2 C and Ni
And a combination of one or more of Co. Among the above, particularly, the cubic boron nitride particles have an average particle size of 0.5 μm or more and 5 μm or less, and the base material has an average particle size of 2 μm.
It is desirable that the thickness is μm or less.

【0008】この発明の立方晶窒化ホウ素複合サーメッ
ト工具を製造する適切な方法は、次の工程を経ることを
特徴とする。 (a)4a,5a及び6a族金属の窒化物、炭化物、炭
窒化物及び鉄族金属から選ばれる1種以上の微粒子を立
方晶窒化ホウ素粒子に物理的に固着させる工程。 (b)上記微粒子の固着した立方晶窒化ホウ素粒子1〜
60vol%と、残部が4a,5a及び6a族金属の窒
化物、炭化物及び炭窒化物から選ばれる1種以上並びに
鉄族金属から選ばれる1種以上とを混合する工程。 (c)混合物を焼結する工程。
A suitable method of making the cubic boron nitride composite cermet tool of the present invention is characterized by the following steps. (A) A step of physically adhering to the cubic boron nitride particles one or more kinds of fine particles selected from nitrides, carbides, carbonitrides and iron group metals of 4a, 5a and 6a group metals. (B) 1 to 3 of cubic boron nitride particles to which the above fine particles are fixed
A step of mixing 60 vol% with the balance of one or more selected from nitrides, carbides and carbonitrides of 4a, 5a and 6a metals and one or more selected from iron group metals. (C) A step of sintering the mixture.

【0009】ここで、物理的に固着させる手段として
は、例えばプラズマコートである。そのための装置は、
例えば円筒状のプラズマトーチ、その下端に連結された
石英二重管、さらにその下端に連結された冷却二重管及
び最下部に連結されたチャンバーからなる。プラズマト
ーチは、内側に石英管及び外側に冷却管が配置され、そ
の中間に高周波発振用コイルが配備され、上方にガス噴
出口、側面に微粒子原料供給口が設けられている。被覆
される粒子(この発明ではCBN粒子)の供給口は、冷
却管の側面に設けられている。そして、ガス噴出口か
ら、アルゴン、窒素、酸素などの必要なガスを噴出さ
せ、高周波電源によってプラズマトーチの石英管内部に
プラズマ焔を形成し、そこへ微粒子となる金属粉末又は
金属化合物粉末をアルゴンなどのキャリアガスとともに
導入し、粉末をプラズマ状態で冷却管に向かって落下さ
せる。そして、冷却管の側面よりCBN粒子をアルゴン
などのキャリアガスとともに導入すると、CBN粒子の
表面に所定の微粒子が均一に固着する。
Here, as a means for physically fixing, for example, plasma coating. The equipment for that is
For example, it comprises a cylindrical plasma torch, a quartz double tube connected to its lower end, a cooling double tube connected to its lower end, and a chamber connected to the lowermost part. In the plasma torch, a quartz tube is arranged inside and a cooling tube is arranged outside, a high frequency oscillation coil is arranged in the middle, a gas ejection port is provided above, and a fine particle raw material supply port is provided on a side surface. The supply port for the particles to be coated (CBN particles in the present invention) is provided on the side surface of the cooling pipe. Then, a necessary gas such as argon, nitrogen, or oxygen is ejected from the gas ejection port, a plasma flame is formed inside the quartz tube of the plasma torch by a high frequency power source, and a metal powder or a metal compound powder to be fine particles is argon there. Is introduced together with a carrier gas such as, and the powder is dropped toward the cooling pipe in a plasma state. Then, when CBN particles are introduced together with a carrier gas such as argon from the side surface of the cooling pipe, predetermined fine particles are uniformly adhered to the surface of the CBN particles.

【0010】焼結は、通常HIP又は普通焼結によって
行い、HIPの場合の焼結条件は、不活性ガスの圧力2
000気圧以下、温度1600℃以下が望ましく、普通
焼結の場合の焼結条件は、不活性ガスの常圧下、温度1
600℃以下が望ましい。
Sintering is usually carried out by HIP or normal sintering. In the case of HIP, the sintering conditions are: inert gas pressure 2
It is desirable that the pressure is 000 atm or less and the temperature is 1600 ° C. or less. In the case of normal sintering, the sintering conditions are:
It is preferably 600 ° C or lower.

【0011】[0011]

【作用】上記の製造方法によれば、微粒子(例えばTi
N)となる原料粉体(Ti粉又はTiN粉)及びガス
(N2とAr)を熱プラズマ中に供給し化学反応により
所望のコーティング材料を微粒子として生成し、その微
粒子が凝集する前にCBN粒子を供給する。その結果、
CBN粒子に微粒子が物理的に強く固着しており、CB
N粒子と結合相形成物質(母材)とを複合化する場合の
機械的混合過程においても剥離しない。
According to the above manufacturing method, fine particles (for example, Ti
N) a raw material powder (Ti powder or TiN powder) and a gas (N 2 and Ar) are supplied into the thermal plasma to produce a desired coating material as fine particles by a chemical reaction, and CBN is formed before the fine particles aggregate. Supply particles. as a result,
The particles are physically strongly adhered to the CBN particles.
It does not peel even in the mechanical mixing process when the N particles and the binder phase forming substance (base material) are combined.

【0012】また、微粒子となる物質が、炭化物、窒化
物及び炭窒化物の場合は、それ自体は母材形成成分との
化学反応を起こさないが、母材形成成分との濡れ性がよ
いため焼結性を高め、それに伴う切削工具としての耐磨
耗性や耐欠損性等の切削性能を向上させる。この場合
は、CBN粒子に固着した微粒子は、焼結後もそのまま
微粒子として存在する(Type1)。微粒子が鉄族金
属の場合は、焼結過程において、母材中の鉄族金属と反
応し、CBN粒子をほぼ均等に被覆するような層を形成
する(Type2)。
When the substance to be fine particles is a carbide, a nitride or a carbonitride, it does not cause a chemical reaction with the base material forming component itself, but has good wettability with the base material forming component. Improves sinterability and improves cutting performance such as wear resistance and fracture resistance as a cutting tool. In this case, the fine particles adhered to the CBN particles remain as fine particles even after sintering (Type 1). When the fine particles are an iron group metal, they react with the iron group metal in the base material during the sintering process to form a layer that almost uniformly covers the CBN particles (Type 2).

【0013】ただし、CBN粒子の含有量が、1%未満
では硬質分散相としての硬度、強度の向上を期待でき
ず、60%を越えると安価な焼結法であるHIP法や普
通焼結法で緻密化し難いので、その含有量を1〜60%
に限定した。特に望ましい含有量の範囲は、15〜40
%である。
However, if the content of CBN particles is less than 1%, improvement in hardness and strength as a hard dispersed phase cannot be expected, and if it exceeds 60%, the inexpensive HIP method or ordinary sintering method is used. Since it is difficult to densify, the content should be 1-60%.
Limited to. A particularly desirable content range is 15-40
%.

【0014】[0014]

【実施例】【Example】

[微粒子の固着]まず、CBNに微粒子を固着させる手
段を示す。プラズマ焔が形成されたプラズマトーチに所
定の比率の原料をキャリアガスとともに導入し、高周波
加熱してプラズマ状態の活性な微粒子を合成する。その
段階では、微粒子は、不活性ガス中に気流となって存在
している。そこへCBN粒子を導入してCBN粒子表面
に微粒子を物理的に固着させる。具体的な原料及びキャ
リアガスは、以下の通りである。
[Fixation of fine particles] First, a means for fixing fine particles to CBN will be described. A raw material in a predetermined ratio is introduced together with a carrier gas into a plasma torch in which a plasma flame has been formed, and high frequency heating is performed to synthesize active particles in a plasma state. At that stage, the fine particles are present as a gas flow in the inert gas. CBN particles are introduced there to physically fix the fine particles on the surface of the CBN particles. Specific raw materials and carrier gas are as follows.

【0015】TiN微粒子を固着させる場合:Ti微粉
末、N2ガス、Arガス又はTiN微粉末、Arガス TiC微粒子を固着させる場合:Ti微粉末、CO2
ス、CH4ガス、Arガス又はTiC微粉末、Arガス Co微粒子を固着させる場合:Co微粉末、Arガス Ni微粒子を固着させる場合:Ni微粉末、Arガス
When fixing TiN fine particles: Ti fine powder, N 2 gas, Ar gas or TiN fine powder, Ar gas When fixing TiC fine particles: Ti fine powder, CO 2 gas, CH 4 gas, Ar gas or TiC Fine powder, Ar gas When fixing Co fine particles: Co fine powder, Ar gas When fixing Ni fine particles: Ni fine powder, Ar gas

【0016】[焼結体及び工具の製造]次に、種々の粒
径の市販のCBN粒子に上記の方法で、平均粒径0.0
5μmのTiN、同0.03μmのCo又は同0.03
μmのNiの微粒子を固着させ、それを原料として焼結
体及び工具を製造する方法を説明する。CBN以外の他
の成分原料は、平均粒径1.0μmの窒化チタンTi
N、平均粒径1.5μmの炭化チタンTiC、平均粒径
1.5μmの炭化ニオブNbC、平均粒径1.0μmの
炭化タングステンWC、平均粒径1.0μmの炭化モリ
ブデンMo2C、平均粒径0.5μmのニッケルNi、
平均粒径0.5μmのコバルトCoである。
[Manufacture of Sintered Body and Tool] Next, commercially available CBN particles having various particle diameters were subjected to the above-mentioned method to obtain an average particle diameter of 0.0
5 μm TiN, 0.03 μm Co or 0.03 μm
A method of adhering fine particles of Ni having a diameter of μm and using the raw material as a raw material to manufacture a sintered body and a tool will be described. Raw materials other than CBN are titanium nitride Ti having an average particle size of 1.0 μm.
N, titanium carbide TiC having an average particle diameter of 1.5 μm, niobium carbide NbC having an average particle diameter of 1.5 μm, tungsten carbide WC having an average particle diameter of 1.0 μm, molybdenum carbide Mo 2 C having an average particle diameter of 1.0 μm, average particles Nickel Ni with a diameter of 0.5 μm,
Cobalt Co having an average particle size of 0.5 μm.

【0017】微粒子を固着したCBN粒子及び他の原料
粉末を表1に示す所定の配合組成に秤量し、エタノール
及びアセトンの混合溶媒とともに樹脂製のポットに入れ
て、ボールミリング混合した。混合物を減圧乾燥し、ワ
ックスを添加した後、噴霧乾燥機にて造粒した。造粒粉
を所定形状に加圧成形し、脱脂後、そのまま普通焼結す
るか又はガラスカプセル中に真空封入して圧力2000
気圧でHIP焼結した。
CBN particles to which fine particles were fixed and other raw material powders were weighed in a predetermined composition shown in Table 1, put into a resin pot with a mixed solvent of ethanol and acetone, and ball-milled and mixed. The mixture was dried under reduced pressure, added with wax, and then granulated with a spray dryer. The granulated powder is pressure-molded into a predetermined shape, degreased, and then normally sintered as it is, or vacuum-encapsulated in a glass capsule to a pressure of 2000.
HIP sintering at atmospheric pressure.

【0018】得られた焼結体をISO規格SNGN12
0408の工具形状に研磨加工し、マイクロポア及び硬
度といった机上性能並びにテスト1及びテスト2に基づ
く切削性能を評価した。マイクロポアは、走査型電子顕
微鏡にて観察し、AN(ASTM規格B276−79に
よるポアのグレードを示す。N:整数値)で表す。
The obtained sintered body was subjected to ISO standard SNGN12.
The tool shape of 0408 was polished, and the desktop performance such as micropore and hardness and the cutting performance based on Test 1 and Test 2 were evaluated. The micropores are observed with a scanning electron microscope, and are represented by AN (the grade of pores according to ASTM standard B276-79. N: integer value).

【0019】[テスト1]スリットのはいった炭素鋼S
CM415からなる円筒の外径を切削速度V=200m
/min.、送りf=0.1mm/rev、切り込みd
=0.5mmで乾式連続切削し、刃先にチッピングや欠
損が発生するまでの時間を測定した。
[Test 1] Carbon steel S with slits
Cutting speed V = 200m for the outer diameter of the cylinder made of CM415
/ Min. , Feed f = 0.1 mm / rev, cut d
= 0.5 mm, dry continuous cutting was performed, and the time until chipping or chipping occurred on the cutting edge was measured.

【0020】[テスト2]SNCM8(HB300〜3
50)の円筒の外径を切削速度V=500m/mi
n.、送りf=0.4mm/rev、切り込みd=0.
5mmで乾式連続切削し、刃先のVB磨耗量を測定し
た。
[Test 2] SNCM8 (HB300-3
Cutting speed V = 500 m / mi
n. , Feed f = 0.4 mm / rev, cut d = 0.
Dry continuous cutting was performed at 5 mm, and the VB wear amount of the cutting edge was measured.

【0021】以上の結果を表1に示す。備考欄におい
て、Type1及びType2は、前者がCBN表面に
固着した微粒子が焼結後も微粒子結晶として存在し、後
者が母材形成成分や不純物と反応して層として存在する
形態を示す。
The above results are shown in Table 1. In the remarks column, Type 1 and Type 2 indicate a form in which the former fine particles adhered to the CBN surface exist as fine particle crystals even after sintering, and the latter exist as a layer by reacting with the base material forming components and impurities.

【0022】なお、表中には配合組成のみを記載した
が、得られた焼結体に含まれる金属成分、酸素、窒素、
炭素をEPMAにて定量的に分析した。CBN量につい
ては、SEMで組織観察すると同時に画像処理を行い体
積率を測定した。以上の定量分析結果により、表1の焼
結体の組成は、ほぼ配合組成通りであることを確認し
た。
Although only the composition is shown in the table, the metal components, oxygen, nitrogen, etc. contained in the obtained sintered body are
Carbon was quantitatively analyzed by EPMA. Regarding the amount of CBN, the volume ratio was measured by observing the structure with SEM and simultaneously performing image processing. From the above quantitative analysis results, it was confirmed that the composition of the sintered body in Table 1 was almost the same as the composition of the composition.

【0023】[0023]

【表1】 試料No.1〜9は、この発明の範囲に属するもので、
机上性能及び切削性能ともに優れていた。これに対し
て、試料No.10は、CBNが過剰であったので、緻
密化せず、硬度の低いものであった。従って、テスト1
での寿命が短く、テスト2ではチッピングが発生した。
また、No.11は、微粒子を固着していないCBN粒
子を原料としたので、やはり硬度が低く切削性能に劣っ
ていた。No.12は、CBNを含まないので、硬度が
低く、おそらくは強度も低く、そのためテスト2で切削
中に塑性変形した。
[Table 1] Sample No. 1 to 9 belong to the scope of the present invention,
Both desktop performance and cutting performance were excellent. On the other hand, the sample No. No. 10 had a low hardness because it did not become densified because CBN was excessive. Therefore, test 1
In test 2, chipping occurred.
In addition, No. In No. 11, since CBN particles to which fine particles were not fixed were used as a raw material, hardness was also low and cutting performance was inferior. No. No. 12 did not contain CBN and therefore had a low hardness and probably a low strength, so that in Test 2 it plastically deformed during cutting.

【0024】[0024]

【発明の効果】以上のように、この発明の工具は、高硬
度で寿命が長く、切削性能に優れる。また、この発明の
製造方法によれば、焼結性を改善できる。
As described above, the tool of the present invention has a high hardness, a long life, and excellent cutting performance. Further, according to the manufacturing method of the present invention, sinterability can be improved.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/583 C04B 35/56 M C22C 1/05 35/58 103H Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C04B 35/583 C04B 35/56 M C22C 1/05 35/58 103H

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 4a,5a及び6a族金属の窒化物、炭
化物及び炭窒化物から選ばれる1種以上の微粒子及び/
又は鉄族金属から選ばれる1種以上の層によって被覆さ
れた硬質分散相としての立方晶窒化ホウ素粒子1〜60
vol%と、残部母材として4a,5a及び6a族金属
の窒化物、炭化物及び炭窒化物から選ばれる1種以上並
びに鉄族金属から選ばれる1種以上とからなることを特
徴とする立方晶窒化ホウ素複合サーメット工具。
1. At least one kind of fine particles selected from nitrides, carbides and carbonitrides of 4a, 5a and 6a group metals and / or
Or cubic boron nitride particles 1-60 as a hard dispersed phase covered with one or more layers selected from iron group metals
and a balance of at least one selected from the group consisting of nitrides, carbides and carbonitrides of 4a, 5a and 6a metals as a base metal, and at least one selected from iron group metals. Boron nitride composite cermet tool.
【請求項2】 微粒子又は層の成分が、TiN、Ti
C、Ni及びCoのいずれか1種以上である請求項1に
記載の立方晶窒化ホウ素複合サーメット工具。
2. A fine particle or a layer component is TiN or Ti.
The cubic boron nitride composite cermet tool according to claim 1, which is one or more of C, Ni and Co.
【請求項3】 母材が、TiN、TiC、TiCN、N
bC、WC及びMo2Cから選ばれる1種以上並びにN
i及びCoのいずれか1種以上である請求項1に記載の
立方晶窒化ホウ素複合サーメット工具。
3. The base material is TiN, TiC, TiCN, N
at least one selected from bC, WC and Mo 2 C and N
The cubic boron nitride composite cermet tool according to claim 1, which is one or more of i and Co.
【請求項4】 立方晶窒化ホウ素粒子の平均粒径が0.
5μm以上5μm以下、母材の平均粒子径が2μm以下
である請求項1に記載の立方晶窒化ホウ素複合サーメッ
ト工具。
4. The cubic boron nitride particles have an average particle size of 0.
The cubic boron nitride composite cermet tool according to claim 1, wherein the base material has an average particle diameter of 5 μm or more and 5 μm or less and 2 μm or less.
【請求項5】 次の工程を経ることを特徴とする立方晶
窒化ホウ素複合サーメット工具の製造方法。 (a)4a,5a及び6a族金属の窒化物、炭化物、炭
窒化物及び鉄族金属から選ばれる1種以上の微粒子を立
方晶窒化ホウ素粒子に物理的に固着させる工程。 (b)上記微粒子の固着した立方晶窒化ホウ素粒子1〜
60vol%と、残部が4a,5a及び6a族金属の窒
化物、炭化物及び炭窒化物から選ばれる1種以上並びに
鉄族金属から選ばれる1種以上とを混合する工程。 (c)混合物を焼結する工程。
5. A method for producing a cubic boron nitride composite cermet tool, which comprises the following steps. (A) A step of physically adhering to the cubic boron nitride particles one or more kinds of fine particles selected from nitrides, carbides, carbonitrides and iron group metals of 4a, 5a and 6a group metals. (B) 1 to 3 of cubic boron nitride particles to which the above fine particles are fixed
A step of mixing 60 vol% with the balance of one or more selected from nitrides, carbides and carbonitrides of 4a, 5a and 6a metals and one or more selected from iron group metals. (C) A step of sintering the mixture.
【請求項6】 物理的に固着させる手段が、プラズマコ
ートである請求項5に記載の立方晶窒化ホウ素複合サー
メット工具の製造方法。
6. The method for producing a cubic boron nitride composite cermet tool according to claim 5, wherein the physically fixing means is plasma coating.
【請求項7】 焼結条件が、不活性ガスの圧力2000
気圧以下、温度1600℃以下のHIPである請求項5
に記載の立方晶窒化ホウ素複合サーメット工具の製造方
法。
7. The sintering condition is an inert gas pressure of 2000.
6. The HIP having an atmospheric pressure or lower and a temperature of 1600 ° C. or lower.
A method for manufacturing the cubic boron nitride composite cermet tool according to 1.
【請求項8】 焼結条件が、不活性ガスの常圧下、温度
1600℃以下の普通焼結である請求項5に記載の立方
晶窒化ホウ素複合サーメット工具の製造方法。
8. The method for producing a cubic boron nitride composite cermet tool according to claim 5, wherein the sintering conditions are normal sintering under a normal pressure of an inert gas and a temperature of 1600 ° C. or less.
JP7086496A 1995-03-17 1995-03-17 Cubic boron nitride composite cermet tool and its production Pending JPH08260129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7086496A JPH08260129A (en) 1995-03-17 1995-03-17 Cubic boron nitride composite cermet tool and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7086496A JPH08260129A (en) 1995-03-17 1995-03-17 Cubic boron nitride composite cermet tool and its production

Publications (1)

Publication Number Publication Date
JPH08260129A true JPH08260129A (en) 1996-10-08

Family

ID=13888596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7086496A Pending JPH08260129A (en) 1995-03-17 1995-03-17 Cubic boron nitride composite cermet tool and its production

Country Status (1)

Country Link
JP (1) JPH08260129A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036215A1 (en) * 1998-01-16 1999-07-22 Dresser Industries, Inc. Inserts and compacts having coated or encrusted cubic boron nitride particles
KR100388891B1 (en) * 2001-01-08 2003-06-25 한국야금 주식회사 Method of producing a titanium carbonitride-based cermet having no materials of tantalum-contained component
KR100663666B1 (en) * 2005-04-22 2007-01-02 한국야금 주식회사 High toughness titanium carbonitride-based cermet and a manufacturing method thereof
CN113307630A (en) * 2021-04-28 2021-08-27 中国有色桂林矿产地质研究院有限公司 Superfine composite powder and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036215A1 (en) * 1998-01-16 1999-07-22 Dresser Industries, Inc. Inserts and compacts having coated or encrusted cubic boron nitride particles
KR100388891B1 (en) * 2001-01-08 2003-06-25 한국야금 주식회사 Method of producing a titanium carbonitride-based cermet having no materials of tantalum-contained component
KR100663666B1 (en) * 2005-04-22 2007-01-02 한국야금 주식회사 High toughness titanium carbonitride-based cermet and a manufacturing method thereof
CN113307630A (en) * 2021-04-28 2021-08-27 中国有色桂林矿产地质研究院有限公司 Superfine composite powder and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6703757B2 (en) Cermet and cutting tool
US20070018139A1 (en) Nanostructured titanium monoboride monolithic material and associated methods
US7615185B2 (en) Multicomponent ceramics powder, method of manufacturing multicomponent ceramics powder, sintered body, and method of manufacturing sintered body
CN100564475C (en) The abrasive material that applies
US5149595A (en) Cermet alloy and process for its production
JPH07315989A (en) Production of diamond coated member
JP4170402B2 (en) Titanium-based carbonitride alloy with nitrided surface region
JPH08260129A (en) Cubic boron nitride composite cermet tool and its production
EP0549801A1 (en) Diamond-covered member and production thereof
JPH08239277A (en) Cubic boron nitride composite ceramic tool and production thereof
JPH10237650A (en) Wc base cemented carbide and its production
JP2001040446A (en) Diamond-containing hard member and its production
JP3260157B2 (en) Method for producing diamond-coated member
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP2000144298A (en) Diamond-containing hard member and its production
JP2001187431A (en) Laminated structural material
JPH02228474A (en) Coated sintered alloy
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP4123529B2 (en) Ultrafine particle dispersion film
JPH01255630A (en) Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy
WO2016114190A1 (en) Cermet, cutting tool, and method for manufacturing cermet
JPH0663092B2 (en) Diamond-coated sintered body excellent in peeling resistance and method for producing the same
JP2002187008A (en) Cutting drill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JPS635350B2 (en)
GB2408752A (en) Multicomponent sintered body and ceramic powder made therefrom