JP4170402B2 - Titanium-based carbonitride alloy with nitrided surface region - Google Patents

Titanium-based carbonitride alloy with nitrided surface region Download PDF

Info

Publication number
JP4170402B2
JP4170402B2 JP54915998A JP54915998A JP4170402B2 JP 4170402 B2 JP4170402 B2 JP 4170402B2 JP 54915998 A JP54915998 A JP 54915998A JP 54915998 A JP54915998 A JP 54915998A JP 4170402 B2 JP4170402 B2 JP 4170402B2
Authority
JP
Japan
Prior art keywords
titanium
alloy
binder phase
phase
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP54915998A
Other languages
Japanese (ja)
Other versions
JP2001524886A (en
JP2001524886A5 (en
Inventor
ベインル,ゲロルド
ロランデル,ウルフ
リンダール,ペル
Original Assignee
サンドビック インテレクチュアル プロパティー アクティエボラーグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンドビック インテレクチュアル プロパティー アクティエボラーグ filed Critical サンドビック インテレクチュアル プロパティー アクティエボラーグ
Publication of JP2001524886A publication Critical patent/JP2001524886A/en
Publication of JP2001524886A5 publication Critical patent/JP2001524886A5/ja
Application granted granted Critical
Publication of JP4170402B2 publication Critical patent/JP4170402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

According to the present invention an uncoated titanium based carbonitride cutting tool insert with superior plastic deformation resistance and wear resistance is provided. This is accomplished by heat treating the material in nitrogen atmosphere under conditions to obtain a nitrogen rich surface zone, also containing substantial amounts of binder phase.

Description

本発明は、主成分としてチタニウムを有する炭窒化物合金の液相焼結物体に関し、この焼結物体は改良された性質を備えさらに具体的には高い耐摩耗性と耐塑性変形とを組み合わせて持つ鋭い刃先を必要とする切削作業において切削工具材料として使用する。これは窒素雰囲気中でこの材料を熱処理することによって達成することができた。
チタニウム基炭窒化物合金は、サーメットと呼ばれ、金属切削工業界においてはインサート材料として今日十分に確立されていて、特に仕上げ加工用として使用されている。これらは金属バインダー相で取り囲まれた炭窒化物硬質構成物からなる。硬質構成物粒は、別の組成のリムで取り囲まれた芯を有する一般的に複雑な組織である。
チタニウムに加え、VIa族元素、主にモリブデンとタングステンの双方、時にはクロムを、バインダーと硬質構成材との濡れ性を促進するために、且つ固溶体効果によってバインダー相を強化するために添加する。また、IVa族元素及び/またはVa族元素すなわちZr、Hf、V、Nb及びTaを、今日入手可能な全ての市販合金に添加する。これらの全ての添加元素は、一般的に炭化物、窒化物及び/または炭窒化物として添加される。硬質構成材の粒径は一般的に<2μmである。一般的にバインダー相は、主にコバルト及びニッケルとの双方の固溶体である。バインダー相の量は一般的に3〜25wt%である。時には、その上に他の元素例えばアルミニウムが添加され、このアルミニウムはバインダー相を硬化させるため、及び硬質構成材とバインダー相との間の濡れ性を改善させるためと言われる。
WC−Co基材料に比較してサーメットが有する主な利点は、比較的高い耐摩耗性と化学的不活性とが表面被膜を付与することなく達成できることである。この多孔性は、鋭い刃先を必要とする最終仕上げ作業に主に利用され、そして化学的不活性は少ない送りと高い速度で切削するために主に利用される。しかしながら、これらの所望の性質は、靱性と刃の安全性並びに製造容易性を犠牲にして達成される。最も好都合の材料は多量の窒素を含有し(ほとんどが50%を越えるN(N+C)、これが、脱炭に原因する多孔性のために困難であった従来の方法によって焼結することができる。また高窒素含有量が、研磨することを困難な材料にする。研磨加工は鋭くて欠陥の無い刃及び激しい寸法公差を達成するために必要である。理想的には最終仕上げ作業の対して、当業者は製造を簡便にするため窒素含有量を調整して低くした状態であるが、しかしPVD被膜材料またはCVD被膜材料のような耐摩耗性を備えるが被膜していないサーメットであることを望んでいる。
米国特許第4,447,263号は、表面相に全くバインダー相が無いところに、炭窒化物またはオキシ炭窒化物単独またはそれらの組み合わせの耐摩耗性表面相を備えたチタニウム基炭窒化物合金を開示する。この相は、1100〜1350℃でN2、CO及び/またはCO2の雰囲気中で予備圧力のもとでの熱処理によって達成される。
別の例は米国特許第5,336,292号に示され、この例においては表面層は、少量のバインダー相を含むが、しかしバインダー相が豊富な領域に対して鮮明な界面によって材料内部からは分離されている。この層は、N2及び/またはNH3場合によってCH4、CO及びCO2の少なくとも1種と組み合わせ雰囲気中で、1100〜1350℃で1〜25時間大気圧またはそれより高い圧力の雰囲気での熱処理によって達成される。
焼結されたチタニウム基炭窒化合金を提供することが本発明の目的であり、この合金は高窒素含有量であり5〜60μmの厚い表面領域を得るために熱処理が施される。この熱処理は、焼結サイクルの冷却する過程に含まれる処理工程として、または別の処理工程、例えば任意の研削加工作業が実施されたあとの最終製造工程として、実施される。
図1は、本発明のインサートの一部を示す2000Xの顕微鏡写真である。
図2は、本発明のインサートの一部のCo、N、W、Ti及びCのEMPA(電子マイクロプローブ分析)の線走査である。
図3は、本発明のインサートの熱処理した表面のX線回折図である。
本発明の焼結したチタニウム基炭窒化合金は、2〜15原子%好ましくは2〜6原子%のタングステン及び/またはモリブデンを含有する。この合金は、チタニウムを別にして0〜15原子%のIVa族及び/またはVa族の元素、好ましくは0〜5原子%のタンタル及び/またはニオブを含有する。バインダー相形成元素としては、5〜25原子%好ましくは9〜16原子%のコバルトを添加する。この合金は、10〜60原子%好ましくは10〜40原子%の範囲にあるN/(C+N)を有する。C、N、Ti、W、Ta及びCoを別にして、最も好ましい元素が任意に添加しない。5〜60μm好ましくは15〜50μm最も好ましくは20〜40μmに厚い表面領域において、窒素含有量が表面に向かって減少する。この豊富さは、主に熱処理の際に形成されるTiN粒の存在のためであり、X線回折によって識別できる。これらのTiN粒は別々に成長することができるが、しかしエピタキシャルにも成長することができ、炭窒化物粒を取り囲み少なくとも部分的に外側殻を形成する。さらに、窒素の豊富な領域は、本体とほぼ同一であり、そして表面まで全面的に分布するバインダー相含有量を有する。表面のコバルト含有量は、表面に向かうCo勾配が熱処理以前に存在するか否かに依存して、本体の体積の50〜150%、好ましくは75〜130%、最も好ましくは90〜125%である。すなわち、この豊富領域は被膜でなく、且つ硬質相の層のない実質的にバインダー相を含まない。別の実施例において、この表面領域のおけるCo含有量は、物体の内部と実質的に同一である。表面のX線回折図は、Ti含有硬質相が顕著なピークとして示され、一つはTiNから発生するピークあり、もう一つのピークは混合された立方炭窒化物相から発生するものである。TiN(200)/TiCN(200)の強度比は、>0.5好ましくは>1最も好ましくは>1.5である。同一の回折図に、Co基バインダー相から発生する顕著なピークも観察される。
この合金は、不可避的不純物を別にして、ニッケル及び/または鉄を含む必要はない。これらのより高水準のバインダー形成元素のために、所望の顕微鏡組織を製造することはできない。代わりに、実質的にバインダー相の無し硬質相表面層が形成される。この層は、高価な被膜作業の代わりにとして先の発明者によって示されるが、しかしCVD被膜及びPVD被膜に比較して劣った性質を備える。
本発明の別の態様では、焼結した炭窒化物合金が提供され、その合金においては炭化物、炭窒化物及び窒化物の粉末がCoと混合され規定の組成にされて、そして所望の形のグリーン物体に加圧成形される。真空中でまたは制御されたガス雰囲気中で、1370〜1500℃の温度範囲において、好ましくはスウェーデン特許第9701858−4号に記載の技術を使用して、グリーン物体は液相焼結される。焼結温度から直接の冷却工程または、別工程として、インサートを、1150〜1250℃の温度で、500〜1500ミリバール好ましくは1000〜1500ミリバールの窒素ガスからなる雰囲気中で、1〜40時間好ましくは10〜25時間の間熱処理するかのいずれかである。
上記の特別な組成に対して全く驚くべきことが判明し、硬質相の表面層を得ることなくサーメットの化学的不活性、耐摩耗性及び耐塑性変形性を強化するために、脱炭を用いることが可能である。この理由は、比較的高い窒素圧力の炉内で、Co基バインダー層における表面からの窒素拡散がチタニウムの拡散よりもかなり早いことにあることが判明した。この理由で、TiNが表面よりもむしろ材料内部に核生成する。表面から所定の深さでのTiNの形成速度は、その深さでの窒素活性度によって決定される。Tiは、硬質相粒の縁から最も顕著に取り出される。すなわち、この縁が少なくともある程度溶解され、粒径の減少をもたらす。この縁からの過剰なV族とVI族との元素が、表面から拡散して、そして材料の内部に存在している硬質相粒子に再析出する。後者の再析出過程によって、ほんの僅かにバインダー相が豊富な窒化表面領域が、少なくとも比較的長い処理時間の間に現れることができる。もしこれが望ましくない場合は、熱処理前にインサートの表面領域に調整されたバインダー相の枯渇を形成することによって、逆に作用させることができる。これは上記特許明細書に記載された技術を用いることによって、好ましく実行される。かなりの量の鉄とニッケルとをこの合金に添加すると、バインダー相中のチタニウムの溶解度は劇的に増加する。同様にこれはチタニウムの拡散速度を増加させ、その代わり硬質相の表面層が形成される。
この処理は焼結する雰囲気中の反応ガスによって制御されるので、この雰囲気で不活性にされた表面上にインサートを配置することは、明らかな利点である。この優れた実施例は、WO97/402−03に記載されるようにイットリアで被覆されたトレーである。
実施例1
40.7%のTi、3.6%のW、30.4%のC、13.9%のN及び11.4%のCoの化学組成を有する粉末混合物が、Ti(C、N)、WC及びCoの原材料粉末から製造された。Ti(C、N)及びWCの粉末の平均粒径は、1.4μmであった。この粉末混合物は、湿式混合されて乾燥され、そして形式TNMG160408−PFのインサートのグリーン物体に加圧成形された。この物体は、1430℃で90分間10ミリバールのAr雰囲気中で液相焼結された。この焼結過程において材料全体に巨視的なCo勾配を達成するために、液相バインダー層が中心部に形成されて表面に向かって伝播する逆方向溶融を備える技術が使用され、表面のCo含有量は合金中心部の含有量の85%であった。この方法はスウェーデン特許第9701858−4号に記載される。この工程の冷却する過程には、窒化工程が物体が1013ミリバールの窒素ガス中で1200℃で20時間の熱処理が成されることが含まれる。
インサートの研磨された横断面は標準冶金的技術で準備され、光学顕微鏡と電子顕微鏡の解析(EMPA)とによって特徴を示された。光学顕微鏡は、インサートが図1のブロンズ色の約40μmの厚い表面層が黄金色であることを示した。図2は、材料の表面から500μmまでの範囲のCo、N、W、Ti及びCのEMPAの線走査分析を示す。明らかに、約30μmの厚い表面領域に、窒素含有量が実質的に表面に向かって増加し、Ti含有量はWとC含有量が減少するまで増加する。同じ領域において、Co含有量は増加して表面でバルク量の約125%に達する。図3は熱処理された表面のX線回折を示す。明らかに、所定のTi基硬質相が二つの異なるピーク系で上昇し、TiNから発生したものは、炭窒化物相から発生したもう一つのもののほぼ2倍の強度を有した。回折図にはCoピークも示される。
実施例2(比較例)
性能試験の参照として、TNMG16048−PFインサートは、原子%で8.3%のCo、4.2%のNi、34.8%のTi、2.5%のTa、0.8%のNb、4.2%のW、2%のMo、26.6%のC及び16.6%のNからなる粉末混合物から製造され、そして従来の方法で液晶焼結された。これらのインサートは、約4μmの厚みのTi(C、N)層と、1μm未満の厚みのTiN層とで物理蒸着技法(PVD)を使用して被膜された。これは、旋削加工に対してP25の範囲以内の十分に確立されたPVD被膜サーメット等級であった。
実施例3
実施例1及び実施例2のインサートの耐摩耗性と耐塑性変形性を調査するために、長さ方向の旋削加工作業が実施された。工具寿命は、塑性変形または0.3mmを越える逃げ面摩耗による刃の破損である。一つの試験は、主に耐摩耗性を試験するために冷却剤とともに実施された。もう一つの試験は、主に耐塑性変形性を試験するために冷却剤無しで実施された。工具寿命に達するに必要な時間は、各切れ刃に対して測定された。各試験において、バリアント当たり3個の刃が試験された。速度は275m/分であり、送りは0.2mm/回転であり、切り込み深さは2mmであり、そして工作物材料はSS2541であった。結果を以下の表1に示す。

Figure 0004170402
結果を比較すると、窒化処理工程は耐摩耗性と耐塑性変形性の双方を劇的に改良した。窒化工程を除いた本発明にしたがう未被膜インサートは、この試験に含まれているために意味のないことであることに注目すべきである。冷却剤のない耐塑性変形性は1〜3分以上持ちこたえるためには不十分である。The present invention relates to a liquid phase sintered body of a carbonitride alloy having titanium as a main component, the sintered body having improved properties and more specifically combining high wear resistance and plastic deformation resistance. Used as a cutting tool material in cutting operations that require a sharp cutting edge. This could be achieved by heat treating this material in a nitrogen atmosphere.
Titanium-based carbonitride alloys, called cermets, are well established today as insert materials in the metal cutting industry and are particularly used for finishing. These consist of a carbonitride hard structure surrounded by a metal binder phase. Hard constituent grains are generally complex structures having a core surrounded by a rim of another composition.
In addition to titanium, group VIa elements, both molybdenum and tungsten, and sometimes chromium, are added to promote the wettability of the binder and hard component and to strengthen the binder phase by the solid solution effect. Also, IVa group elements and / or Va group elements, Zr, Hf, V, Nb and Ta, are added to all commercially available alloys available today. All these additive elements are generally added as carbides, nitrides and / or carbonitrides. The particle size of the hard component is generally <2 μm. In general, the binder phase is primarily a solid solution of both cobalt and nickel. The amount of binder phase is generally 3-25 wt%. Sometimes other elements, such as aluminum, are added on top of it, this aluminum being said to cure the binder phase and to improve the wettability between the hard component and the binder phase.
The main advantage that cermets have over WC-Co based materials is that relatively high wear resistance and chemical inertness can be achieved without imparting a surface coating. This porosity is mainly used for final finishing operations requiring a sharp cutting edge, and chemical inertness is mainly used for cutting with low feed and high speed. However, these desired properties are achieved at the expense of toughness, blade safety and manufacturability. The most convenient materials contain large amounts of nitrogen (mostly over 50% N (N + C)), which can be sintered by conventional methods that have been difficult due to the porosity due to decarburization. The high nitrogen content also makes the material difficult to polish, which is necessary to achieve a sharp, defect-free blade and severe dimensional tolerances, ideally for final finishing operations One skilled in the art would like to have a cermet with a wear-resistant, but uncoated, like PVD or CVD coating material, with the nitrogen content adjusted to be low for ease of manufacture. It is out.
U.S. Pat. No. 4,447,263 discloses a titanium-based carbonitride alloy with a wear-resistant surface phase of carbonitride or oxycarbonitride alone or in combination where there is no binder phase in the surface phase. Is disclosed. This phase is achieved by heat treatment at 1100-1350 ° C. in a N 2 , CO and / or CO 2 atmosphere under pre-pressure.
Another example is shown in US Pat. No. 5,336,292, in which the surface layer contains a small amount of binder phase, but from the inside of the material by a sharp interface to the area rich in binder phase. Are separated. This layer may optionally N 2 and / or NH 3 in CH 4, at least one of CO and CO 2 and in the combination atmosphere, in an atmosphere of 1 to 25 hours atmospheric or higher pressure at 1100 to 1350 ° C. Achieved by heat treatment.
It is an object of the present invention to provide a sintered titanium-based carbonitride alloy, which is heat treated to obtain a high surface area of 5-60 μm with a high nitrogen content. This heat treatment is performed as a processing step included in the cooling process of the sintering cycle, or as another processing step, for example, a final manufacturing step after any grinding operations are performed.
FIG. 1 is a 2000 × photomicrograph showing a portion of the insert of the present invention.
FIG. 2 is an EMPA (Electron Microprobe Analysis) line scan of Co, N, W, Ti and C of some of the inserts of the present invention.
FIG. 3 is an X-ray diffraction diagram of the heat-treated surface of the insert of the present invention.
The sintered titanium-based carbonitride alloy of the present invention contains 2 to 15 atomic percent, preferably 2 to 6 atomic percent tungsten and / or molybdenum. This alloy contains 0 to 15 atomic percent of elements IVa and / or Va, apart from titanium, preferably 0 to 5 atomic percent of tantalum and / or niobium. As the binder phase forming element, 5 to 25 atomic%, preferably 9 to 16 atomic% of cobalt is added. This alloy has N / (C + N) in the range of 10-60 atomic%, preferably 10-40 atomic%. Apart from C, N, Ti, W, Ta and Co, the most preferred elements are not arbitrarily added. In a surface region thicker from 5 to 60 μm, preferably from 15 to 50 μm, most preferably from 20 to 40 μm, the nitrogen content decreases towards the surface. This abundance is mainly due to the presence of TiN grains formed during heat treatment and can be distinguished by X-ray diffraction. These TiN grains can be grown separately, but can also grow epitaxially, surrounding the carbonitride grains and at least partially forming an outer shell. Furthermore, the nitrogen-rich region is nearly identical to the body and has a binder phase content that is distributed throughout the surface. The cobalt content of the surface is 50-150% of the volume of the body, preferably 75-130%, most preferably 90-125%, depending on whether a Co gradient towards the surface exists before heat treatment is there. That is, this abundant region is not a coating and is substantially free of a binder phase without a hard phase layer. In another embodiment, the Co content in this surface region is substantially the same as the interior of the object. The surface X-ray diffractogram shows the Ti-containing hard phase as a prominent peak, one with a peak originating from TiN and the other peak originating from a mixed cubic carbonitride phase. The strength ratio of TiN (200) / TiCN (200) is> 0.5, preferably> 1 and most preferably> 1.5. A prominent peak generated from the Co-based binder phase is also observed in the same diffraction diagram.
This alloy need not contain nickel and / or iron apart from unavoidable impurities. Because of these higher levels of binder forming elements, the desired microstructure cannot be produced. Instead, a hard phase surface layer substantially free of binder phase is formed. This layer has been shown by previous inventors as an alternative to expensive coating operations, but has inferior properties compared to CVD and PVD coatings.
In another aspect of the invention, a sintered carbonitride alloy is provided in which carbide, carbonitride and nitride powders are mixed with Co to a defined composition and in the desired form. Press molded into green objects. The green body is liquid phase sintered in a vacuum or in a controlled gas atmosphere, preferably in the temperature range of 1370-1500 ° C., preferably using the technique described in Swedish patent 9701858-4. The cooling step directly from the sintering temperature or, as a separate step, the insert is preferably at a temperature of 1150 to 1250 ° C. in an atmosphere of nitrogen gas of 500 to 1500 mbar, preferably 1000 to 1500 mbar, preferably for 1 to 40 hours. Either heat treatment for 10 to 25 hours.
It turns out quite surprising to the above special composition and uses decarburization to enhance the chemical inertness, wear resistance and plastic deformation resistance of the cermet without obtaining a hard phase surface layer. It is possible. The reason for this has been found to be that the diffusion of nitrogen from the surface in the Co-based binder layer is much faster than the diffusion of titanium in a relatively high nitrogen pressure furnace. For this reason, TiN nucleates inside the material rather than the surface. The formation rate of TiN at a predetermined depth from the surface is determined by the nitrogen activity at that depth. Ti is most prominently extracted from the edges of the hard phase grains. That is, this edge is at least partially dissolved, resulting in a reduction in particle size. Excess Group V and Group VI elements from this edge diffuse from the surface and re-deposit into the hard phase particles present inside the material. With the latter reprecipitation process, a nitride surface area that is only slightly rich in binder phase can appear at least during relatively long processing times. If this is not desired, it can be counteracted by forming a tailored binder phase depletion in the surface area of the insert prior to heat treatment. This is preferably done by using the techniques described in the above patent specifications. When significant amounts of iron and nickel are added to the alloy, the solubility of titanium in the binder phase increases dramatically. Similarly, this increases the diffusion rate of titanium, and instead forms a hard phase surface layer.
Since this treatment is controlled by the reaction gas in the sintering atmosphere, it is a clear advantage to place the insert on a surface that has been inerted in this atmosphere. A good example of this is a tray coated with yttria as described in WO 97 / 402-03.
Example 1
A powder mixture having a chemical composition of 40.7% Ti, 3.6% W, 30.4% C, 13.9% N and 11.4% Co is Ti (C, N), Manufactured from raw powders of WC and Co. The average particle size of the Ti (C, N) and WC powders was 1.4 μm. This powder mixture was wet mixed, dried and pressed into a green body of insert of type TNMG160408-PF. This body was liquid phase sintered at 1430 ° C. for 90 minutes in an Ar atmosphere of 10 mbar. In order to achieve a macroscopic Co gradient throughout the material in this sintering process, a technique is employed that comprises a reverse phase melt formed in the center and propagating towards the surface, with a liquid binder layer at the center, and containing Co on the surface The amount was 85% of the content in the center of the alloy. This method is described in Swedish patent 9701858-4. The cooling process of this process includes a nitriding process in which the object is heat treated at 1200 ° C. for 20 hours in nitrogen gas of 1013 mbar.
The polished cross section of the insert was prepared by standard metallurgical techniques and characterized by optical and electron microscopy analysis (EMPA). The optical microscope showed that the insert was golden in color with a thick surface layer of about 40 μm in the bronze color of FIG. FIG. 2 shows a line scan analysis of Co, N, W, Ti and C EMPA ranging from the surface of the material to 500 μm. Apparently, in a thick surface area of about 30 μm, the nitrogen content increases substantially towards the surface and the Ti content increases until the W and C contents decrease. In the same region, the Co content increases to reach about 125% of the bulk amount at the surface. FIG. 3 shows the X-ray diffraction of the heat treated surface. Apparently, a given Ti-based hard phase rose in two different peak systems, and the one generated from TiN had almost twice the strength of the one generated from the carbonitride phase. The Co peak is also shown in the diffractogram.
Example 2 (comparative example)
As a reference for performance testing, the TNMG16048-PF insert is composed of 8.3% atomic percent Co, 4.2% Ni, 34.8% Ti, 2.5% Ta, 0.8% Nb, It was produced from a powder mixture consisting of 4.2% W, 2% Mo, 26.6% C and 16.6% N, and liquid crystal sintered in a conventional manner. These inserts were coated using a physical vapor deposition technique (PVD) with a Ti (C, N) layer about 4 μm thick and a TiN layer less than 1 μm thick. This was a well-established PVD coated cermet grade within the P25 range for turning.
Example 3
In order to investigate the wear resistance and plastic deformation resistance of the inserts of Example 1 and Example 2, a lengthwise turning operation was performed. Tool life is blade failure due to plastic deformation or flank wear exceeding 0.3 mm. One test was performed with a coolant primarily to test the wear resistance. Another test was performed without coolant, primarily to test plastic deformation resistance. The time required to reach the tool life was measured for each cutting edge. In each test, 3 blades per variant were tested. The speed was 275 m / min, the feed was 0.2 mm / revolution, the cut depth was 2 mm, and the workpiece material was SS2541. The results are shown in Table 1 below.
Figure 0004170402
Comparing the results, the nitriding process dramatically improved both wear resistance and plastic deformation resistance. It should be noted that uncoated inserts according to the present invention without the nitridation step are meaningless because they are included in this test. The plastic deformation resistance without coolant is insufficient to withstand more than 1 to 3 minutes.

Claims (3)

i、Zr、Hf、V、Nb、Ta、Cr、Mo及びWの群から選択された少なくとも1種を基とした硬質構成材と、この硬質構成材を囲むCoバインダー相とを含有する焼結チタニウム基炭窒化物合金から成る切削工具インサートであって、
前記合金は厚さ5〜60μmの窒素の豊富な表面領域を有し、
該窒素の豊富な表面領域は前記Coバインダー相の含有量が該合金の内部と同一であり、
該Coバインダー相は該合金の内部から表面まで全面的に分布しており、
表面はCo含有量が該内部の50〜150%の範囲である、
とを特徴とする切削工具インサート。
A fire containing a hard component based on at least one selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and a Co binder phase surrounding the hard component A cutting tool insert made of a titanium-based carbonitride alloy,
The alloy has a nitrogen-rich surface area of 5-60 μm thickness ;
The nitrogen-rich surface region has the same Co binder phase content as the interior of the alloy;
The Co binder phase is entirely distributed to the surface from the interior of the alloy,
The surface is in the range Co content is 50% to 150% of the inside of the,
Cutting tool insert, wherein a call.
前記表面のX線回折図が、Ti基硬質相から発生する二組のピークと、Co基のバインダー相から発生する一組のピークとを含み、TiN(200)/TiCN(200)の強度比が>0.5であることを特徴とする請求項1記載の切削工具インサート。The X-ray diffraction pattern of the surface includes two sets of peaks generated from a Ti-based hard phase and one set of peaks generated from a Co-based binder phase, and an intensity ratio of TiN (200) / TiCN (200) The cutting tool insert according to claim 1, wherein is> 0.5. 不可避的不純物を別にしてチタニウムに加えて、2〜15原子%のタングステン及びモリブデンの少なくとも1種と、
チタニウム、タングステン及びモリブデンを別にして、0〜15原子%のIVa族及びVa族の少なくとも1種の元素と、
10〜60原子%の範囲の平均N/(C+N)比とともに、5〜25原子%のコバルトと、
を含有することを特徴とする請求項1または2記載の切削工具インサート。
Aside from unavoidable impurities, in addition to titanium, at least one of 2-15 atomic percent tungsten and molybdenum,
Aside from titanium, tungsten and molybdenum, 0-15 atomic percent of at least one element of groups IVa and Va,
5-25 atomic percent cobalt, with an average N / (C + N) ratio in the range of 10-60 atomic percent;
The cutting tool insert according to claim 1, comprising:
JP54915998A 1997-05-15 1998-05-15 Titanium-based carbonitride alloy with nitrided surface region Expired - Fee Related JP4170402B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9701859-2 1997-05-15
SE9701859A SE9701859D0 (en) 1997-05-15 1997-05-15 Titanium based carbonitride alloy with nitrogen enriched surface zone
PCT/SE1998/000910 WO1998051831A1 (en) 1997-05-15 1998-05-15 Titanium based carbonitride alloy with nitrided surface zone

Publications (3)

Publication Number Publication Date
JP2001524886A JP2001524886A (en) 2001-12-04
JP2001524886A5 JP2001524886A5 (en) 2005-12-02
JP4170402B2 true JP4170402B2 (en) 2008-10-22

Family

ID=20406993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54915998A Expired - Fee Related JP4170402B2 (en) 1997-05-15 1998-05-15 Titanium-based carbonitride alloy with nitrided surface region

Country Status (7)

Country Link
EP (1) EP0996757B1 (en)
JP (1) JP4170402B2 (en)
AT (1) ATE228175T1 (en)
DE (1) DE69809555T2 (en)
IL (1) IL132346A (en)
SE (1) SE9701859D0 (en)
WO (1) WO1998051831A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519834C2 (en) * 1999-05-03 2003-04-15 Sandvik Ab Titanium-based carbonitride alloy with binder phase of cobalt for tough machining
SE519832C2 (en) * 1999-05-03 2003-04-15 Sandvik Ab Titanium-based carbonitride alloy with binder phase of cobalt for easy finishing
SE519830C2 (en) 1999-05-03 2003-04-15 Sandvik Ab Titanium-based carbonitride alloy with binder phase of cobalt for finishing
SE0103970L (en) * 2001-11-27 2003-05-28 Seco Tools Ab Carbide metal with binder phase enriched surface zone
US7175687B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Advanced erosion-corrosion resistant boride cermets
US7316724B2 (en) * 2003-05-20 2008-01-08 Exxonmobil Research And Engineering Company Multi-scale cermets for high temperature erosion-corrosion service
JP4703122B2 (en) * 2004-03-23 2011-06-15 京セラ株式会社 Method for producing TiCN-based cermet
JP4703123B2 (en) * 2004-03-23 2011-06-15 京セラ株式会社 Method for producing surface-coated TiCN-based cermet
WO2008026700A1 (en) * 2006-08-31 2008-03-06 Kyocera Corporation Cutting tool, process for producing the same, and method of cutting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4447263A (en) * 1981-12-22 1984-05-08 Mitsubishi Kinzoku Kabushiki Kaisha Blade member of cermet having surface reaction layer and process for producing same
SE9101865D0 (en) * 1991-06-17 1991-06-17 Sandvik Ab Titanium-based carbonate alloy with durable surface layer
JPH09512308A (en) * 1994-05-03 1997-12-09 ヴィディア ゲゼルシャフト ミット ベシュレンクテル ハフツング Cermet and its manufacturing method

Also Published As

Publication number Publication date
ATE228175T1 (en) 2002-12-15
DE69809555D1 (en) 2003-01-02
IL132346A (en) 2003-04-10
DE69809555T2 (en) 2003-03-27
IL132346A0 (en) 2001-03-19
JP2001524886A (en) 2001-12-04
EP0996757B1 (en) 2002-11-20
EP0996757A1 (en) 2000-05-03
SE9701859D0 (en) 1997-05-15
WO1998051831A1 (en) 1998-11-19

Similar Documents

Publication Publication Date Title
US5348806A (en) Cermet alloy and process for its production
JP6703757B2 (en) Cermet and cutting tool
US5694639A (en) Titanium based carbonitride alloy with binder phase enrichment
JP2762745B2 (en) Coated cemented carbide and its manufacturing method
JPH07103468B2 (en) Coated cemented carbide and method for producing the same
EP1462534A1 (en) Compositionally graded sintered alloy and method of producing the same
JP2008290239A (en) Thermal shock resistant titanium base carbonitride and sintering method for manufacturing the same
US5149595A (en) Cermet alloy and process for its production
JP2775955B2 (en) Manufacturing method of coating cermet with excellent wear resistance
JP4170402B2 (en) Titanium-based carbonitride alloy with nitrided surface region
EP0812367B1 (en) Titanium-based carbonitride alloy with controllable wear resistance and toughness
US6193777B1 (en) Titanium-based carbonitride alloy with nitrided surface zone
US6506226B1 (en) Hard metal or cermet body and method for producing the same
JP5594568B2 (en) Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
EP1052297A1 (en) Method for producing Ti(C,N)-(Ti,Ta,W)(C,N)-Co alloys for cutting tool applications
JP2012511437A (en) Cutting tool insert manufacturing method that requires high dimensional accuracy
KR20040044153A (en) Ti(C,N)-(Ti,Nb,W)(C,N)-Co ALLOY FOR MILLING CUTTING TOOL APPLICATIONS
JPS5914534B2 (en) Tough cermet with a softened surface layer
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPH0332502A (en) Cermet tool
JP2814452B2 (en) Surface-finished sintered alloy, method for producing the same, and coated surface-finished sintered alloy obtained by coating the alloy with a hard film
JPH068009A (en) Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
JP2004169187A (en) SINTERED TITANIUM-BASED CARBONITRIDE ALLOY CONTAINING Ti,Nb, W, C, N AND Co FOR USE IN FINISHING OPERATION, AND ITS MANUFACTURING METHOD
WO2016114190A1 (en) Cermet, cutting tool, and method for manufacturing cermet
JPS6311645A (en) Nitrogenous sintered hard alloy and its production

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070413

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070516

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070615

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees