JPH0332502A - Cermet tool - Google Patents

Cermet tool

Info

Publication number
JPH0332502A
JPH0332502A JP16622589A JP16622589A JPH0332502A JP H0332502 A JPH0332502 A JP H0332502A JP 16622589 A JP16622589 A JP 16622589A JP 16622589 A JP16622589 A JP 16622589A JP H0332502 A JPH0332502 A JP H0332502A
Authority
JP
Japan
Prior art keywords
nitrogen
hardness
tool
weight
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16622589A
Other languages
Japanese (ja)
Other versions
JP2775298B2 (en
Inventor
Noriaki Tateno
範昭 建野
Hirohisa Konishi
小西 裕久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1166225A priority Critical patent/JP2775298B2/en
Publication of JPH0332502A publication Critical patent/JPH0332502A/en
Application granted granted Critical
Publication of JP2775298B2 publication Critical patent/JP2775298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To improve the abrasion resistance and defective resistance of a cermet tool by composing it of composition including a quantity of nitrogen, and providing a specified rigidity difference and toughness difference between its flank and its rake face. CONSTITUTION:A molded body in the form of a tool is produced consisting of 70-95wt.% a right material phase component of an atomic ratio of 0.4-0.6 as expressed by nitrogen/(carbon+nitrogen) including Ti by 50-80wt.% as converted to carbide, nitride or carbonitride, and a group IVa metal by 10-40wt.% as converted to carbide, and 5-30wt.% a binder phase component. The molded body is installed in a vacuum furnace to be baked, and by introducing nitrogen gas at a specified timing of baking, a highly rigid layer having a rigidity gradient is formed in the surface of the sintered body. A flank A of a cermet tool has a layer 1 of a high rigidity, and by polishing this surface, the rigidity of a rake face A is reduced to expose an inner surface 2 of a high toughness. A rigidity difference and a toughness difference are thus produced between the flank A and the rake face B, thereby both the abrasion resistance and the defective resistance of the tool can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐摩耗性および耐欠損性に優れたサーメット工
具に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cermet tool with excellent wear resistance and fracture resistance.

〔従来技術〕[Prior art]

従来から、切削用焼結体としてはWC−Coを主成分と
する超硬合金が主として用いられていたが、最近ではT
iの炭化物、窒化物、炭窒化物を主成分とするサ−メツ
ト焼結体が用いられている。
Conventionally, cemented carbide whose main component is WC-Co has been mainly used as a sintered body for cutting, but recently T
Cermet sintered bodies whose main components are carbides, nitrides, and carbonitrides are used.

このようなサーメット系焼結体としては、TiCを主成
分とし、鉄族金属を結合相とし、さらに周期律表第IV
a、Va、Via族金属の炭化物、窒化物、炭窒化物を
硬質成分として加えたTiC7f5す・−メソトが主流
であった。しかし′■らこのようなTiC4サ一メツト
焼結体では耐熱性、強靭性に劣ることから、上記組成に
さらにTiN等の窒化物、炭窒化物を含有させることが
提案された。これは、TiN自体が靭性に冨むことによ
り、焼結体に靭性を付与するとともに、熱伝導率が高い
ことにより、耐熱衝撃性、耐熱塑性変形性を向上させよ
うとするものである。
Such a cermet-based sintered body has TiC as a main component, an iron group metal as a binder phase, and a material from periodic table IV.
The mainstream was TiC7f5-method, in which carbides, nitrides, and carbonitrides of group metals such as a, Va, and Via were added as hard components. However, since such a TiC4 sintered sintered body is inferior in heat resistance and toughness, it was proposed to further include nitrides such as TiN and carbonitrides in the above composition. This is intended to provide toughness to the sintered body due to TiN itself having high toughness, and to improve thermal shock resistance and thermoplastic deformability due to its high thermal conductivity.

このようなサーメット焼結体を工具用として用いる場合
には、高い耐摩耗性および耐欠損性が要求され、各種の
改良がなされている。
When such a cermet sintered body is used for tools, high wear resistance and chipping resistance are required, and various improvements have been made.

例えば特公昭59−14534号では液相出現温度以下
で窒素を炉内に導入し、焼結体表面に靭性に富む軟化層
を形成させることが、また特公昭59−17176号で
はCO還元雰囲気で焼成することにより、特定の硬度を
有する硬IIを形成させることが、さらに特公昭60−
34618号によれば焼成後の降温時にCO雰囲気と威
すことにより表面内部とも均一な機械特性を有するサー
メットを得ることが提案されている。
For example, in Japanese Patent Publication No. 59-14534, nitrogen is introduced into the furnace below the liquid phase appearance temperature to form a softened layer with high toughness on the surface of the sintered body, and in Japanese Patent Publication No. 59-17176, nitrogen is introduced into the furnace at a temperature below the temperature at which the liquid phase appears, and in Japanese Patent Publication No. 59-17176, nitrogen is introduced into the furnace at a temperature below the temperature at which the liquid phase appears, and a softened layer with high toughness is formed on the surface of the sintered body. Furthermore, it is possible to form Hard II having a specific hardness by firing, as disclosed in Japanese Patent Publication No. 1983-
According to No. 34618, it is proposed to obtain a cermet having uniform mechanical properties both on the surface and inside by exposing the cermet to a CO atmosphere when the temperature is lowered after firing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし乍ら、高速切削加工時の耐摩耗性の知見からは特
公昭59−14534号及び特公昭60−34618号
の記載の切削工具では表面硬度が低いために、性能上不
十分である。一方、特公昭59−17176号には表面
に硬質層を形成させる方法が開示されているもののその
表面硬度はせいぜいビソカース硬度(Hν)で2000
Kg /mm2までしか達成されていない。
However, from knowledge of wear resistance during high-speed cutting, the cutting tools described in Japanese Patent Publications No. 59-14534 and Japanese Patent Publication No. 60-34618 have low surface hardness and are therefore unsatisfactory in terms of performance. On the other hand, although Japanese Patent Publication No. 59-17176 discloses a method of forming a hard layer on the surface, the surface hardness is at most 2000 in bisocurce hardness (Hν).
Only up to Kg/mm2 has been achieved.

そこで、本発明者等は、特願昭63−243623号に
おいて、表面のビソカース硬度2000以上の耐摩耗性
に優れたサーメット焼結体を提案したが、このように硬
度を高めて耐摩耗性を向上させると、靭性が低下し、耐
欠損性が劣るため、このようなサーメットはその用途も
一部に限られてしまうという問題があった。
Therefore, in Japanese Patent Application No. 63-243623, the present inventors proposed a cermet sintered body with excellent wear resistance and a surface hardness of 2000 or more. If the toughness is improved, the toughness decreases and the fracture resistance becomes inferior, so there is a problem that the applications of such cermets are limited to some areas.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、通常、逃げ面とすくい面から構成される
切削工具において、摩耗は主に逃げ面に発生し、欠損は
すくい面より発生し易いこと、また−船釣に硬度が高い
ものは耐摩耗性に優れ、硬度が低くなると靭性が向上す
ることに着目し、切削工具の逃げ面の硬度を高く、また
すくい面の硬度を低く設定することにより、工具として
の耐摩耗性および耐欠損性を向上させ、工具の長寿命化
が遺戒できること、また、上記の構成の切削工具を作成
するための材料として、Tiを炭化物、窒化物あるいは
炭窒化物換算で50乃至80重量%、周期律表第Na金
属を炭化物換算で10乃至40重Mχの割合で含有する
とともに、(窒素/炭素+窒素)で表される原子比が0
.4乃至0.6の範囲にある硬質相成分70乃至95重
量%と、鉄族金属を主成分とする結合相成分5乃至30
重量2から成るサーメットを用いることにより、優れた
耐摩耗性と耐欠損性を有する切削工具を得ることができ
ることを知見した。
The present inventors have discovered that in cutting tools that normally consist of a flank face and a rake face, wear occurs mainly on the flank face, and chips are more likely to occur on the rake face, and that - tools with high hardness are used for boat fishing. Focusing on the fact that toughness improves as hardness decreases, we designed the flank face of the cutting tool to have high hardness and the rake face to have low hardness, thereby increasing the wear resistance and durability of the tool. It is possible to improve the chipping property and extend the life of the tool, and as a material for making the cutting tool with the above structure, Ti is used in an amount of 50 to 80% by weight in terms of carbide, nitride, or carbonitride. Contains Na metal of the periodic table at a ratio of 10 to 40 weight Mχ in terms of carbide, and has an atomic ratio of (nitrogen/carbon + nitrogen) of 0.
.. 70 to 95% by weight of a hard phase component ranging from 4 to 0.6% by weight, and 5 to 30% by weight of a binder phase component mainly composed of iron group metals.
It has been found that by using a cermet having a weight of 2, it is possible to obtain a cutting tool with excellent wear resistance and chipping resistance.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明のサーメットは硬質相成分として、Tiを炭化物
、窒化物あるいは炭窒化物換算で50乃至80重量%、
特に55乃至65重量%と、W、Mo等の周期律表Vi
a族金属を炭化物換算で10乃至40重量%、特に15
乃至30重量%とを含有する。
The cermet of the present invention contains Ti as a hard phase component in an amount of 50 to 80% by weight in terms of carbide, nitride, or carbonitride.
In particular, 55 to 65% by weight and periodic table Vi of W, Mo, etc.
10 to 40% by weight of group a metal, especially 15% by weight in terms of carbide.
30% by weight.

このような硬質相成分において、TiO量が50重量%
を下回ると耐摩耗性が低下し、80重1を超えると焼結
性が低下し、好ましくない。また、第Vra族金属は粒
成長抑制、結合相とのぬれ性を向上させる効果を有する
が、10!1ffiχを下回ると上記効果が得られず、
硬質相が粗大化し、硬度、強度が低下する。また、40
重量2を超えるとη相等の不健全相が生しると共に焼結
が困難となる。
In such a hard phase component, the amount of TiO is 50% by weight.
If it is less than 80w, the wear resistance will decrease, and if it exceeds 80wt, the sinterability will decrease, which is not preferable. In addition, Group Vra metals have the effect of suppressing grain growth and improving wettability with the binder phase, but if it is less than 10!1 ffiχ, the above effects cannot be obtained,
The hard phase becomes coarse and hardness and strength decrease. Also, 40
If the weight exceeds 2, unhealthy phases such as η phase will occur and sintering will become difficult.

また、硬質相成分としては上記の他、耐クレータ摩耗性
向上を目的としてTa、Nbを、さらに耐塑性変形性向
上を目的としてZr、V、Hf等を窒化物、炭化物、炭
窒化物換算で5乃至40重量%の割合で含むことも可能
であるが、40重itχを超えると耐摩耗性劣化、ボア
、ボイドの発生が著しく増加する傾向にあり好ましくな
い。
In addition to the above, hard phase components include Ta and Nb for the purpose of improving crater wear resistance, and Zr, V, Hf, etc. for the purpose of improving plastic deformation resistance in terms of nitrides, carbides, and carbonitrides. Although it is possible to contain it in a proportion of 5 to 40% by weight, if it exceeds 40% by weight, it is not preferable because it tends to deteriorate wear resistance and significantly increase the occurrence of bores and voids.

一方、結合相はFe、Co、Ni等の鉄族金属を主体と
して戒るもので、一部、硬質相形成成分が含まれる場合
もある。
On the other hand, the binder phase is mainly composed of iron group metals such as Fe, Co, and Ni, and may partially contain hard phase forming components.

焼結体全体として硬質相成分は70乃至95重量%、結
合相成分は5〜30重量%の割合から成る。
The sintered body as a whole has a hard phase component of 70 to 95% by weight and a binder phase component of 5 to 30% by weight.

本発明における組成上の特徴は、硬質相成分中において
(窒素/炭素+窒素)で表される原子比が0.4乃至0
.6、特に0.4〜0,5の範囲に設定される点にある
。即ち、この原子比が0.4を下回るは靭性、耐摩耗性
の向上が望めず、本発明の目的が達成されず、0.6を
超えると焼結体中にボア、ボイドが発生し、工具として
の信頼性が低下する。
The compositional feature of the present invention is that the atomic ratio expressed by (nitrogen/carbon + nitrogen) in the hard phase component is 0.4 to 0.
.. 6, especially in the range of 0.4 to 0.5. That is, if the atomic ratio is less than 0.4, no improvement in toughness or wear resistance can be expected, and the object of the present invention cannot be achieved; if it exceeds 0.6, bores and voids will occur in the sintered body. Reliability as a tool decreases.

このような組成のサーメットを用いて1、逃げ面、すく
い面の硬度の異なる工具を製造するための1つの例を説
明する。まず、組成がTiを炭化物1、窒化物あるいは
炭窒化物換算で50乃至80重量%、周期律表第Via
族金属を炭化物換算で10乃至40重量%の割合で含有
するとともに(窒素/炭素+窒素)で表される原子比が
0.4乃至0.6の範囲にある硬質相成分70乃至95
重量%と、結合相成分5乃至30重Izとから成る工具
形状の成形棒を作成する。
An example of manufacturing a tool having flank and rake surfaces with different hardness using a cermet having such a composition will be described. First, the composition is Ti as carbide 1, 50 to 80% by weight in terms of nitride or carbonitride, Via of the periodic table.
A hard phase component 70 to 95 containing Group metal in a proportion of 10 to 40% by weight in terms of carbide and having an atomic ratio expressed by (nitrogen/carbon + nitrogen) in the range of 0.4 to 0.6.
% by weight and a binder phase component of 5 to 30 parts Iz.

具体的には原料粉末としてTiC,TiN、 T1CN
等を、また第■a族系としてはWC,Mo、C,門oC
等を、あるいはこれらの複合炭化物、複合炭化物、複合
炭窒化物等を組み合わせて用いることも当然可能である
。なお、Ti系としてはTiCを用いると焼結性が低下
し、部分的粒成長を起こす場合があるため、Ti (C
N)あるいはTi(CN)とTiNとの組合せがより好
ましい。
Specifically, raw material powders include TiC, TiN, and T1CN.
etc., and as group IV a systems, WC, Mo, C, phylum oC
Of course, it is also possible to use these compounds, or a combination of these composite carbides, composite carbides, composite carbonitrides, etc. Note that if TiC is used as a Ti-based material, the sinterability will decrease and partial grain growth may occur.
N) or a combination of Ti(CN) and TiN is more preferred.

得られた成形棒は真空炉内に設置され、焼成に移される
The obtained shaped rod is placed in a vacuum furnace and transferred to firing.

焼成は、1400〜1700℃の焼成温度で行われるが
本発明によれば、焼成は、まず0.5Torr以下の真
空炉内で加熱し、所定の時期に70Torr以上、特に
100〜200Torrの圧力の窒素ガスを導入する。
Firing is carried out at a firing temperature of 1400 to 1700°C. According to the present invention, firing is first heated in a vacuum furnace at a pressure of 0.5 Torr or less, and then heated at a pressure of 70 Torr or more, particularly 100 to 200 Torr, at a predetermined time. Introduce nitrogen gas.

この窒素ガスの導入は、昇温過程において、鉄族金属の
液相出現温度以上で、特に耐理論密度比が初期の成形棒
より5χ程度以上緻密化した段階で導入する。即ち、液
相出現温度以上で成形棒の表面には液相により被膜が形
成される。この被膜形成後に窒素ガスを導入することに
より、窒化物の分解を抑制するとともに結合相と硬質相
粒子の濡れ性低下を防止し、結果的に焼結体中にボア、
ボイドが残留するのを防止することができる。
This nitrogen gas is introduced during the temperature raising process at a temperature higher than the liquid phase appearance temperature of the iron group metal, especially at a stage when the theoretical density ratio has become denser than the initial formed rod by about 5χ or more. That is, a film is formed on the surface of the molded rod by the liquid phase at a temperature higher than the liquid phase appearance temperature. By introducing nitrogen gas after this film is formed, it suppresses the decomposition of nitrides and prevents a decrease in the wettability of the binder phase and hard phase particles, resulting in the formation of bores in the sintered body.
It is possible to prevent voids from remaining.

しかし、窒素ガスの導入の時期が焼結最高温度到達後、
特に対理論密度比90χを超えた付近では、実質上、窒
化物の分解抑制効果は得られず、vF、粘体表面に荒れ
が生じる。
However, the timing of introducing nitrogen gas is after reaching the maximum sintering temperature.
In particular, in the vicinity where the theoretical density ratio exceeds 90χ, the effect of suppressing the decomposition of nitrides is not substantially obtained, and vF and the surface of the viscous material become rough.

窒素ガスは炉内の温度が最高焼結温度に達した後は、所
定時間保持後、ただちに真空に戻して焼成を続ける。
After the temperature in the furnace reaches the maximum sintering temperature, the nitrogen gas is maintained for a predetermined time and then immediately returned to vacuum to continue firing.

これは、最高焼結温度到達後にさらに圧力を上げると、
焼結体表面部に粗粒で金属をほとんど含有しない、脆い
窒化層が生成され、焼肌面の荒れを生じるとともに、表
面部の靭性を著しく低下させてしまう。
This is because if the pressure is further increased after reaching the maximum sintering temperature,
A coarse-grained, brittle nitride layer containing almost no metal is formed on the surface of the sintered body, causing roughness on the sintered surface and significantly reducing the toughness of the surface.

このように、焼成中の特定の時期に窒素ガスを導入する
ことによって焼結体の表面部には第1図に示すように硬
度勾配を有する非常に高硬度な層が形成される。これは
、窒素ガス導入後、成形体内部と炉内雰囲気との間に圧
力が生じている。そこへ、急激に真空に戻すと成形棒表
面付近の結合金属が内部に移動し、裏面部付近は内部に
対し、結合相量が減少することにより、硬度が高くなる
と考えられる。
In this way, by introducing nitrogen gas at a specific time during firing, a very hard layer having a hardness gradient is formed on the surface of the sintered body as shown in FIG. This is because pressure is generated between the inside of the molded body and the atmosphere in the furnace after nitrogen gas is introduced. Then, when the vacuum is suddenly returned, the bonding metal near the surface of the formed rod moves inward, and the amount of bonding phase decreases near the back surface compared to the inside, which is thought to increase the hardness.

この表面部の硬度は焼成時に導入する窒素ガスの圧力に
大きく依存し、たとえば、ビッカース硬度2000以上
の硬度を得るためには、窒素ガス圧力をおよそ70To
rr以上に設定すればよい。
The hardness of this surface area largely depends on the pressure of nitrogen gas introduced during firing. For example, in order to obtain a Vickers hardness of 2000 or more, the nitrogen gas pressure must be adjusted to approximately 70To
It is sufficient to set it to rr or more.

本発明における上記のサーメットは窒素を多量に含むこ
とによって、高靭性、高硬度および耐熱性が優れるもの
で、特にその表面部は高い硬度を有することから耐摩耗
性に非常に優れるという性質を有する反面、靭性は若干
内部より劣る。一方、内部の硬度は表面部より劣るが、
靭性が高いという性質を有する。
The above-mentioned cermet of the present invention has high toughness, high hardness, and excellent heat resistance because it contains a large amount of nitrogen, and in particular, the surface portion has high hardness, so it has very excellent wear resistance. On the other hand, the toughness is slightly inferior to that of the inside. On the other hand, the hardness of the inside is inferior to that of the surface,
It has the property of high toughness.

そこで本発明によれば、第2図のサーメット焼結体の断
面図において表面部に高硬度な層1を有するサーメット
工具のすくい面^を例えば破%3 Xまで研磨して、表
面部の高硬度な層を除去することにより、すくい面の硬
度を低くし、靭性の高い内部2を表面に露出させる。こ
れにより、ずく:い面へと逃げ面Bには硬度差及び靭性
差が生じる。
Therefore, according to the present invention, in the cross-sectional view of the cermet sintered body shown in FIG. By removing the hard layer, the hardness of the rake face is lowered and the highly tough interior 2 is exposed to the surface. As a result, a hardness difference and a toughness difference occur between the groove face and the flank face B.

この研磨工程では、第1図に示したようにサーメットの
表面部から内部に硬度勾配が形成されていることから、
研磨型を調整量を調整することによって、すくい面の硬
度を適宜設定することができる。
In this polishing process, as shown in Figure 1, a hardness gradient is formed from the surface of the cermet to the inside.
By adjusting the amount of adjustment of the polishing die, the hardness of the rake face can be set appropriately.

また、逃げ面の硬度は、逃げ面自体が、工具の摩耗特性
に大きく寄与することから、ピノカース硬度2000以
上であることが望ましく、一方すくい面は工具の欠損性
に大きく寄与することから、高靭性であることが望まれ
るが、すくい面も適度の耐摩耗性が要求されることから
、ピンカース硬度1500以上であることが望ましく、
特に逃げ面とすくい面の硬度差が200以上であること
が好ましい。
In addition, the hardness of the flank surface is desirably 2000 or higher on the Pinocurs hardness, since the flank surface itself greatly contributes to the wear characteristics of the tool.On the other hand, the hardness of the rake surface is desirable, since it greatly contributes to the chipping property of the tool. Although toughness is desired, the rake face is also required to have moderate wear resistance, so it is desirable to have a Pinkers hardness of 1500 or more.
In particular, it is preferable that the difference in hardness between the flank face and the rake face is 200 or more.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

〔実施例1〕 原料粉末として平均粒径1〜1.5μmの粉末を用いて
、下記第1表の組成に調合した 組成1(重量%) a威2(重量2) Ti(CN) 50     Ti(CN) 58Ti
N   8     WC12 WC8MozC8 MozC10NbC6 TaC12VC2 Ni    6     Ni    7Co    
6     Co    7これら2種の調合品をそれ
ぞれ振動ξルで粉砕を行い、バインダーを添加したもの
をTNMA332チップ形状にブレス底形し、300℃
で脱バインダー後、焼成した。
[Example 1] Composition 1 (wt%) ai2 (wt 2) Ti(CN) 50 Ti was prepared using powder with an average particle size of 1 to 1.5 μm as the raw material powder to the composition shown in Table 1 below. (CN) 58Ti
N 8 WC12 WC8MozC8 MozC10NbC6 TaC12VC2 Ni 6 Ni 7Co
6 Co 7 These two types of blends were ground with a vibrating mill, the binder was added, the bottom of the press was shaped into a TNMA332 chip shape, and the mixture was heated at 300°C.
After removing the binder, it was fired.

焼成は真空炉内で昇温し、液相出現後、1350℃で窒
素ガスを組成lには100Torr 、組成2では15
0Torrの圧力で導入し、いずれも1500℃の焼結
最高温度に到達後、5分間保持しただちに真空に戻した
。なお、温度は1500℃で1時間保持後、冷却した。
For firing, the temperature is raised in a vacuum furnace, and after the appearance of a liquid phase, nitrogen gas is heated at 1350°C to 100 Torr for composition 1 and 15 Torr for composition 2.
The pressure was introduced at 0 Torr, and after reaching the maximum sintering temperature of 1500° C., it was held for 5 minutes and immediately returned to vacuum. Note that the temperature was maintained at 1500° C. for 1 hour and then cooled.

得られた焼結体に対し、硬質層の炭素、窒素を定量分析
し、N /(C+N)原子比を求めたところ、組成1が
0.5、組成2が0.45であった。
The obtained sintered body was quantitatively analyzed for carbon and nitrogen in the hard layer, and the N 2 /(C+N) atomic ratio was found to be 0.5 for composition 1 and 0.45 for composition 2.

また、この焼結体に対し、表面にわずかに析出した金属
成分を研磨除去した後、ビッカース硬度を測定したとこ
ろ組成1が2350、組成2が2400であった。
In addition, after polishing off the metal components slightly precipitated on the surface of this sintered body, the Vickers hardness was measured and found to be 2350 for Composition 1 and 2400 for Composition 2.

なお、上記とまったく同様にして作製した特性測定用試
料に対し、約5 °の角度で研磨し、該研磨面に対し、
垂直方向でピンカース硬度を表面からの距離(深さ)を
変えて測定したところ、いずれの焼結体も表面から内部
に亘り硬度が低くなる硬度勾配が生じていた。
In addition, a characteristic measurement sample prepared in exactly the same manner as above was polished at an angle of approximately 5°, and the polished surface was
When Pinkers hardness was measured in the vertical direction at different distances (depths) from the surface, it was found that all sintered bodies had a hardness gradient in which the hardness decreased from the surface to the inside.

このようにして得た組成1,2のサーメットに対し、そ
のすくい面を研磨量をかえて研磨して、第2表に示すよ
うにすくい面の硬度の異なる数種の切削工具を得た。
The rake faces of the cermets of compositions 1 and 2 thus obtained were polished with varying amounts of polishing to obtain several types of cutting tools with different rake face hardnesses as shown in Table 2.

得られた切削工具に対して、耐摩耗性試験、耐欠損性試
験を次の条件で行った。
The obtained cutting tool was subjected to a wear resistance test and a chipping resistance test under the following conditions.

被削材 切削速度 切り込み 送り 切削時間 耐摩耗性試験 SCM435■ V =300m/ m1n d =2mm f =0.3mm /rev T =6分後の フランク摩耗量 を比較 結果は第1表に示した。Work material cutting speed notch sending cutting time Wear resistance test SCM435■ V = 300m/m1n d = 2mm f=0.3mm/rev T = 6 minutes later Flank wear amount compare The results are shown in Table 1.

〔以下余白〕[Margin below]

耐欠損性試験 545C■5+nm x4 V = 100m/ m1n d =1.5mm f =0.2mm /rev T =1分間5コ ーナーを切削し 無欠損コーナー 数を算出 本溝人 第 表 第1表の結果によれば、何ら研磨を行わなかったNo、
1.5の試料に対し、すくい面を研磨したNo、 2〜
4,6.7の試料はいずれも耐摩耗性はかわらないが、
耐欠損性が大きく向上していることがわかる。
Fracture resistance test 545C■5+nm x4 V = 100m/ m1nd = 1.5mm f = 0.2mm /rev T = 1 minute Cut 5 corners and calculate the number of no-breakage corners Results shown in Table 1 of Honzoto Table According to No. 1, which did not undergo any polishing,
No. 1.5 sample with polished rake face, No. 2~
Both samples 4 and 6.7 have the same wear resistance, but
It can be seen that the fracture resistance is greatly improved.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように、本発明のサーメット工具は、窒
素を多量に含む組成系から戒り、その逃げ面とすくい面
に特定の硬度差および靭性差を設けることによって、工
具における耐摩耗性、耐火1員性を大幅に向上すること
ができ、工具としての長寿命化を達成することができる
As described above in detail, the cermet tool of the present invention has a composition system that contains a large amount of nitrogen, and by providing a specific hardness difference and toughness difference between the flank and rake faces, the wear resistance of the tool is improved. , the fire resistance can be greatly improved, and the life of the tool can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明において用いられるサーメッI・焼結体
の硬度分布を示す図であり、第2図は本発明において用
いられるサーメット焼結体の断面図である。 A:すくい面 B:逃げ面
FIG. 1 is a diagram showing the hardness distribution of the cermet I sintered body used in the present invention, and FIG. 2 is a cross-sectional view of the cermet sintered body used in the present invention. A: Rake face B: Relief face

Claims (1)

【特許請求の範囲】[Claims]  Tiを炭化物、窒化物あるいは炭窒化物換算で50乃
至80重量%、周期律表第IVa族金属を炭化物換算で1
0乃至40重量%の割合で含有するとともに、窒素/(
炭素+窒素)で表される原子比が0.4乃至0.6の範
囲にある硬質相成分70乃至95重量%と、鉄族金属を
主成分とする結合相成分5乃至30重量%とから成るサ
ーメット工具において、該工具の逃げ面のビッカース硬
度がすくい面の硬度よりも高いことを特徴とするサーメ
ット工具。
50 to 80% by weight of Ti in terms of carbide, nitride or carbonitride, 1% by weight of Group IVa metal of the periodic table in terms of carbide.
Nitrogen/(
70 to 95% by weight of a hard phase component having an atomic ratio of 0.4 to 0.6 (carbon + nitrogen) and 5 to 30% by weight of a binder phase component whose main component is an iron group metal. 1. A cermet tool characterized in that the Vickers hardness of the flank face of the tool is higher than the hardness of the rake face.
JP1166225A 1989-06-28 1989-06-28 Cermet tool Expired - Lifetime JP2775298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1166225A JP2775298B2 (en) 1989-06-28 1989-06-28 Cermet tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1166225A JP2775298B2 (en) 1989-06-28 1989-06-28 Cermet tool

Publications (2)

Publication Number Publication Date
JPH0332502A true JPH0332502A (en) 1991-02-13
JP2775298B2 JP2775298B2 (en) 1998-07-16

Family

ID=15827433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1166225A Expired - Lifetime JP2775298B2 (en) 1989-06-28 1989-06-28 Cermet tool

Country Status (1)

Country Link
JP (1) JP2775298B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637130A (en) * 1993-07-13 1997-06-10 Sumitomo Electric Industries, Inc. Method and furnace for drawing optical fibers
WO1998013528A1 (en) * 1996-09-26 1998-04-02 Kennametal Inc. Cutting insert and method of making the same
KR100239844B1 (en) * 1991-06-27 2000-01-15 이토우 겐스케 Sintered alloy of golden color
JP2005350707A (en) * 2004-06-09 2005-12-22 Tungaloy Corp Cermet, coated cermet and method for manufacturing them
EP1614773A2 (en) * 2004-07-09 2006-01-11 Seco Tools Ab Insert for metal cutting
JP2011005582A (en) * 2009-06-25 2011-01-13 Kyocera Corp Cutting tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139815A (en) * 1978-04-24 1979-10-30 Mitsubishi Metal Corp Sintered hard alloy having hardened surface layer
JPS6047906A (en) * 1983-08-26 1985-03-15 Hiroshi Fujii Detecting device of length of let-out fishline
JPS6362873A (en) * 1986-09-03 1988-03-19 Hitachi Ltd Ion-implanted cutting tool
JPS63125637A (en) * 1986-11-17 1988-05-28 Ngk Spark Plug Co Ltd Cermet tip for cutting tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139815A (en) * 1978-04-24 1979-10-30 Mitsubishi Metal Corp Sintered hard alloy having hardened surface layer
JPS6047906A (en) * 1983-08-26 1985-03-15 Hiroshi Fujii Detecting device of length of let-out fishline
JPS6362873A (en) * 1986-09-03 1988-03-19 Hitachi Ltd Ion-implanted cutting tool
JPS63125637A (en) * 1986-11-17 1988-05-28 Ngk Spark Plug Co Ltd Cermet tip for cutting tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100239844B1 (en) * 1991-06-27 2000-01-15 이토우 겐스케 Sintered alloy of golden color
US5637130A (en) * 1993-07-13 1997-06-10 Sumitomo Electric Industries, Inc. Method and furnace for drawing optical fibers
WO1998013528A1 (en) * 1996-09-26 1998-04-02 Kennametal Inc. Cutting insert and method of making the same
US5976707A (en) * 1996-09-26 1999-11-02 Kennametal Inc. Cutting insert and method of making the same
AU713994B2 (en) * 1996-09-26 1999-12-16 Kennametal Inc. Cutting insert and method of making the same
JP2005350707A (en) * 2004-06-09 2005-12-22 Tungaloy Corp Cermet, coated cermet and method for manufacturing them
EP1614773A2 (en) * 2004-07-09 2006-01-11 Seco Tools Ab Insert for metal cutting
EP1614773A3 (en) * 2004-07-09 2006-03-29 Seco Tools Ab Insert for metal cutting
US7435486B2 (en) 2004-07-09 2008-10-14 Seco Tools Ab Insert for metal cutting
JP2011005582A (en) * 2009-06-25 2011-01-13 Kyocera Corp Cutting tool

Also Published As

Publication number Publication date
JP2775298B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
KR101353651B1 (en) Sintered cemented carbides using vanadium as gradient former
JP2769821B2 (en) TiCN-based cermet and method for producing the same
EP0812367B1 (en) Titanium-based carbonitride alloy with controllable wear resistance and toughness
JP2628200B2 (en) TiCN-based cermet and method for producing the same
JPH0332502A (en) Cermet tool
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JPS5928628B2 (en) Surface coated cemented carbide tools
KR101640644B1 (en) Titanium sintered alloy with improved thermal impact resistance and cutting tools using the same
JP2828511B2 (en) Surface coated TiCN based cermet
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance
US11618936B2 (en) Cemented carbide, coated tool using same, and cutting tool
JP2910293B2 (en) Manufacturing method of tungsten carbide based cemented carbide cutting tool coated with hard layer
JPH07136810A (en) Ceramic tool for cutting very hard material
JPH06336634A (en) Surface-coated cermet
JP3368367B2 (en) Tungsten carbide based cemented carbide and cutting tools
KR100497850B1 (en) sinterd alloy of tungsten carbide having tensile strength and wear resistance character & cutting tools using the same
JPH0665671A (en) Cemented carbide for cutting tool
JPH068009A (en) Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
JP3677374B2 (en) Cermet tool for cutting
JPS6245290B2 (en)
JPH0610089A (en) Coated sintered hard alloy
JP3199400B2 (en) Coated cemented carbide for cutting tools
JPH0741898A (en) Cermet for cutting tool

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12