JP3368367B2 - Tungsten carbide based cemented carbide and cutting tools - Google Patents
Tungsten carbide based cemented carbide and cutting toolsInfo
- Publication number
- JP3368367B2 JP3368367B2 JP07819294A JP7819294A JP3368367B2 JP 3368367 B2 JP3368367 B2 JP 3368367B2 JP 07819294 A JP07819294 A JP 07819294A JP 7819294 A JP7819294 A JP 7819294A JP 3368367 B2 JP3368367 B2 JP 3368367B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- carbide
- hard phase
- particle size
- cemented carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、高硬度及び高強度の炭
化タングステン基超硬合金とそれを基体とする切削工具
に関する。この合金により作製された切削工具やドリル
は、耐摩耗性及び耐欠損性に優れ、連続切削及び断続切
削に好適に利用され得る。特に上記基体に更に所定の表
面被覆を形成した切削工具は、高速切削や、高送り、高
切込みなどの重切削に優れた切削性能が要求される分野
で好適に利用され得る。
【0002】
【従来の技術】従来から、超硬合金はサーメットとなら
び切削工具用材料として使用されており、その構成は炭
化タングステンを主とした硬質相と、コバルトやニッケ
ル等からなる結合相とからなる。
【0003】ところが最近に至り、その切削工具の使用
条件が厳しくなるとともに、精密加工用工具が望まれて
おり、かかる工具用材料として微細な結晶粒子からなる
超硬合金の開発が進められている。例えば、WC−Co
系合金に対してWC結晶粒子の粒成長を抑制するために
VCやCr3C2等の炭化物を添加することが特公昭62
−56224号にて提案されている。又、超硬合金の特
性からの見地から、合金中に炭素量が少ないために生じ
る金属間化合物(η相)の生成及び遊離炭素の生成を抑
制することが重要であることも知られている。
【0004】更に、超硬合金を基体として、その表面に
セラミックスをコーティングした表面被覆超硬合金も、
基材である超硬合金の強靭さとセラミック被覆の耐摩耗
性とを兼ね備えており、注目されている(例えば特開昭
55−83507号公報、特開平4−275804号公
報)。
【0005】
【発明が解決しようとする課題】しかしながら、近年さ
らなる切削加工の高能率化及び省力化の要望があり、一
層厳しい条件での重切削にと、対応をせまられる傾向に
あるため、上述した手法では充分な性能を維持すること
が困難となりつつあり、さらに優れた耐摩耗性と耐欠損
性を兼ね備えた炭化タングステン基超硬合金の開発が望
まれている。
【0006】そこで、本発明者らは、種々の実験を重ね
た結果、炭化タングステン基超硬合金を構成する炭化タ
ングステン粒子の粒径分布の幅を非常にせまくすること
で、硬さ及び強度を著しく増大させ、かつそれらの特性
が安定して得られることができることを知るに至った。
【0007】本発明は、そのような知見に基づいてなさ
れたもので、その第1の目的は、高硬度及び高強度の超
硬合金を提供することである。第2の目的は、そのよう
な超硬合金を用いて優れた耐摩耗性と耐欠損性を兼ね備
えた切削工具を提供することである。
【0008】
【課題を解決するための手段】その手段は、炭化タング
ステンを主成分とする硬質相、鉄属金属のうち1種又は
2種以上からなる結合相及び不可避不純物からなる炭化
タングステン基超硬合金において、上記硬質相が、粒径
0.5〜1.5μmの粒子が硬質相全体のうち90体積
%以上占める粒度分布を有し、合金の硬さと強度が以下
の2式を充足する関係にあることを特徴とする炭化タン
グステン基超硬合金にある。
【0009】同じく第2の手段は、炭化タングステンを
主成分とする硬質相、鉄族金属のうち1種又は2種以上
からなる結合相及び不可避不純物からなる基体の表面
に、周期律表の4a,5a,6a族金属及びAlの群か
ら選んだ1種又は2種以上の金属元素の炭化物、窒化
物、酸化物、硼化物及びこれらの化合物の1種の単層又
は2種以上の複数層で構成された皮膜を設けてなる切削
工具において、上記硬質相が、粒径0.5〜1.5μm
の粒子が硬質相全体のうち90体積%以上占める粒度分
布を有し、基体の硬さと強度が以下の2式を充足する関
係にあることを特徴とする表面被覆超硬合金製切削工具
にある。
【0010】Hv≧2600−4.0σf H
v:ビッカ−ス硬さ
σf ≧200kg/mm2 σf :抗折強度
【作用】硬質相は、主に硬度の向上に寄与し、それによ
り耐摩耗性を向上させる。硬質相を形成する成分として
は、WCの他にTiC、TaC、NbCやそれらの固溶
体が挙げられる。結合相は、難焼結性の硬質相同志を結
合させる焼結助剤として機能し、強度及び靱性を高め、
耐欠損性を向上させる。そして、皮膜は、更に耐摩耗性
を向上させる。
【0011】ここで、炭化タングステン基超硬合金を構
成する硬質相の粒子(以下、「硬質粒子」ともいう)の
粒径は、0.5〜1.5μmであることが望ましく、特
に、0.8〜1.2μmであることが望ましい。従っ
て、それら硬質粒子の粒度分布において、0.5〜1.
5μmの粒径の間に90%以上の粒子が存在しているこ
とが望ましい。これは、粒径が0.5μm以下となる
と、硬度は高くなるものの、粒子間の平均自由行路が小
さくなりすぎて、かえって強度を低下させるためであ
り、1.5μm以上となると、硬度、強度ともに低下す
るためである。又、粒度分布で、粒径0.5〜1.5μ
mの粒子の含有率が90%以下であると、耐摩耗性及び
耐欠損性において、安定な性能が得られないためであ
る。
【0012】又、本発明に係る炭化タングステン基超硬
合金は、その極めて精密に制御された組織を有するた
め、硬度及び強度が極めて高い、優れた特性を示す。そ
のため、結合相の量とともに図1に示す様な硬度と強度
との関係を維持しながら変動し、広範囲な切削条件に対
応できる。
【0013】
【実施例】
−実施例1−
平均粒径0.8μmの炭化タングステン粉末(WC粉
末)を平均粒径2μmのコバルト粉末(Co粉末)と、
表1に示すような割合で混合、成形した後、減圧雰囲気
中1400〜1600℃で焼結した。得られた焼結体
は、炭化タングステンよりなる硬質相がCoよりなる結
合相にて強固に結合したものであった。一方、比較品と
して、表1に示すような組成において、No.5,6,
7は原料を強粉砕し、微細化した後、成形したことを、
No.8,9は焼成条件を、除くほかは全て本発明品と
同じ条件で各焼結体を製造した。
【0014】次に、各試料No.1〜9の平均粒径、硬
質相全体に対する粒径0.5〜1.5μmの粒子の含有
率、ビッカース硬度及び抗折強度を測定した。測定結果
を製造条件と併せて表1に示す。また、ビッカース硬度
と抗折強度との関係を打点した結果が図1である(硬度
及び強度ともに低かったNo.8は、図示を省略し
た)。
【0015】
【表1】
表1において、平均粒径及び粒子含有率の値は、各試料
の組織を電子顕微鏡にて5000倍で観察、画像解析装
置により求めた。抗折強度σは、JIS B−4053
に準じて、3点曲げ試験により求められた値である。
【0016】表1にみられるように、本発明の超硬合金
は、比較例の合金に比べて硬度及び強度ともに高い値を
示した。かくして得られた焼結体のうち、No.1〜7
をCNMG432の工具形状に研磨加工し、切削工具チ
ップを製造し、各々のチップについて、次に示すような
条件で旋削テストを行い切削性能を評価した。
【0017】
切削条件:切削速度V=150(m/min)
送りf=0.25(mm/rev)
切り込みd=0.5(mm)
湿式切削
被削材 :チタンTi
ホルダー:C31R−44
旋削テストを行った後、VB摩耗量と切削時間との関係
を打点した結果を図2に示す。
【0018】図2にみられるように、本発明超硬合金に
よる切削工具は、比較例の合金による切削工具に比べ
て、VB摩耗量が少なく、しかも切削時間が長くなるに
つれてその差が顕著であった。よって、表1及び図2の
結果を併せて考察すると、超硬合金の化学組成の如何に
かかわらず、硬質相の粒度分布が、機械的特性及び切削
性能に著しく影響を及ぼすことが判った。
【0019】−実施例2−
実施例1と同一条件で得られた焼結体(No.5を除
く)をCNGA432の工具形状に研磨加工した後、こ
れを基体としてその表面に化学蒸着法(CVD法)によ
り、炭化チタン(TiC)コーティングをその厚さが5
μmとなるように施し、その後、酸化アルミニウム(A
l203)コーティングをその厚さが1μmとなるように
施して皮膜を設け、切削工具チップを製造した。上述の
如くして得られた各々のチップについて、次に示すよう
な条件で硬鋼材の旋削テストを行い切削性能を評価し
た。
【0020】
切削条件:切削速度V=150(m/min)
送りf=0.23(mm/rev)
切り込みd=2.0(mm)
湿式切削
被削材 :SNGM8H(φ200×600L[mm]、H
B300)
ホルダー:C31R−44
旋削テストを行った後、VB摩耗量と切削時間との関係
を打点した結果を図3に示す。
【0021】図3にみられるように、本発明切削工具
は、比較例の切削工具に比べて、VB摩耗量が少なく、
しかも切削時間が長くなるにつれてその差が顕著であっ
た。よって、表1及び図3の結果を併せて考察すると、
基体の化学組成の如何にかかわらず、硬質相の粒度分布
が、機械的特性及び切削性能に著しく影響を及ぼすこと
が判った。
【0022】−実施例3−
実施例1と同一条件で、本発明品及び比較品の各焼結体
(No.5を除く)を得た。それらの焼結体をSEK4
2Aの工具形状に加工した後、これを基体として物理蒸
着法(PVD法)により、窒化チタン(TiN)コーテ
ィングを厚さ2μmとなるように施して皮膜を設け、切
削工具チップを製造した。上述の如くして得た各チップ
を、次の条件で硬鋼材のフライス切削を行った。
【0023】
切削条件:切削速度V=244(m/min)
送りf=0.23(mm/rev)
切り込みd=2.0(mm)
乾式切削
被削材 :SCM440H(HB240)
カッター:SE445R(φ160mm)
フライス切削テストの後、VB摩耗量と切削時間との関
係を打点した結果を図4に示す。
【0024】図4にみられるように、本発明切削工具
は、比較例の切削工具に比べて、VB摩耗量が少なく、
しかも切削時間が長くなるにつれてその差が顕著であっ
た。よって、表1、図1、図2及び図3の結果を併せて
考察すると、皮膜のコーティングの有無及び方法の如何
にかかわらず、硬質相の粒度分布が、機械的特性及び切
削性能に著しく影響を及ぼすことが判った。
【0025】
【発明の効果】本発明による炭化タングステン基超硬合
金によれば、切削工具として高送り及び高切込みなどの
重切削に用いた場合に優れた耐摩耗性を示し、又苛酷な
フライス切削に用いた場合にも優れた耐欠損性を示すな
ど、産業上優れた効果を奏するものである。また、硬度
及び強度が高いので、ドリルにも適用可能である。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-hardness and high-strength tungsten carbide-based cemented carbide and a cutting tool using the same as a base material. Cutting tools and drills made of this alloy have excellent wear resistance and fracture resistance, and can be suitably used for continuous cutting and intermittent cutting. In particular, a cutting tool in which a predetermined surface coating is further formed on the substrate can be suitably used in fields requiring excellent cutting performance such as high-speed cutting, high feed, high cutting, and the like. [0002] Conventionally, cemented carbides have been used as cutting tools as well as cermets, and are composed of a hard phase mainly composed of tungsten carbide and a binder phase composed of cobalt, nickel or the like. Consists of [0003] Recently, however, the use conditions of cutting tools have become severer and tools for precision machining have been desired, and a cemented carbide made of fine crystal grains has been developed as such a tool material. . For example, WC-Co
Addition of carbides such as VC and Cr 3 C 2 in order to suppress the grain growth of WC crystal particles to the base alloy
No. -56224. It is also known from the viewpoint of the properties of cemented carbide that it is important to suppress the formation of intermetallic compounds (η phase) and the formation of free carbon due to the low carbon content in the alloy. . [0004] Further, surface-coated cemented carbides, which are made of cemented carbide as a substrate and whose surface is coated with ceramics,
It has both the toughness of a cemented carbide as a base material and the wear resistance of a ceramic coating, and has attracted attention (for example, JP-A-55-83507 and JP-A-4-275804). [0005] However, in recent years, there has been a demand for higher efficiency and labor saving of cutting work, and there has been a tendency to cope with heavy cutting under more severe conditions. It is becoming difficult to maintain sufficient performance with the above technique, and there is a demand for the development of a tungsten carbide-based cemented carbide having both excellent wear resistance and fracture resistance. [0006] The inventors of the present invention have conducted various experiments and found that the hardness and strength of the tungsten carbide-based cemented carbide are reduced by making the width of the particle size distribution extremely small. It has been found that they have increased significantly and that their properties can be obtained stably. [0007] The present invention has been made based on such findings, and a first object of the present invention is to provide a cemented carbide having high hardness and high strength. A second object is to provide a cutting tool having excellent wear resistance and fracture resistance using such a cemented carbide. Means for solving the problems include a hard phase mainly composed of tungsten carbide, a binder phase composed of one or more kinds of iron group metals, and a tungsten carbide base composed of unavoidable impurities. in hard alloy, said hard phase, particles having a particle size 0.5~1.5μm will have a particle size distribution which accounts 90 vol% or more of the total hard phase, hardness and strength of the alloy is less
A tungsten carbide-based cemented carbide characterized by satisfying the following two formulas: [0009] Similarly, the second means is that a hard phase mainly composed of tungsten carbide, a binder phase composed of one or more of iron group metals, and a substrate composed of unavoidable impurities are provided on the surface of the base of 4a of the periodic table. , 5a, 6a metals, and carbides, nitrides, oxides, borides of one or more metal elements selected from the group of Al and one or more layers of one or more of these compounds In a cutting tool provided with a coating composed of: the hard phase has a particle size of 0.5 to 1.5 μm
Seki particles have a particle size distribution which accounts 90 vol% or more of the total hard phase, hardness and strength of the substrate satisfy the following two equations
Surface-coated cemented carbide cutting tool, characterized in that in the engagement
It is in. Hv ≧ 2600−4.0σf H
v: Vickers - scan hardness σf ≧ 200kg / mm 2 σf: bending strength [action] hard phase mainly contributes to improvement of hardness, thereby improving the wear resistance. Examples of the component forming the hard phase include TiC, TaC, NbC and solid solutions thereof in addition to WC. The binder phase functions as a sintering aid to bind hard sintering hard materials, increases strength and toughness,
Improves fracture resistance. And the film further improves the wear resistance. Here, the particles of the hard phase constituting the tungsten carbide-based cemented carbide (hereinafter also referred to as "hard particles") preferably have a particle size of 0.5 to 1.5 μm, and more preferably 0 to 1.5 μm. 0.8 to 1.2 [mu] m. Therefore, in the particle size distribution of these hard particles, 0.5 to 1.
It is desirable that 90% or more of the particles exist between the particle sizes of 5 μm. This is because, when the particle diameter is 0.5 μm or less, although the hardness increases, the mean free path between the particles becomes too small, and the strength is rather reduced. This is because both decrease. In the particle size distribution, the particle size is 0.5 to 1.5μ.
If the content of the particles m is 90% or less, stable performance cannot be obtained in abrasion resistance and chipping resistance. Further, the tungsten carbide-based cemented carbide according to the present invention has a very precisely controlled structure, and therefore has excellent properties with extremely high hardness and strength. Therefore, it varies with the amount of the binder phase while maintaining the relationship between the hardness and the strength as shown in FIG. 1 and can cope with a wide range of cutting conditions. Examples Example 1 Tungsten carbide powder (WC powder) having an average particle size of 0.8 μm was mixed with cobalt powder (Co powder) having an average particle size of 2 μm.
After mixing and molding at the ratios shown in Table 1, sintering was performed at 1400 to 1600 ° C. in a reduced pressure atmosphere. The obtained sintered body was one in which a hard phase composed of tungsten carbide was firmly bound by a binder phase composed of Co. On the other hand, as a comparative product, in the composition shown in Table 1, 5,6
7 indicates that the raw material was strongly pulverized and refined, and then molded.
No. Samples 8 and 9 were manufactured under the same conditions as those of the product of the present invention except for the firing conditions. Next, each sample No. The average particle size of 1 to 9, the content of particles having a particle size of 0.5 to 1.5 μm with respect to the entire hard phase, Vickers hardness and bending strength were measured. Table 1 shows the measurement results together with the production conditions. Fig. 1 shows the results of plotting the relationship between Vickers hardness and bending strength (No. 8 in which both hardness and strength were low was not shown). [Table 1] In Table 1, the values of the average particle diameter and the particle content were determined by observing the structure of each sample with an electron microscope at 5000 times and using an image analyzer. The bending strength σ is JIS B-4053
Is a value obtained by a three-point bending test according to As shown in Table 1, the cemented carbide of the present invention showed higher values in both hardness and strength than the alloy of the comparative example. Among the sintered bodies thus obtained, No. 1-7
Was ground into a tool shape of CNMG432 to produce cutting tool chips, and a turning test was performed on each of the chips under the following conditions to evaluate cutting performance. Cutting conditions: Cutting speed V = 150 (m / min) Feed f = 0.25 (mm / rev) Depth of cut = 0.5 (mm) Wet cutting work material: Titanium Ti Holder: C31R-44 Turning after testing, the results obtained by RBI the relationship between V B wear amount and the cutting time in FIG. [0018] As seen in FIG. 2, the cutting tool according to the invention the cemented carbide is compared to a cutting tool by an alloy of the comparative example, less V B wear amount, moreover the difference is significant as the cutting time becomes longer Met. Therefore, when considering the results of Table 1 and FIG. 2 together, it was found that the particle size distribution of the hard phase significantly affected the mechanical properties and the cutting performance regardless of the chemical composition of the cemented carbide. Example 2 A sintered body (except No. 5) obtained under the same conditions as in Example 1 was polished into a tool shape of CNGA432, and this was used as a substrate to form a chemical vapor deposition method on the surface thereof ( CVD method) to form a titanium carbide (TiC) coating having a thickness of 5
μm, and then aluminum oxide (A
l 2 0 3) a coating provided coating thickness thereof is subjected to a 1 [mu] m, to produce a cutting tool tip. For each of the chips obtained as described above, a turning test of a hard steel material was performed under the following conditions to evaluate the cutting performance. Cutting conditions: Cutting speed V = 150 (m / min) Feed f = 0.23 (mm / rev) Cutting depth d = 2.0 (mm) Wet cutting work material: SNGM8H (φ200 × 600 L [mm]) , H
B 300) Holder: After C31R-44 Turning test shows a result of RBI the relationship between V B wear amount and the cutting time in FIG. [0021] As seen in FIG. 3, the present invention cutting tool, in comparison with cutting tools of the Comparative Example, V B wear amount is small,
Moreover, the difference was remarkable as the cutting time became longer. Therefore, considering the results of Table 1 and FIG. 3 together,
Regardless of the chemical composition of the substrate, it has been found that the particle size distribution of the hard phase has a significant effect on mechanical properties and cutting performance. Example 3 Under the same conditions as in Example 1, respective sintered bodies of the present invention and comparative products (except for No. 5) were obtained. These sintered bodies were SEK4
After processing into a 2A tool shape, a titanium nitride (TiN) coating was applied to a thickness of 2 μm by physical vapor deposition (PVD) using the substrate as a substrate to form a coating, and a cutting tool chip was manufactured. Each chip obtained as described above was subjected to milling of a hard steel material under the following conditions. [0023] Cutting conditions: cutting speed V = 244 (m / min) Feed f = 0.23 (mm / rev) cut d = 2.0 (mm) dry cutting work material: SCM440H (H B 240) Cutter: after SE445R (φ160mm) milling test shows a result of RBI the relationship between V B wear amount and the cutting time in FIG. [0024] As seen in FIG. 4, the present invention cutting tool, in comparison with cutting tools of the Comparative Example, V B wear amount is small,
Moreover, the difference was remarkable as the cutting time became longer. Therefore, when the results of Table 1, FIG. 1, FIG. 2 and FIG. 3 are considered together, the particle size distribution of the hard phase significantly affects the mechanical properties and the cutting performance regardless of the presence or absence of the coating and the method. It was found to have The tungsten carbide based cemented carbide according to the present invention exhibits excellent wear resistance when used as a cutting tool in heavy cutting such as high feed and high depth of cut, and has a severe milling condition. It has excellent industrial effects, such as excellent fracture resistance when used for cutting. In addition, since it has high hardness and strength, it can be applied to drills.
【図面の簡単な説明】
【図1】硬度と強度との関係式を導くグラフである。
【図2】実施例1の旋削テストによるVB摩耗量と切削
時間との関係を打点した結果を示すグラフである。
【図3】実施例2の旋削テストによるVB摩耗量と切削
時間との関係を打点した結果を示すグラフである。
【図4】実施例3のフライス切削テストによるVB摩耗
量と切削時間との関係を打点した結果を示すグラフであ
る。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph for deriving a relational expression between hardness and strength. [2] The relationship between V B wear amount and the cutting time by turning the test of Example 1 is a graph showing the results of RBI. 3 is a graph showing the results of RBI the relationship between V B wear amount and the cutting time by turning the test of Example 2. [4] The relationship between V B wear amount and the cutting time by milling test of Example 3 is a graph showing the results of RBI.
Claims (1)
相、鉄族金属のうち1種又は2種以上からなる結合相及
び不可避不純物からなる基体の表面に、周期律表の4
a,5a,6a族金属及びAlの群から選んだ1種又は
2種以上の金属元素の炭化物、窒化物、酸化物、硼化物
及びこれらの化合物の1種の単層又は2種以上の複数層
で構成された皮膜を設けてなる切削工具において、上記
硬質相が、粒径0.5〜1.5μmの粒子が硬質相全体
のうち90体積%以上占める粒度分布を有し、基体の硬
さと強度が以下の2式を充足する関係にあることを特徴
とする表面被覆超硬合金製切削工具。 Hv≧2600−4.0σf Hv:ビッカ−ス硬さ σf ≧200kg/mm2 σf :抗折強度(57) [Claims 1] A periodic phase is formed on the surface of a substrate composed of a hard phase mainly composed of tungsten carbide, a binder phase composed of one or more of iron group metals, and unavoidable impurities. Rule 4
Carbide, nitride, oxide, boride of one or more metal elements selected from the group of a, 5a, 6a metals and Al, and a single layer or a plurality of two or more of these compounds In a cutting tool provided with a coating composed of layers, the hard phase has a particle size distribution in which particles having a particle size of 0.5 to 1.5 μm account for 90% by volume or more of the entire hard phase, and the hard phase of the substrate is hardened. And a strength that satisfies the following two formulas: a surface-coated cemented carbide cutting tool. Hv ≧ 2600−4.0σf Hv: Vickers hardness σf ≧ 200 kg / mm 2 σf: Flexural strength
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07819294A JP3368367B2 (en) | 1993-03-31 | 1994-03-23 | Tungsten carbide based cemented carbide and cutting tools |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9859593 | 1993-03-31 | ||
JP9859493 | 1993-03-31 | ||
JP5-98594 | 1993-03-31 | ||
JP5-98595 | 1993-03-31 | ||
JP07819294A JP3368367B2 (en) | 1993-03-31 | 1994-03-23 | Tungsten carbide based cemented carbide and cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06335808A JPH06335808A (en) | 1994-12-06 |
JP3368367B2 true JP3368367B2 (en) | 2003-01-20 |
Family
ID=27302637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07819294A Ceased JP3368367B2 (en) | 1993-03-31 | 1994-03-23 | Tungsten carbide based cemented carbide and cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3368367B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005052930A (en) * | 2003-08-04 | 2005-03-03 | Sumitomo Electric Ind Ltd | Rotary cutting tool |
JP2007253326A (en) * | 2007-05-25 | 2007-10-04 | Shin Etsu Chem Co Ltd | Method for multiple cutting of rare earth magnet using multiple diamond abrasive wheel |
-
1994
- 1994-03-23 JP JP07819294A patent/JP3368367B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
JPH06335808A (en) | 1994-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0914490A1 (en) | Cemented carbide insert for turning, milling and drilling | |
CN1487906A (en) | Cubic boron nitride sintered body and cutting tool | |
KR101529726B1 (en) | Coated cutting insert for milling applications | |
JPH08209336A (en) | Coated hard alloy | |
KR20090037345A (en) | Coated cutting tool insert for milling | |
JPH08209335A (en) | Coated hard member | |
JP3931325B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3931326B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3368367B2 (en) | Tungsten carbide based cemented carbide and cutting tools | |
JP4069749B2 (en) | Cutting tool for roughing | |
US12000034B2 (en) | Coated tool | |
JP2005153098A (en) | Surface coated cutting tool | |
JP2001179507A (en) | Cutting tool | |
JPH10237650A (en) | Wc base cemented carbide and its production | |
JP2917555B2 (en) | Hard layer coated cemented carbide cutting tool and its manufacturing method | |
JP2801484B2 (en) | Cemented carbide for cutting tools | |
JP2009006413A (en) | Ti based cermet | |
JP3525359B2 (en) | Surface coated cemented carbide cutting tool | |
JP2982359B2 (en) | Cemented carbide with excellent wear and fracture resistance | |
JP4132106B2 (en) | Impact resistant cemented carbide and surface coated cemented carbide | |
US20230058739A1 (en) | Coated tool | |
JP4484500B2 (en) | Surface coated cutting tool | |
JP2596429B2 (en) | Cemented carbide | |
JPH1018024A (en) | Coated hard member | |
JP2001114562A (en) | Sintered ceramic part and coated sintered ceramic part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RVOP | Cancellation by post-grant opposition |