JPS6311645A - Nitrogenous sintered hard alloy and its production - Google Patents

Nitrogenous sintered hard alloy and its production

Info

Publication number
JPS6311645A
JPS6311645A JP62069674A JP6967487A JPS6311645A JP S6311645 A JPS6311645 A JP S6311645A JP 62069674 A JP62069674 A JP 62069674A JP 6967487 A JP6967487 A JP 6967487A JP S6311645 A JPS6311645 A JP S6311645A
Authority
JP
Japan
Prior art keywords
powder
nitrogen
hard alloy
nickel
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62069674A
Other languages
Japanese (ja)
Other versions
JPH0564695B2 (en
Inventor
Nobuyuki Kitagawa
信行 北川
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to US07/091,953 priority Critical patent/US4769070A/en
Priority to KR1019870009771A priority patent/KR960000060B1/en
Priority to EP87307861A priority patent/EP0259192B1/en
Priority to DE8787307861T priority patent/DE3785806T2/en
Publication of JPS6311645A publication Critical patent/JPS6311645A/en
Publication of JPH0564695B2 publication Critical patent/JPH0564695B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve toughness and strength and the crater wear resistance during high-speed cutting by subjecting the double carbonitrides of Ti and transition metal except the specific Ti excluding Mo to a soln. heat treatment at specified ratios of N and C, then sintering the same with Ni and Co. CONSTITUTION:The powders of the respective nitrides, carbides or double carbonitrides of Ti and >=1 kinds of the transition metals except Ti selected from the group IVa, Va, VIa of periodic table excluding Mo are so mixed that the atomic ratio N/(C+N) of N and C attains 0.3-0.6. Such powder mixture is preheated to the sintering temp. or above in an N2 atmosphere and is subjected to the soln. heat treatment; thereafter, the powder mixture is ground to form the powder of the double carbonitrides. The powder of Ni and/or Co is added to and mixed with said powder and the powder mixture is sintered in the N2 atmosphere. The sintered hard alloy in which yellow and double color particles do not exist or exist at <=0.01vol% is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機械加工用工具として使用される、特に高靭
性の含窒素焼結硬質合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a particularly high toughness nitrogen-containing sintered hard alloy used as a machining tool.

〔従来の技術〕[Conventional technology]

近年、チタンを主成分とする炭窒化物を硬質相とし、こ
れをニッケル及び/又はコバルトの結合相で結合した窒
素を含有する焼結硬質合金(サーメット)が切削工具と
して実用化されている。
In recent years, sintered hard alloys (cermets) containing nitrogen, which have a hard phase of carbonitride mainly composed of titanium and bonded with a binder phase of nickel and/or cobalt, have been put into practical use as cutting tools.

この含窒素焼結硬質合金は、従来のチタン等の炭化物を
硬質相とした窒素を含有しない焼結硬質合金に比較して
、硬質相が著しく微粒になることから、耐高温クリープ
特性が大幅に改善され、その結果従来の窒素を含有しな
い焼結硬質合金では殆ど不可能であった切削工具等の分
野にも超硬合金と共に使用されつつある。
This nitrogen-containing sintered hard alloy has significantly finer grains in the hard phase compared to conventional sintered hard alloys that do not contain nitrogen and have a hard phase of carbide such as titanium, so it has significantly improved high-temperature creep resistance. As a result, they are being used together with cemented carbide in fields such as cutting tools, where conventional sintered hard alloys that do not contain nitrogen are almost impossible.

然るに、従来からの含窒素焼結硬質合金は、(T1、T
a、 W、 Mo) ((IN) ・Ni〜C!o系が
主であり、特公昭56−51201号公報等に述べられ
ている如くモリブデンは硬質相と結合相の中間相に存在
して焼結中に硬質相を液相から保護し、溶解析出による
硬質相の粒子成長を抑制する効果があるので、不可欠の
成分とされていた。
However, conventional nitrogen-containing sintered hard alloys (T1, T
a, W, Mo) ((IN) ・Ni~C!o system is the main one, and as stated in Japanese Patent Publication No. 56-51201 etc., molybdenum is present in the intermediate phase between the hard phase and the binder phase. It was considered an essential component because it protects the hard phase from the liquid phase during sintering and suppresses particle growth of the hard phase due to solution precipitation.

しかしながら、この従来からの含窒素焼結硬質合金は、
その製造過程において真空中で加熱すると含有される炭
窒化物が分解しや丁いので、焼結後にボアの残存が避け
られず、従来の超硬合金に比べて強度が不足しがちであ
り、この傾向は窒素含有量が多いほど顕著であった。そ
こで、炭窒化物の分解を防ぐために窒素雰囲気中で焼結
する等の焼結法の改善がなされてさたが、それでも含有
される窒素が偏析しや丁い等の理由により特性の改善は
まだ十分とは云えなかった。
However, this conventional nitrogen-containing sintered hard alloy
During the manufacturing process, when heated in vacuum, the carbonitrides contained tend to decompose, so it is inevitable that bores remain after sintering, and the strength tends to be insufficient compared to conventional cemented carbide. This tendency was more pronounced as the nitrogen content increased. Therefore, improvements have been made to sintering methods such as sintering in a nitrogen atmosphere to prevent the decomposition of carbonitrides, but even so, the properties cannot be improved due to segregation of the nitrogen contained and coalescence. It still wasn't enough.

更に、最近では切削工具の分野において益々高速切削が
要望されているが、含窒素焼結硬質合金は高速切削にお
いて切削工具の丁くい面に生じるクレータ−摩耗が極め
て進行しやすいという欠点があった。クレータ−摩耗は
含窒素焼結硬質合金の硬質相が粒子単位で掘り起されて
脱落していく現象である。一般に、クレータ−摩耗は組
織を粗くすることにより改善されるが、組織を粗くする
ほど硬度は低下するので、この改善方法にはおのずと限
界があった。
Furthermore, although high-speed cutting has recently been increasingly demanded in the field of cutting tools, nitrogen-containing sintered hard alloys have the disadvantage that crater wear that occurs on the tooth surface of cutting tools is extremely easy to progress during high-speed cutting. . Crater wear is a phenomenon in which the hard phase of a nitrogen-containing sintered hard alloy is excavated in particle units and falls off. Generally, crater wear can be improved by making the structure rougher, but since the rougher the structure, the lower the hardness, this improvement method naturally has its limits.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はかかる従来の事情に鑑み、靭性及び強度を向上
させ、切削工具として高速切削時の耐クレーター摩耗性
を改善した含窒素焼結硬質合金を提供することを目的と
する。
In view of such conventional circumstances, an object of the present invention is to provide a nitrogen-containing sintered hard alloy that has improved toughness and strength and has improved crater wear resistance during high-speed cutting as a cutting tool.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の含窒素焼結硬質合金は、必須成分であるチタン
と、周期律表のIVa1Va11a族から選ばれたチタ
ン以外の少なくとも一種の遷移金属との複炭窒化物から
なる硬質相と、ニッケル及び/又はコバルト並びに不可
避的不純物を含む結合相とからなり、モリブデンを実質
的に含まず、硬質相全体に含有される窒素と炭素の原子
比N/ (C+N)が0.3〜0.6であって、黄色な
いし褐色の粒子が存在しないか又は存在しても0.01
体積%以下であることを特徴とする。
The nitrogen-containing sintered hard alloy of the present invention has a hard phase consisting of a double carbonitride of titanium as an essential component and at least one transition metal other than titanium selected from groups IVa1Va11a of the periodic table, and nickel and / or a binder phase containing cobalt and unavoidable impurities, does not substantially contain molybdenum, and has an atomic ratio N/(C+N) of nitrogen and carbon contained in the entire hard phase of 0.3 to 0.6. Yes, there are no yellow or brown particles, or if there are, 0.01
% by volume or less.

かかる含窒素焼結硬質合金の製造は、チタンの窒化物、
炭化物又は炭窒化物の粉末と、モリブデンを除く周期律
表のIVa、 Vas VTa族から選ばれたチタン以
外の少なくとも一種の遷移金属の窒化物炭化物又は炭窒
化物の粉末とを、窒素と炭素の原子比N/ (0+N)
が0.3〜0.6となるように混合し、この混合粉末を
予め窒素雰囲気中で焼結温度以上に加熱して固溶化処理
した後粉砕して複炭窒化物の粉末とし、この複炭窒化物
の粉末にニッケル及び/又はコバルトの粉末を添加混合
して、窒素雰囲気中で焼結する方法による。
The production of such a nitrogen-containing sintered hard alloy involves the use of titanium nitride,
A carbide or carbonitride powder and a nitride carbide or carbonitride powder of at least one transition metal other than titanium selected from the IVa, Vas and VTa groups of the periodic table excluding molybdenum are combined into a mixture of nitrogen and carbon. Atomic ratio N/ (0+N)
This mixed powder is preliminarily heated above the sintering temperature in a nitrogen atmosphere to undergo solid solution treatment, and then pulverized to obtain a double carbonitride powder. A method is used in which nickel and/or cobalt powder is added and mixed to carbonitride powder and sintered in a nitrogen atmosphere.

本発明において「モリブデンを実質的に含有しない」と
は、硬質相の成分として積極的に添加しないことであり
、従って製造過程で混入するものを含めて含窒素焼結硬
質合金全体のモリブデンが1重量%未満ならば、望まし
い特性が得られるので許容することがでさる。
In the present invention, "contains substantially no molybdenum" means that it is not actively added as a component of the hard phase, and therefore, molybdenum in the entire nitrogen-containing sintered hard alloy, including molybdenum mixed in during the manufacturing process, is 1. If it is less than % by weight, desirable properties can be obtained and therefore it is acceptable.

尚、含窒素焼結硬質合金にはその製造過程で混入される
鉄等の不可避的不純物が特性に影響しない範囲で含まれ
てよく、また通常行なわれている如く原料粉末に焼結性
を向上させるため微量の、一般に0.01〜2.0重量
%の炭素粉末を混合することができる。
In addition, the nitrogen-containing sintered hard alloy may contain unavoidable impurities such as iron mixed in during the manufacturing process to the extent that the properties are not affected, and the raw material powder may be used to improve sinterability as is usually done. To achieve this, a small amount of carbon powder, generally 0.01 to 2.0% by weight, can be mixed.

〔作用〕[Effect]

(Ti、Ta、 WSMO) ((!N) ”Ni〜C
iO系の従来がらの含窒素焼結硬質合金についてクレー
タ−摩耗を研究するため、これにビッカース硬度計の圧
子で亀裂を生じさせ、その伝播経路を調べた結果、硬質
相と結合相の中間層に亀裂が伝播していることを確認し
た。従って、中間相を取り除けば耐クレーター摩耗性が
改善できるものと考えられるが、この中間相は主にモリ
ブデンの炭窒化物からなっているので、前記の如くモリ
ブデンをなくせば粒子の粗大化が進行して硬度低下など
により所望の特性が得られないという矛盾がある。
(Ti, Ta, WSMO) ((!N) “Ni~C
In order to study crater wear on iO-based conventional nitrogen-containing sintered hard alloys, we created cracks with an indenter of a Vickers hardness tester and investigated the propagation path. As a result, we found that an intermediate layer between the hard phase and the binder phase It was confirmed that the crack was propagating. Therefore, it is thought that crater wear resistance can be improved by removing the intermediate phase, but since this intermediate phase is mainly composed of molybdenum carbonitride, as mentioned above, if molybdenum is eliminated, the particles will become coarser. However, there is a contradiction in that desired characteristics cannot be obtained due to a decrease in hardness.

又、従来からの含窒素焼結硬質合金中の窒素の偏析につ
いても、光学顕微鏡によって黄色ないし褐色の粒子が硬
質相組織中に観察できること、この黄色ないし褐色の粒
子は主にチタンの窒化物か炭窒化物であって、この粒子
が現われる限り窒素が高濃度の部分では分解によるボア
が発生しや丁く、低濃度の部分では窒素含有による効果
が十分に発揮されない等、特性が劣化することも判った
Regarding the segregation of nitrogen in conventional nitrogen-containing sintered hard alloys, it has been found that yellow or brown particles can be observed in the hard phase structure using an optical microscope, and that these yellow or brown particles are mainly titanium nitrides. It is a carbonitride, and as long as these particles appear, bores are likely to occur due to decomposition in areas with a high concentration of nitrogen, and in areas with a low concentration, the effects of nitrogen content may not be fully exerted, resulting in deterioration of properties. I also understood.

そこで、種々検討した結果、本発明においてはチタンと
周期律表の■a、 V2L、 Vla族から選ばれたチ
タン以外の少なくとも一種の遷移金属との複炭窒化物を
前もって固溶化処理により形成させ、この複炭窒化物の
粉末を用いて通常の如く他のニッケル粉末等と混合し焼
結することにより、モリブデンを含有しなくても粒子の
粗大化を招くことなく硬質相粒子と周囲組織の密着性を
向上させることが可能となり、又同時に窒素を均一に分
散させることができ、その結果従来みられた黄色ないし
褐色の粒子がなくなる。又、原料のVa族元素の炭化物
又は炭窒化物も黄色ないし褐色を呈するが、固溶化処理
によってこの黄色ないし褐色の粒子は消滅する。尚、黄
色ないし褐色の粒子は存在しても0.01体積%以下な
らば、強度や靭性の改善効果が得られる。
Therefore, as a result of various studies, in the present invention, a double carbonitride of titanium and at least one transition metal other than titanium selected from groups ①a, V2L, and Vla of the periodic table is formed in advance by solid solution treatment. By using this double carbonitride powder, mixing it with other nickel powder, etc. as usual and sintering it, the hard phase particles and the surrounding structure can be separated without causing coarsening of the particles even if they do not contain molybdenum. It becomes possible to improve adhesion, and at the same time, it is possible to uniformly disperse nitrogen, and as a result, the yellow to brown particles that are conventionally seen are eliminated. Further, the carbide or carbonitride of the Va group element as a raw material also exhibits a yellow or brown color, but the yellow or brown particles disappear by the solid solution treatment. Incidentally, even if yellow or brown particles are present, if the amount is 0.01% by volume or less, an effect of improving strength and toughness can be obtained.

硬質相全体の窒素と炭素の原子比N/ (C+N)を0
.3〜0.6の範囲に限定する理由は、0.3未満では
靭性が低下し、0.6を超えると焼結性が低下すると共
に窒素が偏析しやすく、0.7以上では黄色ないし褐色
の粒子が必ず発生してくる。
The atomic ratio of nitrogen and carbon in the entire hard phase, N/(C+N), is 0.
.. The reason why it is limited to the range of 3 to 0.6 is that if it is less than 0.3, the toughness will decrease, if it exceeds 0.6, the sinterability will decrease and nitrogen will be likely to segregate, and if it is more than 0.7, it will become yellow or brown. particles will always be generated.

尚、硬質相を構成する複炭窒化物は結合相への固溶量が
少ないので、結合相の固溶強化を目的として、焼結前の
粉末に金属チタン及び/又はタングステン粉末を混合し
、結合相中のニッケル及び/又はコバルトにチタン又は
タングステンを固溶させることにより、更に特性を向上
させることが可能である。
Furthermore, since the double carbonitride constituting the hard phase has a small amount of solid solution in the binder phase, for the purpose of solid solution strengthening of the binder phase, metallic titanium and/or tungsten powder is mixed with the powder before sintering. The properties can be further improved by solidly dissolving titanium or tungsten in nickel and/or cobalt in the binder phase.

更に、結合相としてニッケルとコバルトヲ同時に使用下
る場合、硬質相である複炭窒化物との親和性を考慮して
、ニッケルとコバルトの重量比N i/ (N i+o
 o)を0.3〜0.8の範囲とすることが好ましい。
Furthermore, when nickel and cobalt are used simultaneously as a binder phase, the weight ratio of nickel and cobalt N i / (N i + o
o) is preferably in the range of 0.3 to 0.8.

この比は高い方が好ましいが、0.8を超えると硬度が
低下し、又0.3未満では界面強度の増強による耐クレ
ーター摩耗性の改善が得られないからである。
A higher ratio is preferable; however, if it exceeds 0.8, the hardness decreases, and if it is less than 0.3, no improvement in crater wear resistance due to increased interfacial strength can be obtained.

又、本発明の含窒素焼結硬質合金中に少量のZr。Further, a small amount of Zr is contained in the nitrogen-containing sintered hard alloy of the present invention.

y、 ar、 Az等を含んでも良く、その場合にも本
発明の作用効果は発揮される。
It may contain y, ar, Az, etc., and the effects of the present invention can also be achieved in that case.

〔実施例〕〔Example〕

実施例1 市販の平均粒径2μmのT1((N)粉末と、はぼ同一
粒径のTaO粉末及びWC粉末とをボールミルで混合し
た後、窒素分圧400 torrの窒素気流中で170
0 Cで1時間の固溶化処理を石なって、複炭窒化物”
0.88Ta0.05WO,、07)(C0,52N0
.48)を形成した。この複炭窒化物はO/ (0+N
) = 0.48であり、X線回折によってTaC及び
weのピークが消滅していることが確認できた。
Example 1 After mixing commercially available T1 (N) powder with an average particle size of 2 μm and TaO powder and WC powder with almost the same particle size in a ball mill, the mixture was mixed with a nitrogen gas stream with a nitrogen partial pressure of 400 torr at 170 torr.
After solid solution treatment at 0 C for 1 hour, double carbonitrides were formed.
0.88Ta0.05WO,,07)(C0,52N0
.. 48) was formed. This double carbonitride is O/ (0+N
) = 0.48, and it was confirmed by X-ray diffraction that the TaC and we peaks had disappeared.

この複炭窒化物をボールミルで粉砕した後、この粉末8
5重皿%にN1粉末7.9重量%及びco粉末7重量%
(Ni/ (Ni+Oo) =0.53) 、並びに遊
離炭素0.1重量%を添加して混合し、混合粉末にカン
ファーを3重量%加えて型押し成形した。この成形体を
窒素分圧10 torrの窒素気流中で14500で1
時間焼結してサーメッ)Aを製造した。
After pulverizing this double carbonitride with a ball mill, the powder 8
N1 powder 7.9% by weight and co powder 7% by weight in 5-layer plate %
(Ni/ (Ni+Oo) = 0.53) and 0.1% by weight of free carbon were added and mixed, and 3% by weight of camphor was added to the mixed powder and molded by molding. This molded body was heated at 14,500 in a nitrogen stream with a nitrogen partial pressure of 10 torr.
Cermet A was produced by time sintering.

比較のため、上記と同様に形成した複炭窒化物の粉末8
0重量%に、MoC粉末5重量%及び上記と同様にN1
粉末、CO粉末、遊離炭素粉末を加え、同様の条件でサ
ーメツ)Eを?B造した。
For comparison, double carbonitride powder 8 formed in the same manner as above
0% by weight, 5% by weight of MoC powder and N1 as above.
Powder, CO powder, and free carbon powder were added and the thermets) E? were added under the same conditions. B-built.

又、上記と同様のT1(a N)粉末、TaO粉末及び
weC粉末固溶化処理することなく、そのま\N1粉末
、COC粉末遊離炭素粉末と混合して、同様の条件でサ
ーメツ)Aと同一組成のサーメットCを製造し、更にM
o C粉末を添加してサーメツ)Bと同一組成のサーメ
ットDを製造した。
In addition, the same T1 (a N) powder, TaO powder, and weC powder as above were mixed with N1 powder, COC powder, and free carbon powder without solution treatment, and the same as Cermet A) was prepared under the same conditions. A cermet C with the composition is manufactured, and further M
o C powder was added to produce Cermet D having the same composition as Cermet B).

各サーメットの組織を鏡面に研磨して光学顕微鏡(15
00倍)で観察したところ、サーメツ)C及びDには硬
質相中に生地の色調と明瞭に異なる独立した黄色ないし
褐色の粒子の存在が確認されたが、サーメツ)A及びB
には存在しなかった。
The structure of each cermet was polished to a mirror surface and was examined using an optical microscope (15
When observed at a magnification of 0.00 times), the presence of independent yellow or brown particles in the hard phase that was clearly different from the color tone of the fabric was confirmed in thermets) A and B.
did not exist.

更に、各サーメットについて、硬度(Hv ) 、破壊
靭性(K  )及び強度(kg/fnm )を測定する
と共に、C 第1表の切削条件1でのクレータ−摩耗深さ及び逃げ面
摩耗量、並びに切削条件2でのチップ破損率を測定し、
その結果を第2表に示した。第2表から、本発明のサー
メツ)Aは靭性及び耐摩耗性ともに優れ、強度と硬度も
高いことが判る。
Furthermore, for each cermet, the hardness (Hv), fracture toughness (K), and strength (kg/fnm) were measured, as well as the crater wear depth and flank wear amount under cutting condition 1 in Table 1. Measure the chip breakage rate under cutting condition 2,
The results are shown in Table 2. From Table 2, it can be seen that the thermet A of the present invention has excellent toughness and wear resistance, and also has high strength and hardness.

実施例2 実施例1のサーメッ)A又はサーメツ)Cと同様にして
第3表の試料1〜10の各サーメットを製造した。但し
、T i (ON)粉末の炭素と窒素の比率を変えるこ
とによって形成する複炭窒化物のN/(C+N)を変化
させた。
Example 2 Cermets of Samples 1 to 10 in Table 3 were produced in the same manner as Cermet A or Cermet C of Example 1. However, N/(C+N) of the double carbonitride formed was changed by changing the ratio of carbon and nitrogen in the T i (ON) powder.

各試料について実施例1と同様に、特性、第1表の切削
条件1でのクレータ−摩耗深さ及び逃げ面摩耗量、切削
条件2でのチップ破損率を測定しその結果を第4表に示
した。第4表から本発明のサーメットは靭性及び強度に
優れ、耐摩耗性及び耐クレーター性に優れることが判る
For each sample, the characteristics, crater wear depth and flank wear amount under cutting condition 1 in Table 1, and chip breakage rate under cutting condition 2 were measured in the same manner as in Example 1, and the results are shown in Table 4. Indicated. It can be seen from Table 4 that the cermet of the present invention has excellent toughness and strength, as well as excellent wear resistance and crater resistance.

又、各試料について、実施例1と同様に組織を光学顕微
鏡(1500倍)で観察したところ、試料A6.7及び
8には黄色ないし褐色の粒子が確認でさた。
Furthermore, when the structure of each sample was observed using an optical microscope (1500x magnification) in the same manner as in Example 1, yellow to brown particles were confirmed in Samples A6.7 and 8.

(註)試料の×は比較例である。(Note) The × in the sample is a comparative example.

実施例3 実施例1のサーメットAの結合相の体積率及びN i/
 (N i+(! O)比を変えずに、金属W粉末を1
重量%添加して結合相に固溶させたサーメツ)Eと、金
属T1粉末を1重量%添加して結合相に固溶させたサー
メツ)Fを夫々同様に製造した。
Example 3 Volume fraction of binder phase and N i / of cermet A of Example 1
(Without changing the Ni+(!O) ratio, the metal W powder was
Cermets) E in which 1% by weight of metal T1 powder was added and dissolved in the binder phase, and Cermets) F in which 1% by weight of metal T1 powder was added and dissolved in the binder phase were produced in the same manner.

各サーメットについて、第1表の切削条件3による切削
テストを実施したところ、刃先の変形量がサーメットA
がQ、Q5+++mであったのに対し、サーメツ)E及
びFは0.03mMであり、結合相へのW及びT1の固
溶特性が向上することが立証された。
When a cutting test was conducted for each cermet under cutting conditions 3 in Table 1, the amount of deformation of the cutting edge was found to be cermet A.
were Q, Q5+++m, whereas thecermets) E and F were 0.03mM, proving that the solid solubility properties of W and T1 in the bonded phase were improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、切削工具として高速切削時の耐クレー
ター摩耗性に優れ、高靭性で高強度の含窒素焼結硬質合
金を提供することがでさる。
According to the present invention, it is possible to provide a nitrogen-containing sintered hard alloy that is excellent in crater wear resistance during high-speed cutting and has high toughness and high strength as a cutting tool.

出願人  住友電気工業株式会社 、・、↑・=、Applicant: Sumitomo Electric Industries, Ltd. ,・,↑・=,

Claims (5)

【特許請求の範囲】[Claims] (1)必須成分であるチタンと、周期律表のIVa、Va
、VIa族から選ばれたチタン以外の少なくとも1種の遷
移金属との複炭窒化物からなる硬質相と、ニッケル及び
/又はコバルト並びに不可避的不純物を含む結合相とか
らなり、モリブデンを実質的に含まず、硬質相全体に含
有される窒素と炭素の原子比N/(C+N)が0.3〜
0.6であつて、黄色ないし褐色の粒子が存在しないか
又は存在しても0.01体積%以下であることを特徴と
する含窒素焼結硬質合金。
(1) Titanium, an essential component, and IVa and Va of the periodic table
, a hard phase consisting of a double carbonitride with at least one transition metal other than titanium selected from Group VIa, and a binder phase containing nickel and/or cobalt and unavoidable impurities, and substantially contains molybdenum. The atomic ratio N/(C+N) of nitrogen and carbon contained in the entire hard phase is from 0.3 to
0.6, and has no yellow or brown particles, or if present, the amount is 0.01% by volume or less.
(2)上記結合相中のニッケル及び/又はコバルトに金
属チタン及び/又はタングステンが固溶していることを
特徴とする、特許請求の範囲(1)項記載の含窒素焼結
硬質合金。
(2) The nitrogen-containing sintered hard alloy according to claim (1), characterized in that metallic titanium and/or tungsten are dissolved in nickel and/or cobalt in the binder phase.
(3)上記結合相がニッケル及びコバルトからなり、両
者の重量比Ni/(Ni+Co)が0.3〜0.8であ
ることを特徴とする、特許請求の範囲(1)項又は(2
)項に記載の含窒素焼結硬質合金。
(3) Claim (1) or (2) characterized in that the binder phase is made of nickel and cobalt, and the weight ratio of both Ni/(Ni+Co) is 0.3 to 0.8.
) The nitrogen-containing sintered hard alloy described in item 1.
(4)チタンの窒化物、炭化物又は炭窒化物の粉末と、
モリブデンを除く周期律表のIVa、Va、VIa族から選
ばれたチタン以外の少なくとも一種の遷移金属の窒化物
、炭化物又は炭窒化物の粉末とを、窒素と炭素の原子比
N/(C++)が0.3〜0.6となるように混合し、
この混合粉末を予め窒素雰囲気中で加熱して固溶化処理
した後粉砕して複炭窒化物の粉末とし、この複炭窒化物
の粉末にニッケル及び/又はコバルトの粉末を添加混合
して、窒素雰囲気中で焼結することを特徴とする含窒素
焼結硬質合金の製造方法。
(4) titanium nitride, carbide or carbonitride powder;
Nitride, carbide, or carbonitride powder of at least one transition metal other than titanium selected from groups IVa, Va, and VIa of the periodic table excluding molybdenum, and the atomic ratio of nitrogen and carbon is N/(C++). Mix so that the ratio is 0.3 to 0.6,
This mixed powder is preliminarily heated in a nitrogen atmosphere and subjected to solid solution treatment, and then pulverized to obtain a double carbonitride powder. Nickel and/or cobalt powder is added and mixed to this double carbonitride powder, and nitrogen A method for producing a nitrogen-containing sintered hard alloy, characterized by sintering in an atmosphere.
(5)ニッケル及びコバルト粉末を、両者の重量比Ni
/(Ni+Co)が0.3〜0.8となるように添加混
合することを特徴とする、特許請求の範囲(4)項に記
載の含窒素焼結硬質合金の製造方法。
(5) The weight ratio of nickel and cobalt powder is Ni
The method for producing a nitrogen-containing sintered hard alloy according to claim (4), characterized in that the addition and mixing are carried out so that /(Ni+Co) is 0.3 to 0.8.
JP62069674A 1986-03-24 1987-03-24 Nitrogenous sintered hard alloy and its production Granted JPS6311645A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/091,953 US4769070A (en) 1986-09-05 1987-09-01 High toughness cermet and a process for the production of the same
KR1019870009771A KR960000060B1 (en) 1986-09-05 1987-09-04 High toughness cermet and a process for the production of the same
EP87307861A EP0259192B1 (en) 1986-09-05 1987-09-04 A high toughness cermet and a process for the production of the same
DE8787307861T DE3785806T2 (en) 1986-09-05 1987-09-04 TOOTH CARBIDE AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-66548 1986-03-24
JP6654886 1986-03-24

Publications (2)

Publication Number Publication Date
JPS6311645A true JPS6311645A (en) 1988-01-19
JPH0564695B2 JPH0564695B2 (en) 1993-09-16

Family

ID=13319070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069674A Granted JPS6311645A (en) 1986-03-24 1987-03-24 Nitrogenous sintered hard alloy and its production

Country Status (1)

Country Link
JP (1) JPS6311645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512968A2 (en) * 1991-05-07 1992-11-11 Sandvik Aktiebolag Sintered carbonitride cutting insert with improved wear resistance
CN102304657A (en) * 2011-09-26 2012-01-04 四川大学 Molybdenum-free Ti (C, N)-based cermet wear resistant and corrosion resistant material and preparation method thereof
CN102534340A (en) * 2012-01-13 2012-07-04 四川大学 Nitrogen-containing hard alloy based on multi-element composite titanium carbonitride solid solution and preparation method for nitrogen-containing hard alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229431A (en) * 1983-05-20 1984-12-22 Mitsubishi Metal Corp Production of cermet having high toughness for cutting tool
JPS60106938A (en) * 1983-11-14 1985-06-12 Hitachi Choko Kk Tough cermet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229431A (en) * 1983-05-20 1984-12-22 Mitsubishi Metal Corp Production of cermet having high toughness for cutting tool
JPS60106938A (en) * 1983-11-14 1985-06-12 Hitachi Choko Kk Tough cermet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512968A2 (en) * 1991-05-07 1992-11-11 Sandvik Aktiebolag Sintered carbonitride cutting insert with improved wear resistance
US5403541A (en) * 1991-05-07 1995-04-04 Sandvik Ab Method of making a sintered insert
US5503653A (en) * 1991-05-07 1996-04-02 Sandvik Ab Sintered carbonitride alloy with improved wear resistance
CN102304657A (en) * 2011-09-26 2012-01-04 四川大学 Molybdenum-free Ti (C, N)-based cermet wear resistant and corrosion resistant material and preparation method thereof
CN102534340A (en) * 2012-01-13 2012-07-04 四川大学 Nitrogen-containing hard alloy based on multi-element composite titanium carbonitride solid solution and preparation method for nitrogen-containing hard alloy

Also Published As

Publication number Publication date
JPH0564695B2 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
US4769070A (en) High toughness cermet and a process for the production of the same
KR960010817B1 (en) High strength nitrogen-containing cermet and process for preparation thereof
EP2499268B1 (en) Cemented carbide and process for producing the same
JP6953674B2 (en) Cemented Carbide and Cutting Tools
EP0559901B1 (en) Hard alloy and production thereof
JPH08508066A (en) Cermet and its manufacturing method
JP2004292905A (en) Compositionally graded sintered alloy and method of producing the same
KR20050021753A (en) Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure
EP0812367B1 (en) Titanium-based carbonitride alloy with controllable wear resistance and toughness
US5659872A (en) Sintered carbonitride alloy and method of producing
JP4170402B2 (en) Titanium-based carbonitride alloy with nitrided surface region
JPS6311645A (en) Nitrogenous sintered hard alloy and its production
US4417922A (en) Sintered hard metals
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPS62287041A (en) Production of high-alloy steel sintered material
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JP2502322B2 (en) High toughness cermet
JPS58213842A (en) Manufacture of high strength cermet
JPS61201750A (en) Sintered hard alloy
KR950009222B1 (en) Making method of high strength cermet and same product
JPH02277746A (en) Wear-resistant low thermal expansion sintered alloy and its manufacture
JPS60135552A (en) Hyperfine tungsten carbide-base sintered alloy
KR20220102136A (en) Tungsten Carbide-Based Cemented Carbide Material
KR960000060B1 (en) High toughness cermet and a process for the production of the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070916

Year of fee payment: 14