JPS60106938A - Tough cermet - Google Patents

Tough cermet

Info

Publication number
JPS60106938A
JPS60106938A JP21479683A JP21479683A JPS60106938A JP S60106938 A JPS60106938 A JP S60106938A JP 21479683 A JP21479683 A JP 21479683A JP 21479683 A JP21479683 A JP 21479683A JP S60106938 A JPS60106938 A JP S60106938A
Authority
JP
Japan
Prior art keywords
cermet
alloy
solid solution
carbide
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21479683A
Other languages
Japanese (ja)
Inventor
Nobuhiko Shima
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Carbide Tools Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Carbide Tools Ltd filed Critical Hitachi Carbide Tools Ltd
Priority to JP21479683A priority Critical patent/JPS60106938A/en
Publication of JPS60106938A publication Critical patent/JPS60106938A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled cermet having superior resistance to plastic deformation and hot cracking by forming a solid solution of a specified amount of W in the binding phase of an alloy having a specified composition consisting of WC, TiC, TaC, Mo2C and TiN as components forming a dispersed phase and of an iron group metal as the binding phase. CONSTITUTION:An alloy is composed of, by weight, 15-50% WC, 10-60% TiC, 5-30% TaC, 0.5-20% Mo2C and 5-30% TiN as components forming a dispersed phase and of 5-20% iron group metal such as Fe, Co or Ni as a binding phase, and 20-25% W with inevitable impurities is formed a solid solution in the binding phase to obtain tough and hard cermet having improved resistance to plastic deformation and hot cracking without deteriorating the toughness of the alloy.

Description

【発明の詳細な説明】 本発明は切削用工具材料として用いられるサーメットに
関するもので切削特性の中で、特に従来のサーメットの
弱点である耐塑性変形性、耐熱クラック性に優れた強靭
性サーメットを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cermet used as a cutting tool material, and is a tough cermet that has excellent cutting properties, particularly plastic deformation resistance and heat crack resistance, which are the weak points of conventional cermets. This is what we provide.

従来、炭化チタン(以下TiCと略丁)、窒化チタンを
含む炭化チタン(以下T1CNと略す)分散型サーメッ
トは、主成分であるTiCの性質上WCC超超硬合金比
べ熱伝導性が悪く刃先が高温になり塑性変形を生ずると
か、熱クラツクが生じ易い欠点があった。
Conventionally, titanium carbide (hereinafter referred to as T1CN) dispersed cermet, which includes titanium carbide (hereinafter referred to as TiC) and titanium nitride, has poor thermal conductivity compared to WCC cemented carbide due to the properties of its main component, TiC, and has a sharp cutting edge. It has the drawback of being prone to plastic deformation and thermal cracks due to high temperatures.

このことに対し、AIを添加し析出強化により結合相の
耐熱化を図ることが提案されているが。
In response to this, it has been proposed to increase the heat resistance of the binder phase by precipitation strengthening by adding AI.

結合相自体の延性が乏しくなり合金の靭性が劣化する欠
点がある。
There is a drawback that the ductility of the binder phase itself becomes poor and the toughness of the alloy deteriorates.

固溶強化も提案されているが、従来の手法では7、 M
oの固溶量が限られており完全とはいえなI/’a 本発明者らは上記従来技術の欠点を改良し1合金の靭性
な劣化することなく耐塑性変形性、耐熱クラック性を向
上させた強靭性サーメットを得べく研究を重ねた結果 (at結合相中に固溶するW量は合金のWC含有量と強
い相関がありWC含有量が増すに従い。
Solid solution strengthening has also been proposed, but the conventional method is 7, M
The amount of I/'a in solid solution is limited and it cannot be said to be perfect. As a result of repeated research to obtain a cermet with improved toughness (at, the amount of solid solution in the binder phase has a strong correlation with the WC content of the alloy, and as the WC content increases).

第1図に示すように25%まで固溶量が増えることを見
いだした。また結合相中に固溶するW量と1合金の耐高
温クリープ変形性の関係を示したものが第2図である。
As shown in FIG. 1, it was found that the amount of solid solution increased up to 25%. Further, FIG. 2 shows the relationship between the amount of W dissolved in the binder phase and the high temperature creep deformation resistance of one alloy.

これは、温度1000℃ 応カフ2にり/d条件下で行
なった結果であり、縦軸は破断までの時間と示す。この
破断までの時間が長いほど高温で変形しづらい。第2図
より固溶量が10%を越えると耐高温クリープ変形性が
改善され、とりわけ20%以上の固溶で著しく耐高温ク
リープ変形性が増す。この結果、実際の切削時でも変形
しにくく耐塑性変形性が著しく改善されることが明らか
となった。W固溶量を20〜25チとすることは合金の
WC組成及びCZN比の調整で可能であることも第1図
に示す。C/N比2の場合は1合金のWC含有量13%
以上で結合相中のW固溶量は20%を越え、 C/N比
3の場合はWC828qb以上で結合相中のW固溶量は
20%を越える。
This is the result obtained under the conditions of cuff 2/d at a temperature of 1000° C., and the vertical axis represents the time until breakage. The longer it takes to break, the more difficult it is to deform at high temperatures. As shown in FIG. 2, when the amount of solid solution exceeds 10%, the high temperature creep deformation resistance is improved, and especially when the solid solution amount is 20% or more, the high temperature creep deformation resistance increases significantly. As a result, it was found that the material was difficult to deform even during actual cutting, and the plastic deformation resistance was significantly improved. It is also shown in FIG. 1 that it is possible to set the W solid solution amount to 20 to 25 inches by adjusting the WC composition and CZN ratio of the alloy. When the C/N ratio is 2, the WC content of one alloy is 13%.
With the above, the solid solution amount of W in the binder phase exceeds 20%, and in the case of a C/N ratio of 3, the amount of W solid solution in the binder phase exceeds 20% when the WC is 828 qb or more.

尚この場合1通常の原料を使用した場合は。In this case, 1. If normal raw materials are used.

WC含有量を増加しても結合相中に固溶するW量は25
%までは到達しない。従って安定して20%を越える量
を固溶せしめるには、前述のCZN比とWC含有量の調
整の他9次の方法を用いなければならない。この方法と
はWCを含有した(W+ Ti ) CN、(W、 T
i Mo ) CN等の原料を用いることであり、この
理由は、炭窒化原料中にWが前もって含有されていない
と冷却中に結合相中に固溶しているWが炭窒化物に拡散
固溶していく量が多いため、結合相中(二残るW量が減
るためである。
Even if the WC content is increased, the amount of W dissolved in the binder phase is 25
% is not reached. Therefore, in order to stably form a solid solution in an amount exceeding 20%, in addition to adjusting the CZN ratio and WC content described above, the following nine methods must be used. This method consists of WC-containing (W+Ti)CN, (W, T
The reason for this is that if the carbonitriding raw material does not contain W in advance, the W dissolved in the binder phase will diffuse and solidify into the carbonitride during cooling. This is because the amount of W that remains in the binder phase decreases due to the large amount of W that is dissolved.

この様に、結合相中のW固溶量を20%以上にすること
により認められたもう1つの特徴的は+N+結合相の場
合保磁力がO〜30(Oe)になりほとんど非磁性とな
ることである。従って本発明範囲においてはNi結合相
の場合、保磁力は0〜30(Oe)である。
In this way, another characteristic that was observed when the amount of W solid solution in the bonded phase was increased to 20% or more is that in the case of +N+ bonded phase, the coercive force becomes O~30 (Oe) and it becomes almost non-magnetic. That's true. Therefore, within the scope of the present invention, in the case of a Ni bonded phase, the coercive force is 0 to 30 (Oe).

lbl熱クラックに対しては従来あまり検討されていな
いが、熱クラツクの伝播経路を注意深く観察すると、炭
化物−結合相の界面を伝播する事実をつかんだ。そこで
界面強度を向上せしめれば熱クラツクの伝播抵抗は高め
られるとの観点に立ち、結合相組成との関連を研究した
結果1次の結果を得た。
IBL thermal cracks have not been studied much in the past, but by carefully observing the propagation path of thermal cracks, we found that they propagate through the carbide-bond phase interface. Based on the viewpoint that the resistance to thermal crack propagation can be increased by improving the interfacial strength, we studied the relationship with the binder phase composition and obtained the following results.

界面強度の測定は困難であるため界面強度を表わす炭化
物−結合相のぬれ角を測定したところ、結合相中のW量
が20チ以上でほとんど0°となることを見い出した。
Since it is difficult to measure the interfacial strength, we measured the wetting angle of the carbide-bond phase, which represents the interfacial strength, and found that it becomes almost 0° when the amount of W in the binder phase is 20 inches or more.

従ってW固溶量が20%以上ではぬれ性もよく炭化物−
結合相の界面強度が増し、熱クラツクが伝播しにくくな
ったものと考えられる。
Therefore, when the solid solution amount of W is 20% or more, the wettability is good and carbide-
It is thought that the interfacial strength of the binder phase increased, making it difficult for thermal cracks to propagate.

以上(alおよび(blの効果により、析出型の合金よ
り靭性劣化が少なく、高温で変形しにくくかつ熱クラツ
クがほとんど生じないサーメットが得られることを見い
出したのである。
It has been discovered that due to the effects of (al and (bl), a cermet can be obtained that has less deterioration in toughness than precipitation type alloys, is less deformable at high temperatures, and has almost no thermal cracks.

次に、この発明の強靭性サーメットにおいて前述の数値
限定した理由について述べる。
Next, the reason for the above-mentioned numerical limitations in the tough cermet of the present invention will be described.

fil炭化タングステン 炭化タングステンが15%未満では実質上結合相中に安
定してWを20チ〜25%固溶せしめることが不可能で
あり50%を越すと耐摩耗性が著しく劣化すること、お
よびスケルトンの量が増し靭性も劣化するため15%〜
50%とした。中でも20〜40%がもっとも望ましい
fil Tungsten Carbide If the content of tungsten carbide is less than 15%, it is virtually impossible to stably dissolve 20 to 25% of W in the binder phase, and if it exceeds 50%, the wear resistance will deteriorate significantly; 15% or more due to the increase in the amount of skeleton and the deterioration of toughness.
It was set at 50%. Among them, 20 to 40% is most desirable.

(2)炭化チタン TiCが10%以下ではサーメットとしての所望の耐摩
耗性が得られなく、また60チ以上では+ ’ltc自
体靭性に乏しく合金の靭性が低下するため10〜60%
とした。また Ill i Cは(Ti、 W)CN 
(TiMoW)CN (Ti r Ta、 W)CN等
の形で添加するのが好ましい。
(2) If the titanium carbide TiC is less than 10%, the desired wear resistance as a cermet cannot be obtained, and if it is more than 60%, the toughness of the alloy decreases because +'ltc itself is poor in toughness, so the content is 10 to 60%.
And so. Also, Ill i C is (Ti, W)CN
It is preferable to add it in the form of (TiMoW)CN (Ti r Ta, W)CN or the like.

(3)炭化タンタル TaCは組織の微粒化2合金の高温特性の向上に寄与す
るが、5%以下では炭化物粒子が異状成長すること30
%以上では靭性が劣化する傾向にあるため5〜30チと
した。
(3) Tantalum carbide (TaC) has a fine-grained structure and contributes to improving the high-temperature properties of alloy 2, but if it is less than 5%, carbide particles will grow abnormally30
% or more, the toughness tends to deteriorate, so it was set at 5 to 30 inches.

(4)炭化モリブデン Mo=Cは、炭化物に周辺組織を形成し、結合相とのぬ
れ性向上に寄与するものであるが0、i以下では所望の
効果が認められず、また、 20%以上では元来MOx
Cは低硬度のため合金の耐摩耗性を劣化させるため05
〜20%とした。
(4) Molybdenum carbide Mo=C forms a peripheral structure around the carbide and contributes to improving the wettability with the binder phase, but the desired effect is not observed when it is less than 0.i, and when it is more than 20% So originally MOx
05 because C deteriorates the wear resistance of the alloy due to its low hardness.
~20%.

(5)窒化チタン TiNの添加により合金の高温強度の向上。(5) Titanium nitride The addition of TiN improves the high temperature strength of the alloy.

および靭性の向上が認められているが、5チ未満では所
望の効果は認められなく、また30%を越すと、結合相
とのぬれ性の低下をきたすため5〜30チとした。
Although an improvement in toughness has been observed, if it is less than 5%, the desired effect is not observed, and if it exceeds 30%, the wettability with the binder phase decreases, so it was set at 5 to 30%.

(6)結合相 結合相が5チ以下だと靭性が不足ぎみであり、20チを
越すと高温での強度が弱まり本発明の対象である耐熱性
のある強靭性サーメットとして所望の特性と得ることが
できないため5〜20%とした。切削用としては中でも
8〜15チが望ましい・ (7)結合相中のW量 結合相中のW量が20%以下であると所望の炭化物−結
合相ぬれ性が得られない。また25%以上にするのは製
造上2例えば急冷等の別の手段が必要であるし、 C/
N比を1以下にしないと安定して25%以上固溶した合
金を得るのは難しい。この場合はボアー等の欠陥が生ず
る場合もある。従って安定製造の点でW含有量は20〜
25%とした。
(6) Binding Phase If the binder phase is less than 5 inches, the toughness will be insufficient, and if it exceeds 20 inches, the strength at high temperatures will be weakened, and the desired properties will be obtained as a tough cermet with heat resistance, which is the object of the present invention. Since this is not possible, it was set at 5 to 20%. For cutting purposes, 8 to 15 inches is particularly desirable. (7) Amount of W in the binder phase If the amount of W in the binder phase is less than 20%, the desired carbide-bond phase wettability cannot be obtained. In addition, in order to increase the concentration to 25% or more, other means such as rapid cooling are required for manufacturing purposes, and C/
Unless the N ratio is set to 1 or less, it is difficult to obtain an alloy with a stable solid solution of 25% or more. In this case, defects such as bores may occur. Therefore, in terms of stable production, the W content should be 20~
It was set at 25%.

つぎに本発明強靭性サーメットを実施例により具体的に
その特性を説明する。
Next, the characteristics of the tough cermet of the present invention will be specifically explained using examples.

実施例1 まずC/N原子比が1以上の(TiW)CN、 (Ti
Ta W)CN、および(TiMoW)CNの組成をも
った分散相形成のための原料粉末を市販の’l’ic 
(平均粒度1.3 fi ) Ti Co、s No、
s (同ZOμ)TiN(同1.2μ)We(同1.0
μ) Mo t C(同1.5μ)およびTaC(同1
.4μ)の粉末を用い適当量、ボールミル混合後、真空
中、1600〜1900℃で2時間反応させ固溶処理を
し、冷却後ボールミルで平均粒経1,0μに粉砕するこ
とによつって調整した・ 結合相形成のための原料粉末としてはNi(同1,0μ
)CO(同1.0μ)W(同0.5μ)の粉末を使用し
た。
Example 1 First, (TiW)CN with a C/N atomic ratio of 1 or more, (Ti
Commercially available 'l'ic
(Average particle size 1.3 fi) Ti Co, s No,
s (ZOμ) TiN (1.2μ) We (1.0μ)
μ) Mo t C (1.5μ) and TaC (1.5μ)
.. After mixing an appropriate amount of powder (4μ) in a ball mill, reacting in vacuum at 1600 to 1900℃ for 2 hours for solid solution treatment, and after cooling, grinding with a ball mill to an average particle size of 1.0μ. The raw material powder for forming the binder phase was Ni (1.0μ
) CO (1.0μ) and W (0.5μ) powders were used.

従って本発明の強靭性サーメットの製造に関しては、上
述の(Ti W) CN+ (Ti ’ra W) C
N。
Therefore, regarding the production of the tough cermet of the present invention, the above-mentioned (Ti W) CN+ (Ti 'ra W) C
N.

(Ti Mo W)CNの少なくとも 1種と結合相粉
末のを用い、残りは必要に応じ上述のWC2TaC等を
単独に用いボールミルで配合を行ない、ついで前記混合
粉末を乾燥後、プレスして圧粉体を成形しさらに前記圧
粉体を10−3〜10−’IilHgの真空中で1時間
焼成して本発明サーメット1〜6を製造した。前記本発
明サーメット1〜6の成分組成が第1表に示されている
。なお第1表(二は合金組成および結合相組成を変える
以外は上記本発明サーメット製造条件と同一の条件で製
造した比較サーメツ)A−Bが併記されている。
(TiMoW)CN and a binder phase powder are used, and the rest is the above-mentioned WC2TaC, etc., as needed.Then, the mixed powder is dried and then pressed to form a powder. The cermets 1 to 6 of the present invention were manufactured by molding the compacts and firing the green compacts in a vacuum of 10-3 to 10-'IilHg for 1 hour. The component compositions of the cermets 1 to 6 of the present invention are shown in Table 1. In addition, Table 1 (2 is a comparative cermet manufactured under the same conditions as the above-mentioned conditions for manufacturing the cermet of the present invention except that the alloy composition and binder phase composition were changed) A-B are also listed.

ついで上記本発明サーメット1.2.3.4および6と
比較サーメットB、 C,D およびEに関し、以下に
示す切削条件で連続および断続切削、熱クラツク比較切
削試験を行なし)この結果も併記されている。
Next, regarding cermets B, C, D, and E for comparison with the above-mentioned inventive cermets 1.2.3.4 and 6, continuous and interrupted cutting and thermal crack comparison cutting tests were conducted under the cutting conditions shown below (without comparison) These results are also listed. has been done.

■連続切削条V+<刃先のダレ測定) 被削材 8 CM440 (Hs 40)切り込み 2
.0111 送り速度 Q、7 mll/ rev 切削速度 200 m/rrin 切削時間 30秒 ■断続切削条件 被削材 8CM440(Hs 40) 切り込み 2.0鶴 切削速度 100 m/min 切削時間 各送り1m1n ■熱クラック切削条件 被削材 80M440(Hs 40) 被削材形状5 X 300 X 200切削速度 15
0 =/min 送り速度 Q、3111/刃 切り込み 21 切削時間 1.5m1n 第1表から明らかなように1本発明サーメットは耐熱ク
ラック性、耐塑性変形性が格段に優れていることがわか
る上、靭性の劣段に優れていることがわかる上、靭性の
劣化も認められない。
■Continuous cutting line V+<measurement of sag on cutting edge) Work material 8 CM440 (Hs 40) Depth of cut 2
.. 0111 Feed rate Q, 7 ml/rev Cutting speed 200 m/rrin Cutting time 30 seconds ■Intermittent cutting conditions Work material 8CM440 (Hs 40) Depth of cut 2.0 Tsuru Cutting speed 100 m/min Cutting time Each feed 1m1n ■Thermal crack Cutting conditions Work material 80M440 (Hs 40) Work material shape 5 x 300 x 200 Cutting speed 15
0 =/min Feed rate Q, 3111/blade depth of cut 21 Cutting time 1.5 m1n As is clear from Table 1, 1. The cermet of the present invention has extremely excellent heat crack resistance and plastic deformation resistance, and It can be seen that it is superior to inferior toughness, and no deterioration in toughness is observed.

実施例2 実施例■において使用したと同じ原料粉末と平均粒径1
.5μのNi−Al (Ni : 70%、An:30
%)合金粉末を用い、同様な製造条件によって本発明サ
ーメット7.8と比較サーメッ)F−Hを製造した。こ
れら両サーメットの成分結合相成分9合金物性、実施例
1と同一の切削試験結果が第2表に示されている。第2
表から明らかなように本発明サーメットはγ′相析出型
サーメットと同程度の耐塑性変形性と有し、かつ、耐欠
損性耐熱クランク性は格段に優れていることが認められ
る。
Example 2 Same raw material powder and average particle size 1 as used in Example ■
.. 5μ Ni-Al (Ni: 70%, An: 30
%) alloy powder and the present invention cermet 7.8 and comparative cermet) F-H were manufactured under similar manufacturing conditions. Table 2 shows the physical properties of the binder phase component 9 alloy of both cermets and the same cutting test results as in Example 1. Second
As is clear from the table, the cermet of the present invention has plastic deformation resistance comparable to that of the γ' phase precipitated cermet, and is significantly superior in fracture resistance and heat crank resistance.

上述のように本発明サーメットは ■炭化物−結合相界面強度が優れ、極めて熱クラツクが
発生しにくいうえ靭性も優れるため、〔従来サーメット
を不得意であった〕熱サイクルが生ずるフライス断続切
削において著しく長寿命であるに加え、送り量の大きい
断続重切削において特に安定した性能を示す。
As mentioned above, the cermet of the present invention has excellent carbide-bond phase interface strength, is extremely resistant to thermal cracking, and has excellent toughness, so it is extremely effective in interrupted milling cutting where thermal cycles occur (something that conventional cermets were not good at). In addition to long life, it exhibits particularly stable performance in intermittent heavy cutting with large feed rates.

■著しい結合相固溶強化により、耐塑性変形性、耐摩耗
性に優れるため、高速、高送りの切削条件下で、安定し
た性能を示す。
■It has excellent plastic deformation resistance and wear resistance due to significant solid solution strengthening of the binder phase, so it exhibits stable performance under high-speed, high-feed cutting conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(/N比をパラメーターとした時の合金のWC
tと結合相中のW固溶量の関係を示したものである。第
2図は結合相中のW固溶量と高温クリープテストにおけ
る破断時間との関係を示したものである。 出願人 日立超硬株式会社 第1図 合金のwc(**%) 第2図 將合栢や/IW量 手続補正書 1 手性の表示 昭和58年特許願第214796号 3、補正をする者 手作との関係 特許出願人 4、補正命令の日付 昭和59年2月8日(発送日 昭和59年2月28日)
5、補正の対称
Figure 1 shows the WC of the alloy when the (/N ratio is taken as a parameter)
This figure shows the relationship between t and the amount of W solid solution in the binder phase. FIG. 2 shows the relationship between the amount of W solid solution in the binder phase and the rupture time in a high temperature creep test. Applicant Hitachi Cemented Carbide Co., Ltd. Figure 1 Alloy wc (**%) Figure 2 Sho-Apakuya/IW quantity procedure amendment 1 Indication of hand properties 1982 Patent Application No. 214796 3, person making the amendment Relationship with handmade work Patent applicant 4, date of amendment order February 8, 1980 (shipment date February 28, 1980)
5. Symmetry of correction

Claims (1)

【特許請求の範囲】[Claims] 分散相形成成分として1重量比で炭化タングステン15
〜50%炭化チタン10〜60%、炭化タンタル5〜3
01 炭化モリブデン0.5〜20チ、窒化チタン5〜
30%からなり、結合相とし、鉄、コノくルト、ニブケ
ル等の鉄属金属5〜20%からなる合金において、結合
相中に不可避不純物の他、特にWを重量比で20〜25
%固溶せしめることを特徴とする強靭性サーメット。
Tungsten carbide 15 at a weight ratio of 1 as a dispersed phase forming component
~50% titanium carbide 10-60%, tantalum carbide 5-3
01 Molybdenum carbide 0.5-20 t, titanium nitride 5-
In an alloy consisting of 5 to 20% of ferrous metals such as iron, conorct, nibkel, etc., the binder phase contains W in a weight ratio of 20 to 25%, in addition to unavoidable impurities.
A tough cermet characterized by % solid solution.
JP21479683A 1983-11-14 1983-11-14 Tough cermet Pending JPS60106938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21479683A JPS60106938A (en) 1983-11-14 1983-11-14 Tough cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21479683A JPS60106938A (en) 1983-11-14 1983-11-14 Tough cermet

Publications (1)

Publication Number Publication Date
JPS60106938A true JPS60106938A (en) 1985-06-12

Family

ID=16661664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21479683A Pending JPS60106938A (en) 1983-11-14 1983-11-14 Tough cermet

Country Status (1)

Country Link
JP (1) JPS60106938A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142742A (en) * 1985-12-16 1987-06-26 Sumitomo Electric Ind Ltd Sintered hard alloy
JPS6311645A (en) * 1986-03-24 1988-01-19 Sumitomo Electric Ind Ltd Nitrogenous sintered hard alloy and its production
JPS63203743A (en) * 1987-02-20 1988-08-23 Yoshida Kogyo Kk <Ykk> Titanium nitride cermet
JP2006346776A (en) * 2005-06-14 2006-12-28 Mitsubishi Materials Corp Throwaway tip made of titanium carbonitride-based cermet, exhibiting excellent wear resistance in high-speed cutting attended with high heat generation
JP2007069311A (en) * 2005-09-07 2007-03-22 Mitsubishi Materials Corp Titanium carbonitride-base cermet throw-away tip exhibiting excellent wear resistance in high-speed cutting with generation of high heat
JP2007069310A (en) * 2005-09-07 2007-03-22 Mitsubishi Materials Corp Titanium carbonitride-base cermet throw-away tip exhibiting excellent wear resistance in high-speed cutting with generation of high heat
JP2007069309A (en) * 2005-09-07 2007-03-22 Mitsubishi Materials Corp Titanium carbonitride-base cermet throw-away tip exhibiting excellent wear resistance in high-speed cutting with generation of high heat
CN109306423A (en) * 2018-10-23 2019-02-05 株洲市超宇实业有限责任公司 A kind of screw conveyor the accessory development of WC base cemented carbide and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639652B2 (en) * 1985-12-16 1994-05-25 住友電気工業株式会社 Sintered hard alloy
JPS62142742A (en) * 1985-12-16 1987-06-26 Sumitomo Electric Ind Ltd Sintered hard alloy
JPS6311645A (en) * 1986-03-24 1988-01-19 Sumitomo Electric Ind Ltd Nitrogenous sintered hard alloy and its production
JPH0564695B2 (en) * 1986-03-24 1993-09-16 Sumitomo Electric Industries
JPS63203743A (en) * 1987-02-20 1988-08-23 Yoshida Kogyo Kk <Ykk> Titanium nitride cermet
JP4569767B2 (en) * 2005-06-14 2010-10-27 三菱マテリアル株式会社 Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP2006346776A (en) * 2005-06-14 2006-12-28 Mitsubishi Materials Corp Throwaway tip made of titanium carbonitride-based cermet, exhibiting excellent wear resistance in high-speed cutting attended with high heat generation
JP2007069311A (en) * 2005-09-07 2007-03-22 Mitsubishi Materials Corp Titanium carbonitride-base cermet throw-away tip exhibiting excellent wear resistance in high-speed cutting with generation of high heat
JP2007069309A (en) * 2005-09-07 2007-03-22 Mitsubishi Materials Corp Titanium carbonitride-base cermet throw-away tip exhibiting excellent wear resistance in high-speed cutting with generation of high heat
JP4553381B2 (en) * 2005-09-07 2010-09-29 三菱マテリアル株式会社 Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP4553380B2 (en) * 2005-09-07 2010-09-29 三菱マテリアル株式会社 Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP4553382B2 (en) * 2005-09-07 2010-09-29 三菱マテリアル株式会社 Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP2007069310A (en) * 2005-09-07 2007-03-22 Mitsubishi Materials Corp Titanium carbonitride-base cermet throw-away tip exhibiting excellent wear resistance in high-speed cutting with generation of high heat
CN109306423A (en) * 2018-10-23 2019-02-05 株洲市超宇实业有限责任公司 A kind of screw conveyor the accessory development of WC base cemented carbide and its manufacturing method

Similar Documents

Publication Publication Date Title
JPS60106938A (en) Tough cermet
JPH04501438A (en) carbide metal body
JPS60106941A (en) Tough cermet
JPH01183310A (en) Surface covering carbonization tungsten group cemented carbide made throw away tip for milling cutter
CN103114233B (en) Coating gradient cemented carbide tool material
JPS61183439A (en) Wear resistant sintered hard alloy having superior oxidation resistance
JPS60125348A (en) Tool material
JPS58213842A (en) Manufacture of high strength cermet
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JPS60106939A (en) Tough cermet
JPS609850A (en) Sintered hard alloy for cutting
JPS61113741A (en) High strength corrosion resistant nickel base alloy and its production
JPH0617532B2 (en) Cermet member for cutting tools
JPS60106940A (en) Tough cermet
JPH10193210A (en) Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece
JPS6043459A (en) Sintered hard alloy for cutting
JPS61266550A (en) Sintered hard alloy of high toughness
JPS5852552B2 (en) Tough cermet for cutting tools
JPS6056043A (en) Cermet
CN116005058A (en) Cemented carbide cutter for titanium alloy cutting and preparation method thereof
JPS6335706B2 (en)
JPS6056041A (en) Cermet
JPS6311645A (en) Nitrogenous sintered hard alloy and its production
JPS58181845A (en) Tough cermet
JPS602376B2 (en) Sintered material for cutting tools with excellent high-temperature properties