JP4553380B2 - Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation - Google Patents

Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation Download PDF

Info

Publication number
JP4553380B2
JP4553380B2 JP2005259169A JP2005259169A JP4553380B2 JP 4553380 B2 JP4553380 B2 JP 4553380B2 JP 2005259169 A JP2005259169 A JP 2005259169A JP 2005259169 A JP2005259169 A JP 2005259169A JP 4553380 B2 JP4553380 B2 JP 4553380B2
Authority
JP
Japan
Prior art keywords
phase
cutting
titanium carbonitride
binder phase
based cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005259169A
Other languages
Japanese (ja)
Other versions
JP2007069309A (en
Inventor
俊之 谷内
昌史 福村
高橋  慧
知昭 新藤
篤史 小村
啓彰 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Niterra Co Ltd
Original Assignee
Mitsubishi Materials Corp
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005259169A priority Critical patent/JP4553380B2/en
Application filed by Mitsubishi Materials Corp, NGK Spark Plug Co Ltd filed Critical Mitsubishi Materials Corp
Priority to PCT/JP2006/311873 priority patent/WO2006134944A1/en
Priority to US11/916,329 priority patent/US7762747B2/en
Priority to KR1020077028896A priority patent/KR101267151B1/en
Priority to KR1020077029261A priority patent/KR100973626B1/en
Priority to US11/917,472 priority patent/US8007561B2/en
Priority to PCT/JP2006/311864 priority patent/WO2006134936A1/en
Priority to EP06757299.0A priority patent/EP1892051A4/en
Priority to EP06757308.9A priority patent/EP1892052B1/en
Publication of JP2007069309A publication Critical patent/JP2007069309A/en
Application granted granted Critical
Publication of JP4553380B2 publication Critical patent/JP4553380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、炭窒化チタン基サーメット(以下、TiCN基サーメットで示す)の結合相がすぐれた高温硬さを有し、したがって、高熱発生を伴なう高速切削加工ですぐれた耐摩耗性を発揮するTiCN基サーメット製スローアウエイチップに関するものである。   The present invention has a high-temperature hardness in which the binder phase of titanium carbonitride-based cermet (hereinafter referred to as TiCN-based cermet) is excellent, and thus exhibits excellent wear resistance in high-speed cutting with high heat generation. The present invention relates to a throw-away tip made of TiCN-based cermet.

従来、例えば旋削加工に用いられる切削加工の1種としてTiCN基サーメットで構成されたスローアウエイチップ(以下、単に切削チップという)が知られている。
また、上記切削チップが、質量%で(以下、%は質量%を示す)、
(a)炭化タングステン(以下、WCで示す):20〜30%、
炭化タンタル(以下、TaCで示す)および炭化ニオブ(以下、NbCで示す)のうちの1種または2種(以下、TaC/NbCで示す):5〜10%、
炭化ジルコニウム(以下、ZrCで示す)、炭化バナジウム(以下、VCで示す)、および炭化モリブデン(以下、MoCで示す)のうちの1種または2種以上(以下、ZrC/VC/MoCで示す):1〜5%、
Co:5〜10%、
Ni:5〜10%、
炭窒化チタン(以下、TiCNで示す):残り(ただし、50〜60%含有)、
からなる配合組成を有する圧粉体の焼結体であるTiCN基サーメットで構成され、
(b)上記TiCN基サーメットは、走査型電子顕微鏡による組織観察で、
硬質相:75〜93面積%、
結合相および不可避不純物:残り、
からなる組織を有すると共に、上記硬質相は、走査型電子顕微鏡による組織観察結果(倍率:1万倍)を図1に模写図で示した通り、
(1)芯部がTiCN相、周辺部がTiと、Wと、TaおよびNbのうちの1種または2種と、Zr、V、およびMoのうちの1種または2種以上の複合炭窒化物[以下、(Ti,W,Ta/Nb,Zr/V/Mo)CNで示す]相からなる有芯構造の第1硬質相、
(2)芯部および周辺部の両方が(Ti,W,Ta/Nb,Zr/V/Mo)CN相からなる有芯構造の第2硬質相、
(3)TiCN相からなる単相構造の第3硬質相、
以上(1)〜(3)で構成され、さらに上記結合相は、結合相に占める割合で、かつ質量%で、
W:1〜10%、
Ni:35〜60%、
Tiと、TaおよびNbのうちの1種または2種(以下、Ta/Nbで示す)と、Zr、V、およびMoのうちの1種または2種以上(以下、Zr/V/Moで示す):合量で5%以下、
Coおよび不可避不純物:残り、
からなる組成を有するCo−Ni系合金からなることも知られている。
Conventionally, a throwaway tip (hereinafter simply referred to as a cutting tip) composed of a TiCN-based cermet is known as one type of cutting used for turning, for example.
Further, the cutting tip is mass% (hereinafter,% indicates mass%),
(A) Tungsten carbide (hereinafter referred to as WC): 20 to 30%,
One or two of tantalum carbide (hereinafter referred to as TaC) and niobium carbide (hereinafter referred to as NbC) (hereinafter referred to as TaC / NbC): 5 to 10%,
One or more of zirconium carbide (hereinafter referred to as ZrC), vanadium carbide (hereinafter referred to as VC), and molybdenum carbide (hereinafter referred to as Mo 2 C) (hereinafter referred to as ZrC / VC / Mo 2). C)): 1-5%
Co: 5-10%
Ni: 5 to 10%
Titanium carbonitride (hereinafter referred to as TiCN): remaining (however, containing 50 to 60%),
Composed of a TiCN-based cermet that is a sintered compact of a green compact having a composition comprising
(B) The TiCN-based cermet is a structure observation by a scanning electron microscope,
Hard phase: 75-93 area%,
Bond phase and inevitable impurities: the rest,
And the hard phase has a structure observation result (magnification: 10,000 times) by a scanning electron microscope, as shown in FIG.
(1) The core portion is a TiCN phase, the peripheral portion is Ti, W, one or two of Ta and Nb, and one or more composite carbonitriding of Zr, V, and Mo A first hard phase having a core structure composed of an object [hereinafter referred to as (Ti, W, Ta / Nb, Zr / V / Mo) CN] phase,
(2) a second hard phase having a core structure in which both the core portion and the peripheral portion are composed of (Ti, W, Ta / Nb, Zr / V / Mo) CN phase;
(3) a third hard phase having a single-phase structure composed of a TiCN phase,
It is composed of the above (1) to (3), and the binder phase is a proportion of the binder phase and is in mass%.
W: 1-10%
Ni: 35-60%,
Ti, one or two of Ta and Nb (hereinafter referred to as Ta / Nb), and one or more of Zr, V, and Mo (hereinafter referred to as Zr / V / Mo) ): The total amount is 5% or less,
Co and inevitable impurities: the rest,
It is also known to be made of a Co—Ni based alloy having a composition consisting of:

さらに、上記の切削チップが、上記配合組成の圧粉体を、以下の焼結条件、すなわち、
(a)室温から1400〜1450℃までを10Pa以下の真空雰囲気中、1〜3℃/min.の速度で昇温し、
(b)1400〜1450℃から焼結温度である1480〜1560℃までの1〜3℃/min.の速度での昇温、並びに前記焼結温度に0.5〜2時間保持を50〜4000Paの窒素雰囲気で行い、
(c)上記焼結温度からの炉冷を10Pa以下の真空雰囲気中で行う、
以上(a)〜(c)の工程からなる条件で焼結することにより製造され、各種の鋼や鋳鉄などの連続切削加工や断続切削加工に用いられることも良く知られるところである。
特開平10−110234号公報
Furthermore, the above-mentioned cutting tip is obtained by sintering the green compact having the above composition by the following sintering conditions:
(A) From room temperature to 1400 to 1450 ° C. in a vacuum atmosphere of 10 Pa or less, 1 to 3 ° C./min. The temperature is increased at a rate of
(B) From 1400 to 1450 ° C. to 1480 to 1560 ° C. which is the sintering temperature, 1 to 3 ° C./min. The temperature is increased at a rate of, and the sintering temperature is maintained for 0.5 to 2 hours in a nitrogen atmosphere of 50 to 4000 Pa.
(C) performing furnace cooling from the sintering temperature in a vacuum atmosphere of 10 Pa or less,
It is well known that it is manufactured by sintering under the conditions comprising the steps (a) to (c) and used for continuous cutting and intermittent cutting of various steels and cast iron.
JP-A-10-110234

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来切削チップを用いて、切削速度が300m/min.以上の高速で、鋼や鋳鉄などの切削加工を行った場合、切削加工時に発生する高熱によって、特にこれを構成するTiCN基サーメットのCo−Ni系合金からなる結合相の摩耗進行が著しく促進し、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. Using a tip, the cutting speed is 300 m / min. When cutting of steel, cast iron, etc. at the above high speed, the progress of wear of the binder phase consisting of the Co-Ni alloy of TiCN-based cermet that constitutes this is remarkably accelerated by the high heat generated during cutting. Because of this, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来切削チップの高速切削加工での耐摩耗性向上を図るべく、特にこれを構成するTiCN基サーメットのCo−Ni系合金からなる結合相に着目し、研究を行った結果、
(a)焼結時に結合相を形成するCo−Ni系合金中に固溶したW成分は、硬質相の周辺部に析出固溶し、さらに一部は同芯部に固溶するが、上記の焼結条件で製造された従来切削チップにおいては、結合相中に含有するW成分の硬質相周辺部への析出固溶割合が相対的にきわめて高く、したがって、前記結合相中に残留含有するW成分の割合は低く、結合相に占める割合で1〜10%であること。
In view of the above, the inventors of the present invention are composed of a Co—Ni-based TiCN-based cermet that particularly constitutes the above-described conventional cutting tip in order to improve wear resistance in high-speed cutting. As a result of conducting research focusing on the binder phase,
(A) The W component dissolved in the Co—Ni-based alloy that forms the binder phase during sintering is precipitated and dissolved in the periphery of the hard phase, and further partly dissolved in the concentric portion. In the conventional cutting tip manufactured under the sintering conditions, the precipitation solid solution ratio of the W component contained in the binder phase to the periphery of the hard phase is relatively very high, and therefore the residual content is contained in the binder phase. The proportion of the W component is low and is 1 to 10% in the binder phase.

(b)上記の従来焼結条件の上記(a)の1400〜1450℃への真空雰囲気での昇温途中において、1200〜1350℃の温度に昇温した時点で、短時間Ar雰囲気保持と短時間真空雰囲気保持を交互に繰り返し行う雰囲気交互変化処理、望ましくは10〜60kPaのAr雰囲気に1〜5分間保持の短時間Ar雰囲気保持と、10Pa以下の真空雰囲気に5〜20分間保持の短時間真空雰囲気保持とをそれぞれ2回以上、望ましくはそれぞれ3〜5回を交互に繰り返し施す雰囲気交互変化処理を施すと、焼結時におけるW成分の結合相から硬質相周辺部への析出固溶が著しく抑制されるようになり、この結果結合相にはW成分が結合相に占める割合で40〜60%のきわめて高い割合で含有するようになること。 (B) When the temperature is raised to 1200 to 1350 ° C. during the temperature increase in the vacuum atmosphere to 1400 to 1450 ° C. in the above (a) under the above-mentioned conventional sintering conditions, the Ar atmosphere is kept short for a short time. Atmosphere alternation process in which the vacuum atmosphere is alternately held for a long time, preferably a short time holding for 10 to 60 kPa in an Ar atmosphere for 1 to 5 minutes, and a short time holding for 10 to 20 Pa in a vacuum atmosphere for 5 to 20 minutes When an atmosphere alternation treatment is performed in which the vacuum atmosphere is retained twice or more, preferably 3 to 5 times each, the precipitation solid solution from the binder phase of the W component to the periphery of the hard phase during sintering is performed. As a result, the binder phase contains a very high proportion of 40 to 60% of the W component in the binder phase.

(c)W成分が結合相に、結合相に占める割合で40〜60%のきわめて高い割合で含有すると、この結果の結合相は高温硬さが一段と向上し、したがって、TiCN基サーメットの結合相が前記のWを高い割合で含有する切削チップは、高熱発生を伴なう高速切削加工ですぐれた耐摩耗性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) When the W component is contained in the binder phase at a very high ratio of 40 to 60% in the binder phase, the resulting binder phase is further improved in high-temperature hardness. Therefore, the binder phase of TiCN-based cermet However, a cutting tip containing a high proportion of the above W should exhibit excellent wear resistance in high-speed cutting with high heat generation.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
(a) WC:20〜30%、
TaC/NbC:5〜10%、
ZrC/VC/MoC:1〜5%、
Co:5〜10%、
Ni:5〜10%、
TiCN:残り(ただし、50〜60%含有)、
からなる配合組成を有する圧粉体の焼結体であるTiCN基サーメットで構成し、(b)上記TiCN基サーメットは、走査型電子顕微鏡による組織観察で、
硬質相:75〜93面積%、
結合相および不可避不純物:残り、
からなる組織を有すると共に、上記硬質相は、
(1)芯部がTiCN相、周辺部が(Ti,W,Ta/Nb,Zr/V/Mo)CN相からなる有芯構造の第1硬質相、
(2)芯部および周辺部の両方が(Ti,W,Ta/Nb,Zr/V/Mo)CN相からなる有芯構造の第2硬質相、
(3)TiCN相からなる単相構造の第3硬質相、
以上(1)〜(3)で構成され、さらに上記結合相は、結合相に占める割合で、
Co:18〜33%、
Ni:20〜35%、
Tiと、Ta/Nbと、Zr/V/Mo:合量で5%以下、
Wおよび不可避不純物:残り(ただし、W:40〜60%含有)、からなる組成を有するW−Co−Ni系合金からなる、
高熱発生を伴なう高速切削加工ですぐれた耐摩耗性を発揮する切削チップに特徴を有するものである。
This invention was made based on the above research results,
(A) WC: 20-30%,
TaC / NbC: 5 to 10%,
ZrC / VC / Mo 2 C: 1 to 5%,
Co: 5-10%
Ni: 5 to 10%
TiCN: remaining (however, containing 50 to 60%),
(B) The TiCN-based cermet is a structure observed with a scanning electron microscope.
Hard phase: 75-93 area%,
Bond phase and inevitable impurities: the rest,
And the hard phase has the following structure:
(1) a first hard phase having a core structure in which a core portion is made of a TiCN phase and a peripheral portion is made of a (Ti, W, Ta / Nb, Zr / V / Mo) CN phase;
(2) a second hard phase having a core structure in which both the core portion and the peripheral portion are composed of (Ti, W, Ta / Nb, Zr / V / Mo) CN phase;
(3) a third hard phase having a single-phase structure composed of a TiCN phase,
It is composed of the above (1) to (3), and the binder phase is a ratio of the binder phase,
Co: 18-33%
Ni: 20 to 35%,
Ti, Ta / Nb, Zr / V / Mo: the total amount is 5% or less,
A W-Co-Ni-based alloy having a composition consisting of W and unavoidable impurities: remaining (however, W: 40 to 60% contained),
It is characterized by a cutting tip that exhibits excellent wear resistance in high-speed cutting with high heat generation.

また、この発明の切削チップにおいて、これを構成するTiCN基サーメットの圧粉体の配合組成および結合相の成分組成を、上記の通りに数値限定した理由を以下に説明する。
(a)圧粉体のWCおよび結合相のW
原料粉末であるWC粉末には、焼結時に結合相形成成分であるCoおよびNi成分中に固溶し、上記の雰囲気交互変化処理で前記結合相中に残留含有して、高W含有結合相を形成し、もって結合相の高温硬さを向上させ、切削チップの高速切削での耐摩耗性向上に寄与する作用があるが、WCの配合割合が20%未満では前記結合相中のW含有割合が、結合相に占める割合で(以下同じ)、40%未満となってしまい、高熱発生を伴なう高速切削で所望の耐摩耗性を発揮することができず、一方、WCの配合割合が30%を越えると結合相中のW成分の含有割合が60%を超えて高くなってしまい、この結果結合相自体の高温強度が急激に低下し、これが原因で切削時にチッピング(微少欠け)が発生し易くなることから、WCの配合割合を20〜30%とし、TiCN基サーメットの結合相中に前記雰囲気交互変化処理で40〜60%のW成分が含有するように定めた。
The reason why the compounding composition of the compact of the TiCN-based cermet and the component composition of the binder phase constituting the cutting tip of the present invention are numerically limited as described above will be described below.
(A) WC of green compact and W of binder phase
The WC powder, which is a raw material powder, is dissolved in the Co and Ni components that are the binder phase forming components at the time of sintering. Has an effect of improving the high-temperature hardness of the binder phase and contributing to improvement of wear resistance in high-speed cutting of the cutting tip. However, if the WC content is less than 20%, the W content in the binder phase is included. The ratio is less than 40% in the binder phase (hereinafter the same), and the desired wear resistance cannot be exhibited in high-speed cutting accompanied by high heat generation, while the WC compounding ratio When the content exceeds 30%, the content ratio of the W component in the binder phase increases to exceed 60%. As a result, the high-temperature strength of the binder phase itself rapidly decreases, which causes chipping during cutting (small chipping). Since it becomes easy to generate | occur | produce, the mixing | blending ratio of WC is set. And 0-30%, 40% to 60% of W component in the atmosphere alternately changing process in binder phase of TiCN-base cermet is defined to contain.

(b)圧粉体のTaC/NbCおよびZrC/VC/MoC、並びに結合相のTa/NbおよびZr/V/Mo
同じく原料粉末であるTaC/NbC粉末(以下、前者という)、およびZrC/VC/MoC粉末(以下、後者という)のいずれも同じく焼結時に結合相形成成分であるCoおよびNi成分中に固溶し、冷却時に析出して硬質相を形成し、前記硬質相の周辺部および一部の芯部に固溶含有して、前者では前記硬質相の高温強度を向上させ、また後者では結合相との濡れ性を向上させて、サーメット自体の強度を向上させる作用を有するが、その配合割合が、前者では5%未満、後者では1%未満では前記作用に所望の向上効果が得られず、一方、その配合割合が、前者では10%、後者では5%をそれぞれ越えると、いずれの場合も硬質相中の含有割合が高くなり過ぎ、これが硬質相の硬さ低下の原因となるばかりでなく、結合相中のTa/Nb、およびZr/V/Moの合計含有割合がTiとの合量に占める割合で5%を越えて高くなってしまい、この結果高温硬さが急激に低下するようになることから、その配合割合を前者では5〜10%、後者では1〜5%とし、結合相中のTa/Nb、およびZr/V/Moの合計含有割合がTiとの合量に占める割合で5%以下となるように定めた。
(B) Compact TaC / NbC and ZrC / VC / Mo 2 C, and binder phase Ta / Nb and Zr / V / Mo
Similarly, TaC / NbC powder (hereinafter referred to as the former) and ZrC / VC / Mo 2 C powder (hereinafter referred to as the latter), both of which are raw material powders, are also included in the Co and Ni components which are binder phase forming components during sintering. It dissolves and precipitates during cooling to form a hard phase, which is contained in the periphery and part of the core of the hard phase as a solid solution. The former improves the high-temperature strength of the hard phase, and the latter binds. Although it has the action of improving the wettability with the phase and improving the strength of the cermet itself, if the blending ratio is less than 5% in the former and less than 1% in the latter, the desired improvement effect cannot be obtained in the action. On the other hand, if the blending ratio exceeds 10% in the former and 5% in the latter, the content ratio in the hard phase becomes too high in any case, which only causes a decrease in the hardness of the hard phase. Not in the binder phase Since the total content ratio of a / Nb and Zr / V / Mo is higher than 5% in the ratio to the total amount with Ti, and as a result, the high-temperature hardness suddenly decreases. The blending ratio is 5 to 10% in the former and 1 to 5% in the latter, and the total content of Ta / Nb and Zr / V / Mo in the binder phase is 5% or less in the total amount with Ti. It was decided to become.

(c)圧粉体のCoおよび結合相のCo
原料粉末であるCo粉末には、焼結性を向上させ、結合相を形成して、切削チップの強度を向上させる作用があるが、その配合割合が5%未満では、所望の焼結性を確保することができないばかりでなく、結合相中のCo含有割合も18%未満となってしまい、前記切削チップに所望の強度を確保することができず、一方、その配合割合が10%を越えると、焼結後の結合相中のCo含有割合が33%を越えて高くなってしまい、この結果結合相の高温硬さが低下し、摩耗が急激に進行するようなることから、その配合割合を5〜10%とし、結合相中のCo含有割合が18〜33%となるように定めた。
(C) Co in the green compact and Co in the binder phase
Co powder, which is a raw material powder, has the effect of improving the sinterability, forming a binder phase and improving the strength of the cutting tip. However, if the blending ratio is less than 5%, the desired sinterability is achieved. Not only cannot be ensured, but the Co content in the binder phase is also less than 18%, and the desired strength cannot be ensured for the cutting tip, while the blending ratio exceeds 10%. Then, the Co content in the binder phase after sintering becomes higher than 33%, and as a result, the high-temperature hardness of the binder phase decreases and wear progresses rapidly. The Co content in the binder phase was determined to be 18 to 33%.

(d)圧粉体のNiおよび結合相のNi
原料粉末であるNiには、焼結時にCoと共に結合相を形成して、結合相の耐熱性を向上させ、もって切削チップの耐摩耗性向上に寄与する作用があるが、その配合割合が5%未満では、焼結後の結合相におけるNi成分の含有割合が20%未満となってしまい、所望の耐熱性向上効果が得られず、一方、その配合割合が10%を越えると、焼結後の結合相中のNi含有割合が35%を越えて高くなり、この結果結合相の高温強度が低下し、切刃部にチッピングが発生し易くなることから、その配合割合を5〜10%とし、結合相中のNi含有割合が20〜35%となるように定めた。
(D) Ni in the green compact and Ni in the binder phase
Ni, which is a raw material powder, has a function of forming a binder phase with Co at the time of sintering and improving the heat resistance of the binder phase, thereby contributing to the improvement of the wear resistance of the cutting tip. If it is less than 10%, the content ratio of the Ni component in the binder phase after sintering becomes less than 20%, and the desired heat resistance improvement effect cannot be obtained. The Ni content in the subsequent binder phase is higher than 35%. As a result, the high-temperature strength of the binder phase is lowered, and chipping tends to occur at the cutting edge portion. And the Ni content in the binder phase was determined to be 20 to 35%.

(e)圧粉体のTiCNおよび硬質相
原料粉末であるTiCN粉末には、焼結時に上記した通り、
(1)芯部がTiCN相、周辺部が(Ti,W,Ta/Nb,Zr/V/Mo)CN相からなる有芯構造の第1硬質相、
(2)芯部および周辺部の両方が(Ti,W,Ta/Nb,Zr/V/Mo)CN相からなる有芯構造の第2硬質相、
(3)TiCN相からなる単相構造の第3硬質相、
以上(1)〜(3)で構成された硬質相を形成して、切削チップの硬さを向上させ、もって耐摩耗性向上に寄与する作用があるが、その配合割合が50%未満では、切削チップにおける硬質相の割合が75面積%未満となってしまい、所望の硬さを確保することができず、一方、その配合割合が60%を越えると、硬質相の割合が93面積%を越えて高くなり、この結果切削チップの強度が急激に低下し、切削時にチッピングが発生し易くなるばかりでなく、結合相におけるTiのTa/NbおよびZr/V/Moとの合量に占める割合が、5%を越えて高くなってしまい、この結果結合相の高温硬さが低下し、これが高速切削での摩耗促進の原因となることから、その配合割合を50〜60%とし、結合相中のTi含有割合がTa/NbおよびZr/V/Moとの合量に占める割合で5以下%となるように定めた。
(E) TiCN of compact and hard phase TiCN powder as raw material powder, as described above during sintering,
(1) a first hard phase having a core structure in which a core portion is made of a TiCN phase and a peripheral portion is made of a (Ti, W, Ta / Nb, Zr / V / Mo) CN phase;
(2) a second hard phase having a core structure in which both the core portion and the peripheral portion are composed of (Ti, W, Ta / Nb, Zr / V / Mo) CN phase;
(3) a third hard phase having a single-phase structure composed of a TiCN phase,
Forming the hard phase composed of the above (1) to (3) to improve the hardness of the cutting tip and thereby contribute to the improvement of wear resistance, but the blending ratio is less than 50%, The ratio of the hard phase in the cutting tip is less than 75 area%, and the desired hardness cannot be ensured. On the other hand, if the blending ratio exceeds 60%, the ratio of the hard phase is 93 area%. As a result, the strength of the cutting tip rapidly decreases, and not only chipping is likely to occur during cutting, but also the ratio of Ti to the total amount of Ta / Nb and Zr / V / Mo in the binder phase. Is higher than 5%, and as a result, the high-temperature hardness of the binder phase is lowered, which causes wear acceleration in high-speed cutting. Therefore, the blending ratio is set to 50 to 60%, and the binder phase Ti content ratio in Ta / Nb 5 defined as follows% become a percentage of the total amount of the fine Zr / V / Mo.

この発明の切削チップは、これを構成するTiCN基サーメットの結合相が、焼結時の昇温工程における上記の雰囲気交互変化処理によって40〜60%のW成分を含有し、この結果前記結合相の高温硬さが急激に向上するようになることから、高熱発生を伴なう高速切削加工ですぐれた耐摩耗性を発揮するものである。   In the cutting tip of this invention, the binder phase of the TiCN-based cermet constituting the cutting tip contains 40 to 60% of the W component by the above-described atmosphere change process in the temperature raising step during sintering, and as a result, the binder phase Since the high temperature hardness of the steel is rapidly improved, it exhibits excellent wear resistance in high-speed cutting with high heat generation.

つぎに、この発明の切削チップを実施例により具体的に説明する。   Next, the cutting tip of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜2μmの平均粒径を有する、TiC0.50.5粉末、TiC0.30.7粉末、TiC0.150.85粉末(以上C/Nは原子比を示す)、WC粉末、TaC粉末、NbC粉末、ZrC粉末、VC粉末、MoC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を、以下の焼結条件、すなわち、
(a)室温から1280℃までを10Pa以下の真空雰囲気中、2℃/min.の速度で昇温し、
(b)1280℃の温度に昇温した時点で、35kPaのAr雰囲気に2分間保持の短時間Ar雰囲気保持と、10Pa以下の真空雰囲気に10分間保持の短時間真空雰囲気保持とをそれぞれ表1に示される回数を交互に繰り返し施す雰囲気交互変化処理を施し、
(c)上記雰囲気交互変化処理後、1420℃までの昇温を10Pa以下の真空雰囲気中、2℃/min.の速度で昇温し、
(d)1420℃から1480〜1560℃の範囲内の所定の焼結温度までの2℃/min.の速度での昇温、並びに前記焼結温度に1.5時間保持を1300Paの窒素雰囲気で行い、
(e)上記焼結温度からの炉冷を10Pa以下の真空雰囲気中で行う、
以上(a)〜(e)の工程からなる条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもった本発明切削チップ1〜15をそれぞれ製造した。
As raw material powders, TiC 0.5 N 0.5 powder, TiC 0.3 N 0.7 powder, TiC 0.15 N 0.85 powder (all above C have an average particle diameter of 0.5 to 2 μm). / N represents an atomic ratio), WC powder, TaC powder, NbC powder, ZrC powder, VC powder, Mo 2 C powder, Co powder, and Ni powder are prepared, and these raw material powders are blended as shown in Table 1. Compounded into the composition, wet mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. The green compact was subjected to the following sintering conditions:
(A) From room temperature to 1280 ° C. in a vacuum atmosphere of 10 Pa or less, 2 ° C./min. The temperature is increased at a rate of
(B) When the temperature is raised to 1280 ° C., the short-time Ar atmosphere holding for 2 minutes in the 35 kPa Ar atmosphere and the short-time vacuum atmosphere holding for 10 minutes in the vacuum atmosphere of 10 Pa or less are shown in Table 1. Apply the alternating atmosphere change process that repeatedly repeats the number of times shown in
(C) After the atmosphere alternation process, the temperature is raised to 1420 ° C. in a vacuum atmosphere of 10 Pa or less at 2 ° C./min. The temperature is increased at a rate of
(D) 2 ° C./min. From 1420 ° C. to a predetermined sintering temperature within the range of 1480 to 1560 ° C. The temperature was increased at a rate of 1, and the sintering temperature was held for 1.5 hours in a nitrogen atmosphere of 1300 Pa,
(E) performing furnace cooling from the sintering temperature in a vacuum atmosphere of 10 Pa or less,
The present invention having a chip shape of ISO standard / CNMG120212 by sintering under the conditions consisting of the steps (a) to (e) and performing a honing process of R: 0.07 mm on the cutting edge portion after sintering. Cutting tips 1 to 15 were produced.

また、比較の目的で、表2に示される通り、原料粉末であるTiCN粉末に関し、上記のTiC0.50.5粉末だけを用い、かつ焼結温度への昇温過程における上記の雰囲気交互変化処理を行わない以外は実質的に同一の条件で従来切削チップ1〜15をそれぞれ製造した。 For comparison purposes, as shown in Table 2, regarding the TiCN powder as the raw material powder, only the above TiC 0.5 N 0.5 powder was used, and the above atmosphere in the temperature raising process to the sintering temperature Conventional cutting tips 1 to 15 were manufactured under substantially the same conditions except that the alternating processing was not performed.

この結果得られた本発明切削チップ1〜15および従来切削チップ1〜15について、これを構成するTiCN基サーメットの走査型電子顕微鏡による組織観察結果および結合相の分析結果をそれぞれ表3,4に示した。   Tables 3 and 4 show the results of observation of the structure of the TiCN-based cermet constituting the cutting tip 1-15 of the present invention and the conventional cutting tips 1-15 obtained by the scanning electron microscope and the analysis result of the binder phase, respectively. Indicated.

つぎに、上記の本発明切削チップ1〜15および従来切削チップ1〜15について、これをいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S20Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:1.5mm、
送り:0.2mm/rev、
切削時間:10分、
の条件(切削条件Aという)での炭素鋼の乾式断続高速切削試験(通常の切削速度は250m/min)、
被削材:JIS・SCM440の丸棒、
切削速度:300m/min、
切り込み:1mm、
送り:0.2mm/rev、
切削時間:20分、
の条件(切削条件Bという)での合金鋼の乾式連続高速切削試験(通常の切削速度は200m/min)、さらに、
被削材:JIS・FC300の丸棒、
切削速度:380m/min、
切り込み:2.5mm、
送り:0.3mm/rev、
切削時間:20分、
の条件(切削条件Cという)での鋳鉄の乾式連続高速切削試験(通常の切削速度は280m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, for the above-mentioned cutting tips 1-15 of the present invention and the conventional cutting tips 1-15, both of these are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S20C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 380 m / min,
Incision: 1.5mm,
Feed: 0.2mm / rev,
Cutting time: 10 minutes,
Dry intermittent high-speed cutting test of carbon steel under the conditions (cutting condition A) (normal cutting speed is 250 m / min),
Work material: JIS / SCM440 round bar,
Cutting speed: 300 m / min,
Cutting depth: 1mm,
Feed: 0.2mm / rev,
Cutting time: 20 minutes,
Dry continuous high-speed cutting test (normal cutting speed is 200 m / min) of alloy steel under the conditions (referred to as cutting conditions B),
Work material: JIS / FC300 round bar,
Cutting speed: 380 m / min,
Incision: 2.5mm,
Feed: 0.3mm / rev,
Cutting time: 20 minutes,
The dry continuous high-speed cutting test (normal cutting speed is 280 m / min) of cast iron under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 5.

Figure 0004553380
Figure 0004553380

Figure 0004553380
Figure 0004553380

Figure 0004553380
Figure 0004553380

Figure 0004553380
Figure 0004553380

Figure 0004553380
Figure 0004553380

表1〜5に示される結果から、本発明切削チップ1〜15は、いずれもこれを構成するTiCN基サーメットの結合相がW成分を40〜60%の高い割合で含有することによってすぐれた高温硬さを具備するようになることから、高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮するのに対して、従来切削チップ1〜15においては、いずれも結合相におけるWの含有割合が1〜10%と低く、この結果結合相にすぐれた高温硬さを期待することができないことから、特に高速切削加工での前記結合相の摩耗進行が促進するようになり、これが原因で比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 1 to 5, each of the cutting chips 1 to 15 of the present invention has excellent high temperature because the binder phase of the TiCN-based cermet constituting the cutting tips contains a W component at a high rate of 40 to 60%. Since it has hardness, it exhibits excellent wear resistance even in high-speed cutting with high heat generation, whereas in the conventional cutting tips 1 to 15, all of W in the binder phase The content ratio is as low as 1 to 10%, and as a result, excellent high-temperature hardness cannot be expected for the binder phase, so that the progress of wear of the binder phase is accelerated particularly in high-speed cutting, and this is the cause. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の切削チップは、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the cutting tip of the present invention exhibits excellent wear resistance not only in cutting processing under normal conditions such as various steels and cast iron, but also in high-speed cutting processing accompanied by high heat generation, It can fully satisfy the labor-saving and energy-saving of cutting and cost reduction.

切削チップを構成するTiCN基サーメットの走査型電子顕微鏡による組織観察結果(倍率:1万倍)を示す模写図である。It is a copying figure which shows the structure | tissue observation result (magnification | multiplying_factor of 10,000 times) by the scanning electron microscope of the TiCN base cermet which comprises a cutting tip.

Claims (1)

(a)質量%で、炭化タングステン:20〜30%、
炭化タンタルおよび炭化ニオブのうちの1種または2種:5〜10%、
炭化ジルコニウム、炭化バナジウム、および炭化モリブデンのうちの1種または2種:1〜5%、
Co:5〜10%、
Ni:5〜10%、
炭窒化チタン:残り(ただし、50〜60%含有)、
からなる配合組成を有する圧粉体の焼結体である炭窒化チタン基サーメットで構成され、
(b)上記炭窒化チタン基サーメットは、走査型電子顕微鏡による組織観察で、
硬質相:75〜93面積%、
結合相および不可避不純物:残り、
からなる組織を有すると共に、上記硬質相は、
(1)芯部が炭窒化チタン相、周辺部がTiと、Wと、TaおよびNbのうちの1種または2種と、Zr、V、およびMoのうちの1種または2種以上の複合炭窒化物[以下、(Ti,W,Ta/Nb,Zr/V/Mo)CNで示す]相からなる有芯構造の第1硬質相、
(2)芯部および周辺部の両方が(Ti,W,Ta/Nb,Zr/V/Mo)CN相からなる有芯構造の第2硬質相、
(3)炭窒化チタン相からなる単相構造の第3硬質相、
以上(1)〜(3)で構成され、さらに上記結合相は、結合相に占める割合で、かつ質量%で、
Co:18〜33%、
Ni:20〜35%、
Tiと、TaおよびNbのうちの1種または2種と、Zr、V、およびMoのうちの1種または2種以上:合量で5%以下、
Wおよび不可避不純物:残り(ただし、W:40〜60%含有)、
からなる組成を有するW−Co−Ni系合金からなること、
を特徴とする高熱発生を伴なう高速切削加工ですぐれた耐摩耗性を発揮する炭窒化チタン基サーメット製スローアウエイチップ。
(A) By mass%, tungsten carbide: 20-30%,
One or two of tantalum carbide and niobium carbide: 5 to 10%,
One or two of zirconium carbide, vanadium carbide, and molybdenum carbide: 1 to 5%,
Co: 5-10%
Ni: 5 to 10%
Titanium carbonitride: remaining (however, containing 50 to 60%),
It is composed of a titanium carbonitride-based cermet that is a sintered compact of a green compact having a composition comprising:
(B) The titanium carbonitride-based cermet is a structure observation by a scanning electron microscope,
Hard phase: 75-93 area%,
Bond phase and inevitable impurities: the rest,
And the hard phase has the following structure:
(1) The core is a titanium carbonitride phase, the periphery is Ti, W, one or two of Ta and Nb, and one or more of Zr, V, and Mo. A first hard phase having a core structure composed of a carbonitride [hereinafter referred to as (Ti, W, Ta / Nb, Zr / V / Mo) CN] phase;
(2) a second hard phase having a core structure in which both the core portion and the peripheral portion are composed of (Ti, W, Ta / Nb, Zr / V / Mo) CN phase;
(3) a third hard phase having a single-phase structure composed of a titanium carbonitride phase,
It is composed of the above (1) to (3), and the binder phase is a proportion of the binder phase and is in mass%.
Co: 18-33%
Ni: 20 to 35%,
Ti, one or two of Ta and Nb, and one or more of Zr, V, and Mo: the total amount is 5% or less,
W and inevitable impurities: remaining (however, W: 40 to 60% contained),
A W-Co-Ni alloy having a composition consisting of:
Titanium carbonitride-based cermet throwaway tip that demonstrates excellent wear resistance in high-speed cutting with high heat generation.
JP2005259169A 2005-06-14 2005-09-07 Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation Active JP4553380B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005259169A JP4553380B2 (en) 2005-09-07 2005-09-07 Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
US11/916,329 US7762747B2 (en) 2005-06-14 2006-06-13 Cermet insert and cutting tool
KR1020077028896A KR101267151B1 (en) 2005-06-14 2006-06-13 Cermet insert and cutting tool
KR1020077029261A KR100973626B1 (en) 2005-06-14 2006-06-13 Cermet insert and cutting tool
PCT/JP2006/311873 WO2006134944A1 (en) 2005-06-14 2006-06-13 Cermet insert and cutting tool
US11/917,472 US8007561B2 (en) 2005-06-14 2006-06-13 Cermet insert and cutting tool
PCT/JP2006/311864 WO2006134936A1 (en) 2005-06-14 2006-06-13 Cermet insert and cutting tool
EP06757299.0A EP1892051A4 (en) 2005-06-14 2006-06-13 Cermet insert and cutting tool
EP06757308.9A EP1892052B1 (en) 2005-06-14 2006-06-13 Cermet insert and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259169A JP4553380B2 (en) 2005-09-07 2005-09-07 Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation

Publications (2)

Publication Number Publication Date
JP2007069309A JP2007069309A (en) 2007-03-22
JP4553380B2 true JP4553380B2 (en) 2010-09-29

Family

ID=37931214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259169A Active JP4553380B2 (en) 2005-06-14 2005-09-07 Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation

Country Status (1)

Country Link
JP (1) JP4553380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136656A (en) * 2005-10-18 2007-06-07 Ngk Spark Plug Co Ltd Cermet-made insert and cutting tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134944A1 (en) 2005-06-14 2006-12-21 Mitsubishi Materials Corporation Cermet insert and cutting tool
JP4695960B2 (en) * 2005-10-18 2011-06-08 日本特殊陶業株式会社 Cermet inserts and cutting tools
JP6380016B2 (en) * 2014-11-05 2018-08-29 株式会社タンガロイ Cermet tools and coated cermet tools
GB201917347D0 (en) * 2019-11-28 2020-01-15 Hyperion Materials & Tech Sweden Ab NbC-based cemented carbide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106938A (en) * 1983-11-14 1985-06-12 Hitachi Choko Kk Tough cermet
JPH08170141A (en) * 1994-10-20 1996-07-02 Mitsubishi Materials Corp Corrosion resistant cermet material excellent in wear resistance and toughness
JPH10110234A (en) * 1996-10-07 1998-04-28 Mitsubishi Materials Corp Cutting tool mode of carbo-nitrided titanium cermet excellent in chipping resistance
JP2002263940A (en) * 2001-03-07 2002-09-17 Mitsubishi Materials Corp Face milling cutter tool with throwaway tip showing superior chipping resistance in high-speed cutting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106938A (en) * 1983-11-14 1985-06-12 Hitachi Choko Kk Tough cermet
JPH08170141A (en) * 1994-10-20 1996-07-02 Mitsubishi Materials Corp Corrosion resistant cermet material excellent in wear resistance and toughness
JPH10110234A (en) * 1996-10-07 1998-04-28 Mitsubishi Materials Corp Cutting tool mode of carbo-nitrided titanium cermet excellent in chipping resistance
JP2002263940A (en) * 2001-03-07 2002-09-17 Mitsubishi Materials Corp Face milling cutter tool with throwaway tip showing superior chipping resistance in high-speed cutting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136656A (en) * 2005-10-18 2007-06-07 Ngk Spark Plug Co Ltd Cermet-made insert and cutting tool
JP4659682B2 (en) * 2005-10-18 2011-03-30 日本特殊陶業株式会社 Cermet inserts and cutting tools

Also Published As

Publication number Publication date
JP2007069309A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4569767B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
WO2006134944A1 (en) Cermet insert and cutting tool
JP2622131B2 (en) Alloys for cutting tools
JP4553380B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JPWO2020090280A1 (en) Manufacturing method of cemented carbide, cutting tool and cemented carbide
JP5284684B2 (en) Super hard alloy
JP2010234519A (en) Cermet and coated cermet
JPH06158213A (en) Cutting tool made of titanium carbonitride-based cermet excellent in wear resistance
JP2004076049A (en) Hard metal of ultra-fine particles
JP2013188842A (en) Cutting tool
JP4553382B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP4553381B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP2009154224A (en) Titanium carbonitride based cermet cutting tool excellent in wear resistance
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JPH07224346A (en) Titanium carbon nitride cement excellent in toughness
JPH08253836A (en) Wear resistant tungsten carbide-base cemented carbide having excellent toughness
JP4747493B2 (en) Shaft cutting tool capable of high-speed cutting of difficult-to-cut materials
JP2023134938A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP2023134937A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP5153455B2 (en) cermet
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPH08246090A (en) Titanium carbon nitride base cermet excellent in toughness
JP2023134936A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP4510322B2 (en) Cemented carbide throwaway cutting tip that provides excellent wear resistance in high-speed cutting
JP2008307622A (en) Cutting tool made of titanium carbonitride base cermet having excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4553380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250