JP2023134938A - Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy - Google Patents
Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy Download PDFInfo
- Publication number
- JP2023134938A JP2023134938A JP2022039879A JP2022039879A JP2023134938A JP 2023134938 A JP2023134938 A JP 2023134938A JP 2022039879 A JP2022039879 A JP 2022039879A JP 2022039879 A JP2022039879 A JP 2022039879A JP 2023134938 A JP2023134938 A JP 2023134938A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- hard phase
- cemented carbide
- less
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 51
- 229910045601 alloy Inorganic materials 0.000 title abstract description 10
- 239000000956 alloy Substances 0.000 title abstract description 10
- 239000000758 substrate Substances 0.000 title abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910003470 tongbaite Inorganic materials 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 abstract description 13
- 229910052804 chromium Inorganic materials 0.000 abstract description 4
- 239000000843 powder Substances 0.000 description 50
- 239000011230 binding agent Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000013078 crystal Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000005245 sintering Methods 0.000 description 10
- 239000006104 solid solution Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000001887 electron backscatter diffraction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、切削工具用超硬合金と該切削工具用超硬合金を用いた切削工具基体(基体ということもある)に関する。 The present invention relates to a cemented carbide for cutting tools and a cutting tool base (sometimes referred to as the base) using the cemented carbide for cutting tools.
超硬合金は硬く、靭性を備えるため、切削工具として用いられている。そして、切削工具に求められる厳しい切削条件に対応すべく、超硬合金およびこの超硬合金を用いた切削工具基体を改良する提案がなされている。 Cemented carbide is hard and has toughness, so it is used as cutting tools. In order to meet the severe cutting conditions required of cutting tools, proposals have been made to improve cemented carbide and cutting tool bases using this cemented carbide.
例えば、特許文献1には、炭化タングステンを主成分とする硬質相と、鉄族元素を主成分とする結合相とを備え、前記炭化タングステンの粒子数をA、他の炭化タングステン粒子との接触点の点数が1点以下の炭化タングステン粒子の粒子数をBとするとき、B/A≦0.05を満たす超硬合金が記載され、該超硬合金は耐塑性変形性に優れるとされている。 For example, Patent Document 1 discloses that a hard phase mainly composed of tungsten carbide and a binder phase mainly composed of iron group elements are provided, the number of particles of the tungsten carbide is A, and contact with other tungsten carbide particles is provided. When the number of tungsten carbide particles with a score of 1 or less is B, a cemented carbide that satisfies B/A≦0.05 is described, and this cemented carbide is said to have excellent plastic deformation resistance. There is.
また、特許文献2には、Co量が10~13質量%、Co量に対するCr量の比が2~8%、TaCとNbCの少なくとも1種を合計で0.2~0.5質量%で含有し、残部がWCからなり、硬さが88.6~89.5HRAであって、研磨面上の面積比におけるWC積算粒度80%径D80と積算粒度20%径D20の比D80/D20が2.0≦D80/D20≦4.0の範囲にあり、上記D80が4.0~7.0μmの範囲にあり、かつWC接着度cが0.36≦c≦0.43にある超硬合金が記載され、該超硬合金は、切削工具基体に用いたとき耐溶着性が向上しているとされている。 Furthermore, Patent Document 2 states that the amount of Co is 10 to 13% by mass, the ratio of the amount of Cr to the amount of Co is 2 to 8%, and the total amount of at least one of TaC and NbC is 0.2 to 0.5% by mass. The remainder consists of WC, the hardness is 88.6 to 89.5 HRA, and the ratio of the WC integrated particle size 80% diameter D 80 and the integrated particle size 20% diameter D 20 in the area ratio on the polished surface D 80 /D 20 is in the range of 2.0≦D 80 /D 20 ≦4.0, the above D 80 is in the range of 4.0 to 7.0 μm, and the WC adhesion degree c is 0.36≦c≦ 0.43 is described, and this cemented carbide is said to have improved adhesion resistance when used in a cutting tool base.
加えて、特許文献3には、Crまたは/およびCr化合物:0~4質量%(Cr換算で)、Vまたは/およびV化合物:0~4質量%(V換算で)、TaC:0~2質量%、TiC:0~2質量%、Nまたは/およびN化合物:0~1質量%(N換算で)、Co:0.1~10質量%、残部WCおよび不可避不純物からなり、Co平均厚み:0.06~30ナノメータ(前記Co平均厚み(nm)は0.58*A/(100-A)*R、A:Co(質量%)、2R:WC平均粒径(nm))である超硬合金を焼結の昇温途中900~1600℃の温度において3~200気圧の圧力となるよう気体を圧力媒体として負荷して密度を高めた超硬合金が記載され、該超硬合金は高靱性、高耐摩耗性であるとされている。 In addition, Patent Document 3 describes Cr or/and Cr compound: 0 to 4% by mass (in terms of Cr), V or/and V compound: 0 to 4% by mass (in terms of V), and TaC: 0 to 2% by mass. mass%, TiC: 0 to 2 mass%, N or/and N compound: 0 to 1 mass% (in terms of N), Co: 0.1 to 10 mass%, remainder WC and inevitable impurities, Co average thickness : 0.06 to 30 nanometers (the Co average thickness (nm) is 0.58*A/(100-A)*R, A: Co (mass%), 2R: WC average particle size (nm)). A cemented carbide is described in which the density is increased by applying a gas as a pressure medium to a cemented carbide at a temperature of 900 to 1600°C during heating during sintering to achieve a pressure of 3 to 200 atm. It is said to have high toughness and high wear resistance.
さらに、特許文献4には、WC相と、WC以外の周期表第4、5、6族金属の1種以上の炭化物または炭窒化物からなるB1型固溶相と、鉄族金属の1種以上よりなる結合相との超硬合金を基体とし、この基体の表面からの深さが5~100μmまでの領域に前記B1型固溶相が存在しない表面領域が存在し、該表面領域の直下における前記B1型固溶相の平均粒径が前記基体の内部における前記B1型固溶相の平均粒径よりも大きくした切削工具基体が記載され、該切削工具基体は高温強度、耐熱衝撃性に優れるとされている。 Furthermore, Patent Document 4 describes a WC phase, a B1 type solid solution phase consisting of one or more carbides or carbonitrides of metals from groups 4, 5, and 6 of the periodic table other than WC, and one type of iron group metal. A cemented carbide with a binder phase consisting of the above is used as a base, and a surface region where the B1 type solid solution phase does not exist exists in a region with a depth of 5 to 100 μm from the surface of this base, and directly below the surface region. A cutting tool substrate is disclosed in which the average particle size of the B1 type solid solution phase is larger than the average particle size of the B1 type solid solution phase inside the substrate, and the cutting tool substrate has high temperature strength and thermal shock resistance. It is considered to be excellent.
本発明は、前記事情や提案を鑑みてなされたものであって、切削工具基体として用いたときに靭性が向上する切削工具用超硬合金、および、該切削工具用超硬合金を用いた切削工具基体の提供を目的とする。 The present invention was made in view of the above circumstances and proposals, and includes a cemented carbide for cutting tools that improves toughness when used as a cutting tool base, and a cutting tool using the cemented carbide for cutting tools. The purpose is to provide tool bases.
本発明の実施形態に係る切削工具用超硬合金は、
CoとNiの1種以上を合計で4.0質量%以上、10.0質量%未満、
M(MはTi、Ta、Nb、Zr、Hf、Vから選ばれる1種以上)をMCとして4.0質量%以上、12.0質量%未満、および、
CrをCr3C2として0.5質量%未満含有し、
残部がWCおよび不可避的不純物からなり、
主硬質相は前記WCを有し、
副硬質相は前記MCを有し、
前記副硬質相の面積率は、17%以上、19%未満であって、
副硬質相-副硬質相の粒界数を副硬質相の個数で除した値が0.8以上、1.2以下
である。
The cemented carbide for cutting tools according to the embodiment of the present invention is
A total of at least 4.0% by mass and less than 10.0% by mass of one or more of Co and Ni,
M (M is one or more selected from Ti, Ta, Nb, Zr, Hf, and V) is 4.0% by mass or more and less than 12.0% by mass as MC, and
Contains less than 0.5% by mass of Cr as Cr3C2 ,
The remainder consists of WC and unavoidable impurities,
The main hard phase has the WC,
The secondary hard phase has the MC,
The area ratio of the secondary hard phase is 17% or more and less than 19%,
The value obtained by dividing the number of sub-hard phase-sub-hard phase grain boundaries by the number of sub-hard phases is 0.8 or more and 1.2 or less.
本発明の実施形態に係る切削工具基体は、前記切削工具用超硬合金を用いたものである。 A cutting tool base according to an embodiment of the present invention uses the above-mentioned cemented carbide for cutting tools.
前記切削工具用超硬合金は靭性に優れ、前記切削工具基体は靭性が向上するため耐久性を有する。 The cemented carbide for cutting tools has excellent toughness, and the cutting tool base has improved toughness and thus has durability.
本発明者は、前記目的を達成する超硬合金を得るために鋭意検討を行った。その結果、組成を所定のものとし、副硬質相の面積率を最適化し、一つの副硬質相に接する他の副硬質相数の平均値が所定の範囲ある超硬合金であれば、前記目的を達成できるという知見を得た。 The present inventor conducted extensive research in order to obtain a cemented carbide that achieves the above object. As a result, if the composition is set to a specified value, the area ratio of the secondary hard phase is optimized, and the average value of the number of other secondary hard phases in contact with one secondary hard phase is within a specified range, then We obtained the knowledge that it is possible to achieve
以下、本発明の切削工具用超硬合金および該合金を用いた切削工具基体、特に、切削工具基体としてインサートとして用いられる実施形態を中心にして、説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a description will be given of the cemented carbide for cutting tools of the present invention and a cutting tool base using the alloy, particularly an embodiment in which the cutting tool base is used as an insert.
なお、本明細書、特許請求の範囲において、数値範囲を「M~N」(M、Nは共に数値)を用いて表現する場合、「M以上、N以下」と同義であって、その範囲は上限(N)および下限(M)の数値を含むものとし、上限値(N)のみに単位が記載されているときは、下限値(M)の単位も上限値(N)と同じ単位である。 In addition, in this specification and claims, when a numerical range is expressed using "M to N" (M and N are both numerical values), it is synonymous with "M or more and N or less", and that range shall include the numerical value of the upper limit (N) and lower limit (M), and when the unit is written only for the upper limit value (N), the unit of the lower limit value (M) is also the same unit as the upper limit value (N). .
1.切削工具用超硬合金の組成と組織
本実施形態に係る切削工具用超硬合金の組成と組織は、次のとおりである。
1. Composition and structure of cemented carbide for cutting tools The composition and structure of the cemented carbide for cutting tools according to the present embodiment are as follows.
(1)CoとNi
CoとNiの1種以上の合計含有量は、4.0質量%以上、10.0質量%未満であることが好ましい。
その理由は、この含有量を満足すると切削工具基体として使用した際に、靭性が優れるためである。
(1) Co and Ni
The total content of one or more of Co and Ni is preferably 4.0% by mass or more and less than 10.0% by mass.
The reason is that when this content is satisfied, the toughness is excellent when used as a cutting tool base.
ここで、CoとNiは、主に結合相に存在する。結合相(FCC構造を有する結晶粒を有する)は、CoとNiが主成分、すなわち、結合相を構成する全ての成分に対して、CoとNiの合計が50原子%以上を占めている。 Here, Co and Ni mainly exist in the bonding phase. The main components of the binder phase (having crystal grains having an FCC structure) are Co and Ni, that is, the total of Co and Ni accounts for 50 atomic % or more of all the components constituting the binder phase.
結合相中には、硬質相の成分であるWやC、その他の不可避的不純物が含まれていてもよい。さらに、結合相は、Cr、MCで含有量を規定したMであるTi、Ta、Nb、Zr、Hf、Vの1種以上を含んでいてもよい。これら元素が結合相中に存在するときは、結合相に固溶した状態であると推定される。
なお、結合相の鑑別方法は、後述する。
The binder phase may contain W and C, which are components of the hard phase, and other unavoidable impurities. Furthermore, the binder phase may contain one or more of Ti, Ta, Nb, Zr, Hf, and V whose content is defined by Cr and MC. When these elements exist in the binder phase, they are presumed to be in a solid solution state in the binder phase.
Note that a method for identifying the bonded phase will be described later.
(2)MC
M(MはTi、Ta、Nb、Zr、Hf、Vから選ばれる1種以上)をMCとして4.0質量%以上、12.0質量%未満で含有することが好ましい。MをMCとして4.0質量%未満含有する場合、耐酸化性が十分ではなく、切削時に硬質相の酸化により大きな摩耗を生じ、寿命に至り、MをMCとして12.0質量%以上含有する場合、靭性が不足し、欠損を生じやすくなることから、MをMCとして4.0質量%以上、12.0質量%未満で含有することが好ましい。
(2)MC
It is preferable that M (M is one or more selected from Ti, Ta, Nb, Zr, Hf, and V) is contained in an amount of 4.0% by mass or more and less than 12.0% by mass as MC. If the M content is less than 4.0% by mass as MC, the oxidation resistance will not be sufficient and large wear will occur due to oxidation of the hard phase during cutting, leading to the end of the service life. In this case, since the toughness is insufficient and defects are likely to occur, it is preferable that M is contained in an amount of 4.0% by mass or more and less than 12.0% by mass as MC.
これらの炭化物が存在する場合の含有量は、M(金属原子)とCが、1:1にて結合した炭化物と仮定して規定しているが、合金中に存在するこれらの炭化物は化学量論的な原子比で結合した炭化物に限定されず、MとCが結合した複合炭化物を含む炭化物であり、また、この炭化物の結晶構造は立方晶構造である。 The content of these carbides, if present, is defined on the assumption that M (metal atom) and C are combined in a 1:1 ratio, but these carbides present in the alloy have a stoichiometric amount. The carbide is not limited to a carbide bonded in a theoretical atomic ratio, but includes a composite carbide in which M and C are bonded, and the crystal structure of this carbide is a cubic crystal structure.
Mの炭化物、すなわち、MCは、副硬質相(FCC構造を有する結晶粒を有する)の主成分、すなわち、副硬質相を構成する全ての成分に対して50質量%以上を占めている。副硬質相には、MCの他に、硬質相に含まれるWCや不可避的不純物を含んでいてもよい。
なお、副硬質相の鑑別方法は後述する。
The carbide of M, that is, MC, occupies 50% by mass or more of the main component of the secondary hard phase (having crystal grains having an FCC structure), that is, all the components constituting the secondary hard phase. In addition to MC, the sub-hard phase may contain WC and inevitable impurities contained in the hard phase.
Note that the method for identifying the secondary hard phase will be described later.
副硬質相は、17面積%以上、19面積%未満の面積割合で存在することが好ましい。その理由は、副硬質相が17面積%未満であると、副硬質相が少なく高温硬さが十分でなく、一方、19面積%以上となると、靭性が低下するためである。
なお、面積率の測定は後述する。
The secondary hard phase is preferably present in an area proportion of 17 area % or more and less than 19 area %. The reason for this is that if the secondary hard phase is less than 17 area %, the secondary hard phase is small and the high temperature hardness is insufficient, whereas if it is 19 area % or more, the toughness decreases.
Note that the measurement of the area ratio will be described later.
(3)Cr3C2
Crはその含有量をCr3C2の含有量と換算して、0.5質量%未満で含有してもよい。すなわち、Crの含有は必須ではない(含有しなくてもよい)。
Crは、結合相中にCrとして固溶し、主硬質相に含まれるWCの成長を抑制し、WCを微細化させ、超硬合金を微粒・均粒組織とし、靭性を高め、耐塑性変形性を向上させる働きがある。この働きは、Crの含有量をCr3C2と換算して、0.5質量%を超えると損なわれ、CrとWの複合炭化物を結合相に析出させ、靭性を低下させ、また、欠損の発生の起点となるおそれがある。
(3 ) Cr3C2
Cr may be contained in an amount of less than 0.5% by mass, calculated as the content of Cr 3 C 2 . That is, the inclusion of Cr is not essential (it may not be included).
Cr dissolves as Cr in the binder phase, suppresses the growth of WC contained in the main hard phase, makes the WC finer, makes the cemented carbide a fine-grained and uniform grain structure, increases toughness, and improves plastic deformation resistance. It has the ability to improve sex. This function is impaired when the Cr content exceeds 0.5% by mass in terms of Cr 3 C 2 , causing composite carbides of Cr and W to precipitate in the binder phase, reducing toughness and causing defects. It may become the starting point for the occurrence of.
(4)WC
WCは主硬質相の主成分、すなわち、主硬質相を構成する全ての成分に対してWCが50質量%以上を占めている。主硬質相には、結合相成分、副硬質相成分、Cr、製造過程で不可避的に混入する不可避的不純物が含まれていてもよい。また、主硬質相の結晶構造はHCP構造であるため、副硬質相とは結晶構造が異なる。
なお、主硬質相の鑑別方法は後述する。
(4) W.C.
WC is the main component of the main hard phase, that is, WC occupies 50% by mass or more of all components constituting the main hard phase. The main hard phase may contain a binder phase component, a subhard phase component, Cr, and unavoidable impurities that are inevitably mixed in during the manufacturing process. Furthermore, since the crystal structure of the main hard phase is an HCP structure, the crystal structure is different from that of the secondary hard phase.
The method for identifying the main hard phase will be described later.
(5)不可避的不純物
前記のように、主硬質相、副硬質相、および、結合相は製造工程で不可避的(意図せずに)に混入する不純物を含んでいてもよく、その量は超硬合金全体を100質量%として外数として0.3質量%以下が好ましい。
(5) Unavoidable impurities As mentioned above, the main hard phase, secondary hard phase, and binder phase may contain impurities that are unavoidably (unintentionally) mixed in during the manufacturing process, and the amount of impurities is extremely large. It is preferably 0.3% by mass or less, based on 100% by mass of the entire hard alloy.
2.結合相、副硬質相、硬質相の鑑別方法と副硬質相の面積率の測定
以下のようにして、結合相、副硬質相、主硬質相の鑑別後、副硬質相の面積率を測定する。
(1)超硬合金の任意の表面または断面をEBSD測定に支障のならないよう微細な凹凸を削って平滑になるように加工し、その加工面に1視野が、例えば、24μm(縦)×72μm(横)、測定点間隔を100nmとして、複数視野(例えば、5視野)を、エネルギー分散型X線分光器(EDS)と後方散乱電子回折装置(EBSD測定装置(例えば、EDAX/TSL社(現AMETEK社)製OIM Data Collection))を搭載したフィールドエミッション走査型電子顕微鏡(SEM)で加速電圧15kVにて観察し、EBSDパターンとEDSデータの同時取り込みを行う。
2. How to differentiate between the binder phase, secondary hard phase, and hard phase and measure the area ratio of the secondary hard phase After distinguishing the binder phase, secondary hard phase, and main hard phase, measure the area ratio of the secondary hard phase as follows. .
(1) Process any surface or cross section of the cemented carbide to make it smooth by removing minute irregularities so as not to interfere with EBSD measurement, and one field of view on the processed surface is, for example, 24 μm (vertical) x 72 μm. (Horizontal), the measurement point spacing is 100 nm, and multiple fields of view (for example, 5 fields of view) are measured using an energy dispersive Observation was performed using a field emission scanning electron microscope (SEM) equipped with an OIM Data Collection (manufactured by AMETEK) at an accelerating voltage of 15 kV, and the EBSD pattern and EDS data were simultaneously captured.
観察視野の大きさ、観察する相の個数は、結合相、副硬質相、硬質相の鑑別において、同じであってもよい。
また、表面または断面の加工は、例えば、集束イオンビーム装置(FIB装置)、クロスセクションポリッシャー装置(CP装置)等を用いる。
The size of the observation field and the number of phases to be observed may be the same in distinguishing the bonded phase, the sub-hard phase, and the hard phase.
For processing the surface or cross section, for example, a focused ion beam device (FIB device), a cross-section polisher device (CP device), or the like is used.
(2)続いて、例えば、EDAX/TSL社製OIM Analysis ver.7.3.1にて測定データを読み込み、各結晶粒について、各元素に対応する結晶粒内部の各測定点から得られたEDSカウント値を平均し、各結晶粒の各元素EDS測定値とし、得られた測定値から各結晶粒の組成を導出する。 (2) Next, for example, OIM Analysis ver. manufactured by EDAX/TSL. Load the measurement data in 7.3.1, average the EDS count values obtained from each measurement point inside the crystal grain corresponding to each element for each crystal grain, and calculate the EDS measurement value for each element for each crystal grain. , the composition of each crystal grain is derived from the obtained measured values.
(3)前記した各相の定義に従って、各相を同定する。すなわち、EBSDパターンからWCと同定された結晶粒をWC粒とする。続いて、FCC相と同定された全ての測定点から、検出されたCoおよびNiのEDSカウント値の平均値を算出し、平均値より高いCoとNiのEDSカウント値を有するFCC相と同定された測定点を結合相とし、FCC相の残部を副硬質相とする。 (3) Identify each phase according to the definition of each phase described above. That is, the crystal grains identified as WC from the EBSD pattern are defined as WC grains. Next, the average value of the detected Co and Ni EDS count values was calculated from all measurement points identified as the FCC phase, and the FCC phase was identified as having a Co and Ni EDS count value higher than the average value. The measured points are taken as the binder phase, and the remainder of the FCC phase is taken as the secondary hard phase.
(4)、隣接する測定点が同一の相であった場合、互いの測定点から得られた方位の差が5度以上であったときに、それら測定点2点の間の境界を界面とする。
(5)副硬質脳の面積率を測定するには、少なくとも300個(300~1000個が好ましい)の副硬質相が視野内に含まれる視野を選定し、それぞれの副硬質相の面積の和を求め、この和の観察視野の面積に対する割合を算出する。算出した値について複数視野の平均をとることで副硬質相の面積率を求める。
(4) When adjacent measurement points are of the same phase and the difference in orientation obtained from each measurement point is 5 degrees or more, the boundary between the two measurement points is defined as an interface. do.
(5) To measure the area ratio of the accessory hard brain, select a field of view that includes at least 300 (preferably 300 to 1000) accessory hard phases, and sum the area of each accessory hard phase. , and calculate the ratio of this sum to the area of the observation visual field. The area ratio of the secondary hard phase is determined by averaging the calculated values over multiple fields of view.
(6)前記(3)において主硬質相、副硬質相、結合相と同定された各相について、改めてEDS測定を行い、主硬質相と同定された粒子はWCが50原子%以上を占めていること、副硬質相と同定された粒子はMCが50質量%以上を占めていること、結合相と同定された粒子はCoとNiの合計が50原子%以上を占めていることを確認する。 (6) For each phase identified as the main hard phase, secondary hard phase, and binder phase in (3) above, EDS measurements were performed again, and the particles identified as the main hard phase contained 50 at% or more of WC. Confirm that MC accounts for 50% by mass or more in the particles identified as the secondary hard phase, and that the total of Co and Ni accounts for 50 atomic% or more in the particles identified as the binder phase. .
3.各元素の含有量の測定
W、Co、Ni、Ti、Ta、Nb、Zr、Hf、V、Cr、および、C等の含有量は、鏡面加工面(蛍光X線測定に支障がないように微細な凹凸を削って平滑になるように加工した面)に蛍光X線測定を行うことにより測定することができる。
3. Measurement of the content of each element The content of W, Co, Ni, Ti, Ta, Nb, Zr, Hf, V, Cr, and C was measured on a mirror-finished surface (so as not to interfere with fluorescent X-ray measurement). It can be measured by performing fluorescent X-ray measurement on a surface that has been processed to be smooth by cutting away minute irregularities.
4.副硬質相-副硬質相の粒界数を副硬質相の個数で除した値
副硬質相-副硬質相の粒界数を副硬質相の個数で除した値が0.8以上、1.2以下であることが好ましい。その理由は、この平均値が0.8未満であると副硬質相が点在して、大きな負荷がかかった際に、合金が加速度的に破断しやすくなり、一方、1.2を超えると副硬質相が凝集し合って存在することになり、耐塑性変形性が低下するためである。この平均値は、1.0以上、1.2以下がより好ましい。
4. The value obtained by dividing the number of grain boundaries of the sub-hard phase-sub-hard phase by the number of sub-hard phases The value obtained by dividing the number of grain boundaries of the sub-hard phase-sub-hard phase by the number of sub-hard phases is 0.8 or more, 1. It is preferably 2 or less. The reason is that if this average value is less than 0.8, secondary hard phases will be scattered and the alloy will easily break under acceleration when a large load is applied, whereas if it exceeds 1.2, This is because the secondary hard phases coagulate and exist, resulting in a decrease in plastic deformation resistance. This average value is more preferably 1.0 or more and 1.2 or less.
ここで、副硬質相-副硬質相の粒界数を副硬質相の個数で除した値は、前述の面積率の測定と同じ手段を用い、同じ観察視野で測定する。また、副硬質相-副硬質相の粒界は隣接するピクセル同士の境界となる辺同士が接している副硬質相間の境界をいう。OIM Analysisを用い、副硬質相のみを含んだPartitionを作成し、このPartitionから粒界情報を抽出することで、副硬質相-副硬質相の粒界数を得ることができ、これを副硬質相の粒子数で除することにより、副硬質相-副硬質相の粒界数を副硬質相の個数で除した値を得ることができる。 Here, the value obtained by dividing the number of sub-hard phase-sub-hard phase grain boundaries by the number of sub-hard phases is measured using the same means as for measuring the area ratio described above and in the same observation field of view. Further, the sub-hard phase-sub-hard phase grain boundary refers to the boundary between the sub-hard phases where the sides that are the boundaries between adjacent pixels are in contact with each other. By using OIM Analysis to create a Partition containing only the secondary hard phase and extracting grain boundary information from this Partition, the number of grain boundaries between the secondary hard phase and the secondary hard phase can be obtained, and this can be By dividing by the number of particles of the phase, it is possible to obtain a value obtained by dividing the number of sub-hard phase-sub-hard phase grain boundaries by the number of sub-hard phases.
本発明の切削工具用超硬合金を切削工具基体として用いた場合について実施例により具体的に説明するが、本発明はこの実施例に限定されるものではない。 EXAMPLES A case in which the cemented carbide for cutting tools of the present invention is used as a cutting tool base will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
1.実施例の製造
(1)原料粉末と配合工程
まず、焼結用の粉末として、表1に示すWC粉末、Co粉末、Ni粉末、Cr3C2粉末、TiC粉末、TaC粉末、NbC粉末、ZrC粉末、HfC粉末、および、VC粉末を用意した。
1. Production of Examples (1) Raw material powder and blending process First, as powders for sintering, WC powder, Co powder, Ni powder, Cr 3 C 2 powder, TiC powder, TaC powder, NbC powder, and ZrC shown in Table 1 were used as powders for sintering. Powder, HfC powder, and VC powder were prepared.
これらの粉末のうち、副硬質相に含まれる炭化物の原料となるTiC粉末、TaC粉末、NbC粉末、ZrC粉末、HfC粉末、および、VC粉末を所定の配合組成となるよう秤りとり、ボールミルにて36時間の混合を行い、続けて真空下1600℃×10時間の熱処理を行い、続けてボールミルにて0.5時間の解砕を行い、固溶体粉末を製造した(表1を参照。表1では、固溶体粉末の配合量は、全ての基体原料の質量%の和を100質量%としたときの質量%として示されている)。 Among these powders, TiC powder, TaC powder, NbC powder, ZrC powder, HfC powder, and VC powder, which are raw materials for carbides contained in the sub-hard phase, were weighed out to a predetermined composition and then put into a ball mill. Mixing was carried out for 36 hours, followed by heat treatment at 1600° C. for 10 hours under vacuum, followed by crushing in a ball mill for 0.5 hours to produce a solid solution powder (see Table 1). In the following, the blending amount of the solid solution powder is shown as mass % when the sum of mass % of all base materials is 100 mass %).
次いで、得られた固溶体粉末を、前記WC粉末、Co粉末、Ni粉末およびCr3C2粉末とあわせ、ボールミルを用い、表3に示す条件により回転数20~30rpmで30~40時間混合し、100MPaの圧力にてプレス成形し成形体を作製した。 Next, the obtained solid solution powder was combined with the WC powder, Co powder, Ni powder, and Cr 3 C 2 powder, and mixed using a ball mill at a rotation speed of 20 to 30 rpm for 30 to 40 hours under the conditions shown in Table 3. A molded body was produced by press molding at a pressure of 100 MPa.
(2)焼結工程
得られた成形体を表3に示す条件により焼結し焼結体を作製した。表3における昇温速度とは、1000℃から焼結温度までの昇温速度をいう。
(2) Sintering process The obtained molded body was sintered under the conditions shown in Table 3 to produce a sintered body. The temperature increase rate in Table 3 refers to the temperature increase rate from 1000° C. to the sintering temperature.
(3)切削工程
焼結工程に続いて、焼結体を機械加工、研削加工し、CNMG432MMの形状に整え、表4に示す実施例の超硬合金製切削基体1~10(以下、実施例工具基体1~10という)を作製した。
(3) Cutting process Following the sintering process, the sintered body was machined and ground to form the shape of CNMG432MM, and the cemented carbide cutting bases 1 to 10 of Examples shown in Table 4 (hereinafter referred to as Examples Tool bases 1 to 10) were manufactured.
2.比較例の製造
これに対して、比較のために比較例の超硬合金製切削基体1~8(以下、比較例工具基体1~8という)を以下の手順にて作製した。
2. Manufacture of Comparative Example In contrast, for comparison, cemented carbide cutting bases 1 to 8 (hereinafter referred to as Comparative Example Tool Bases 1 to 8) of Comparative Examples were manufactured in the following procedure.
(1)原料粉末と配合工程
原料粉末として、WC粉末、Co粉末、Ni粉末、Cr3C2粉末、TiC粉末、TaC粉末、NbC粉末、ZrC粉末、HfC粉末、および、VC粉末を用意した。
(1) Raw material powder and blending process WC powder, Co powder, Ni powder, Cr 3 C 2 powder, TiC powder, TaC powder, NbC powder, ZrC powder, HfC powder, and VC powder were prepared as raw material powders.
これらの粉末のうち、副硬質相に含まれる炭化物の原料となるTiC粉末、TaC粉末、NbC粉末、ZrC粉末、HfC粉末、および、VC粉末を所定の配合組成となるよう秤りとり、ボールミルにて36時間の混合を行い、続けて真空下1600℃×10時間の熱処理を行い、続けてボールミルにて0.5時間の解砕を行い、固溶体粉末を製造した(表1を参照。表1では、固溶体粉末の配合量は、全ての基体原料の質量%の和を100質量%としたときの質量%として示されている)。 Among these powders, TiC powder, TaC powder, NbC powder, ZrC powder, HfC powder, and VC powder, which are raw materials for carbides contained in the sub-hard phase, were weighed out to a predetermined composition and then put into a ball mill. Mixing was carried out for 36 hours, followed by heat treatment at 1600° C. for 10 hours under vacuum, followed by crushing in a ball mill for 0.5 hours to produce a solid solution powder (see Table 1). In the following, the blending amount of the solid solution powder is shown as mass % when the sum of mass % of all base materials is 100 mass %).
次いで、これらの粉末を表2に示す配合組成となるように混合し、焼結用粉末とし、ボールミルを用い、表3に示す条件で混合し、乾燥後、100MPaの圧力にてプレス成形し成形体を作製した。 Next, these powders were mixed to have the composition shown in Table 2 to obtain a sintering powder. Using a ball mill, they were mixed under the conditions shown in Table 3, dried, and then press-molded at a pressure of 100 MPa. The body was created.
(2)焼結工程
得られた成形体を表3に示す条件により焼結し焼結体を作製した。比較例工程においても表3における昇温速度とは、1000℃から焼結温度までの昇温速度をいう。
(2) Sintering process The obtained molded body was sintered under the conditions shown in Table 3 to produce a sintered body. Also in the comparative example process, the temperature increase rate in Table 3 refers to the temperature increase rate from 1000° C. to the sintering temperature.
(3)切削工程
焼結工程に続いて、焼結体を機械加工、研削加工し、CNMG432MMの形状に整え、表5に示す比較例工具基体1~8を作製した。
(3) Cutting process Following the sintering process, the sintered body was machined and ground to the shape of CNMG432MM, thereby producing comparative tool bases 1 to 8 shown in Table 5.
このようにして作成した実施例工具基体1~10および比較例工具基体1~8の断面を前述の方法で観察して成分の含有量、副硬質相の面積率、副硬質相-副硬質相の粒界数を副硬質相の個数で除した値を求め、その結果を表4(実施例工具基体)、表5(比較例工具基体)に示す。 The cross sections of the example tool bases 1 to 10 and the comparative example tool bases 1 to 8 prepared in this way were observed by the method described above to determine the content of the components, the area ratio of the secondary hard phase, the secondary hard phase - the secondary hard phase. The value obtained by dividing the number of grain boundaries by the number of secondary hard phases is calculated, and the results are shown in Table 4 (Example tool base) and Table 5 (Comparative example tool base).
ここで、副硬質相の面積率を測定するに当たって、隣接するEBSDのピクセル同士の境界は正六角形であった。
なお、実施例工具基体1~10および比較例工具基体1~8において、不可避的不純物の含有量はいずれも前述の好ましい範囲にあった。
Here, in measuring the area ratio of the sub-hard phase, the boundaries between adjacent EBSD pixels were regular hexagons.
In addition, in the example tool substrates 1 to 10 and the comparative example tool substrates 1 to 8, the contents of inevitable impurities were all within the above-mentioned preferred range.
実施例工具基体1~10および比較例工具基体1~8に対し、以下の切削試験を行った。 前記切削加工試験後の、切れ刃の摩耗量および損耗状態を観察した。表6に、この試験結果を示す。 The following cutting tests were conducted on Example tool bases 1 to 10 and Comparative example tool bases 1 to 8. After the cutting test, the amount of wear and wear state of the cutting edge was observed. Table 6 shows the results of this test.
切削試験:合金鋼の乾式外形旋削加工
被削材:JIS・SCM440(HB290)の長手方向4本スリット入り丸棒
切削速度:95m/min
切り込み:1.0mm
送り:0.2mm/rev
切削時間:5分
Cutting test: Dry external turning of alloy steel Work material: JIS/SCM440 (HB290) round bar with 4 slits in the longitudinal direction Cutting speed: 95 m/min
Cut: 1.0mm
Feed: 0.2mm/rev
Cutting time: 5 minutes
表6に示される切削試験結果によれば、実施例工具基体は、いずれも、欠損を発生することなく、優れた靭性を発揮するのに対して、比較例工具基体は、いずれも、欠損の発生もしくは摩耗により工具寿命が短命であることがわかる。 According to the cutting test results shown in Table 6, all of the example tool bases exhibited excellent toughness without causing any fractures, whereas all of the comparative example tool bases exhibited excellent toughness. It can be seen that the tool life is short due to occurrence or wear.
Claims (2)
M(MはTi、Ta、Nb、Zr、Hf、Vから選ばれる1種以上)をMCとして4.0質量%以上、12.0質量%未満、および、
CrをCr3C2として0.5質量%未満含有し、
残部がWCおよび不可避的不純物からなり、
主硬質相は前記WCを有し、
副硬質相は前記MCを有し、
前記副硬質相の面積率は、17%以上、19%未満であって、
副硬質相-副硬質相の粒界数を副硬質相の個数で除した値が0.8以上、1.2以下
であることを特徴とする切削工具用超硬合金。 A total of at least 4.0% by mass and less than 10.0% by mass of one or more of Co and Ni,
M (M is one or more selected from Ti, Ta, Nb, Zr, Hf, and V) is 4.0% by mass or more and less than 12.0% by mass as MC, and
Contains less than 0.5% by mass of Cr as Cr3C2 ,
The remainder consists of WC and unavoidable impurities,
The main hard phase has the WC,
The secondary hard phase has the MC,
The area ratio of the secondary hard phase is 17% or more and less than 19%,
A cemented carbide for a cutting tool, characterized in that the value obtained by dividing the number of grain boundaries of the secondary hard phase-secondary hard phase by the number of secondary hard phases is 0.8 or more and 1.2 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022039879A JP2023134938A (en) | 2022-03-15 | 2022-03-15 | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022039879A JP2023134938A (en) | 2022-03-15 | 2022-03-15 | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023134938A true JP2023134938A (en) | 2023-09-28 |
Family
ID=88144485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022039879A Pending JP2023134938A (en) | 2022-03-15 | 2022-03-15 | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023134938A (en) |
-
2022
- 2022-03-15 JP JP2022039879A patent/JP2023134938A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6953674B2 (en) | Cemented Carbide and Cutting Tools | |
JP4569767B2 (en) | Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation | |
JP6796266B2 (en) | Cemented carbide and cutting tools | |
EP3130685B1 (en) | Cermet, method for producing cermet, and cutting tool | |
CN105283570B (en) | Cermet and cutting tool | |
US10987739B2 (en) | Cemented carbide and cutting tool | |
JPWO2011002008A1 (en) | Cermet and coated cermet | |
WO2019116614A1 (en) | Cemented carbide and cutting tool | |
JP2017088917A (en) | Hard metal alloy and cutting tool | |
JP2010105099A (en) | Cutting tool | |
JP7392423B2 (en) | Cemented carbide and cutting tools containing it as a base material | |
JP2004076049A (en) | Hard metal of ultra-fine particles | |
JP4553380B2 (en) | Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation | |
JP2021134364A (en) | Wc-based hard metal-made cutting tool excellent in plastic deformation resistance and defect resistance, and surface-coated wc-based hard metal-made cutting tool | |
JP7517483B2 (en) | Cemented carbide and cutting tools containing it as a substrate | |
JP6695566B2 (en) | Cemented carbide used as a tool for machining non-metallic materials | |
WO2015141757A1 (en) | Cermet tool | |
JP2023134938A (en) | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy | |
JP2023134937A (en) | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy | |
JP2023134939A (en) | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy | |
JP2023134936A (en) | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy | |
JP6819018B2 (en) | TiCN-based cermet cutting tool | |
JP2020157473A (en) | Coated cutting tool | |
JP7473871B2 (en) | WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool | |
JP6380016B2 (en) | Cermet tools and coated cermet tools |