JP2021134364A - Wc-based hard metal-made cutting tool excellent in plastic deformation resistance and defect resistance, and surface-coated wc-based hard metal-made cutting tool - Google Patents

Wc-based hard metal-made cutting tool excellent in plastic deformation resistance and defect resistance, and surface-coated wc-based hard metal-made cutting tool Download PDF

Info

Publication number
JP2021134364A
JP2021134364A JP2020028532A JP2020028532A JP2021134364A JP 2021134364 A JP2021134364 A JP 2021134364A JP 2020028532 A JP2020028532 A JP 2020028532A JP 2020028532 A JP2020028532 A JP 2020028532A JP 2021134364 A JP2021134364 A JP 2021134364A
Authority
JP
Japan
Prior art keywords
cemented carbide
cutting tool
based cemented
hard metal
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020028532A
Other languages
Japanese (ja)
Other versions
JP7385829B2 (en
Inventor
誠 五十嵐
Makoto Igarashi
誠 五十嵐
佳祐 河原
Keisuke Kawahara
佳祐 河原
龍 市川
Ryo Ichikawa
龍 市川
一樹 岡田
Kazuki Okada
一樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020028532A priority Critical patent/JP7385829B2/en
Publication of JP2021134364A publication Critical patent/JP2021134364A/en
Application granted granted Critical
Publication of JP7385829B2 publication Critical patent/JP7385829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a WC-based hard metal cutting tool and a surface-coated WC-based hard metal cutting tool, exerting excellent plastic deformation resistance and defect resistance in the intermittent cutting work for alloy steels or the like.SOLUTION: A WC-based hard metal-made cutting tool is characterized in that the cutting tool comprising a WC-based hard metal as a base material consists of in mass%, 6.0 to 14.0% of Co, 0.1 to 1.4% of Cr3C2 and the balance of WC with inevitable impurities, or further includes 4.0 mass% or less in total amount of one or more selected from TaC, NbC, TiC and ZrC, and when analyzing the grain size distribution of a binder phase in the cross section of the hard metal and defining a cumulative 10% grain area as A10 and cumulative 90% grain area as A90, A10 is 0.15 μm2 or more but less than 0.25 μm2 and A90/A10 is 8.0 or more but less than 11.0. In a surface-coated WC-based hard metal-made cutting tool, a hard coating layer is formed on at least a cutting edge of the cutting tool.SELECTED DRAWING: None

Description

本発明は、合金鋼等の断続切削加工において、すぐれた耐塑性変形性を備え、すぐれた耐欠損性を発揮するWC基超硬合金製切削工具(「WC基超硬工具」ともいう)および表面被覆WC基超硬合金製切削工具に関する。 The present invention provides a WC-based cemented carbide cutting tool (also referred to as "WC-based cemented carbide tool") having excellent plastic deformation resistance and excellent fracture resistance in intermittent cutting of alloy steel and the like. The present invention relates to a cutting tool made of a surface-coated WC-based cemented carbide.

WC基超硬合金は硬さが高く、また、靱性を備えることから、これを基体とするWC基超硬工具は、すぐれた耐摩耗性を発揮し、また、長期の使用にわたって長寿命を有する切削工具として知られている。
しかし、近年、被削材の種類、切削加工条件等に応じて、WC基超硬工具の切削性能、工具寿命をより一段と向上させるべく、各種の提案がなされている。
Since the WC-based cemented carbide has high hardness and toughness, the WC-based cemented carbide tool based on the WC-based cemented carbide exhibits excellent wear resistance and has a long life over a long period of use. Known as a cutting tool.
However, in recent years, various proposals have been made to further improve the cutting performance and tool life of WC-based cemented carbide tools according to the type of work material, cutting conditions, and the like.

例えば、特許文献1では、炭化タングステンを主成分とする硬質相と、鉄族元素(コバルトを含み、コバルトの含有量は超硬合金中において8質量%以上であることが好ましい)を主成分とする結合相とを備える超硬合金において、炭化タングステンの粒子数をA、他の炭化タングステン粒子との接触点の点数が1点以下の炭化タングステン粒子の粒子数をBとするとき、B/A≦0.05を満たすようにすることで、超硬合金の耐塑性変形性を向上させ、その結果として、炭素鋼、ステンレス鋼の湿式連続切削加工において、WC基超硬工具の長寿命化を図ることが提案されている。 For example, in Patent Document 1, a hard phase containing tungsten carbide as a main component and an iron group element (containing cobalt, and the content of cobalt is preferably 8% by mass or more in a cemented carbide) are the main components. In a cemented carbide provided with a bonding phase, when the number of tungsten carbide particles is A and the number of tungsten carbide particles having one or less contact points with other tungsten carbide particles is B, B / A. By satisfying ≤0.05, the plastic deformation resistance of cemented carbide is improved, and as a result, the life of WC-based cemented carbide tools is extended in wet continuous cutting of carbon steel and stainless steel. It is proposed to try.

特許文献2では、Co量が10〜13質量%、Co量に対するCr量の比が2〜8%、TaCとNbCの少なくとも1種をTaCとNbCの総量が0.2〜0.5質量%となる範囲で含有し、残部がWCから成り、硬さが88.6HRA〜89.5HRAであるWC基超硬工具において、研磨面上の面積比におけるWC積算粒度80%径D80と積算粒度20%径D20の比D80/D20を2.0≦D80/D20≦4.0の範囲とし、また、D80を4.0〜7.0μmの範囲とし、かつWC接着度cを0.36≦c≦0.43とすることにより、ステンレス鋼に代表される難削材の切削加工において、被削材の凝着を防止し耐欠損性を向上させることが提案されている。 In Patent Document 2, the amount of Co is 10 to 13% by mass, the ratio of the amount of Cr to the amount of Co is 2 to 8%, and at least one of TaC and NbC has a total amount of TaC and NbC of 0.2 to 0.5% by mass. In a WC-based cemented carbide tool containing WC in the range of 88.6 HRA to 89.5 HRA in hardness, the WC integrated particle size 80% diameter D80 and the integrated particle size 20 in the area ratio on the polished surface The ratio D80 / D20 of% diameter D20 is in the range of 2.0 ≦ D80 / D20 ≦ 4.0, D80 is in the range of 4.0 to 7.0 μm, and the WC adhesion degree c is 0.36 ≦ c. By setting ≤0.43, it has been proposed to prevent adhesion of the work material and improve fracture resistance in the cutting process of a difficult-to-cut material typified by stainless steel.

特許文献3では、WC基超硬工具において、WC基超硬合金の成分組成を、WC−x質量%Co−y質量%Cr−z質量%VCで表したとき、6≦x≦14、0.4≦y≦0.8、0≦z≦0.6、(y+z)≦0.1xを満足し、また、WC基超硬合金のWC接着度Cを、C=1−V α・exp(0.391・L)で表したとき、この式におけるWC基超硬合金の結合相体積率の値Vは0.11≦V≦0.25、また、(WC粒子の粒度分布の標準偏差)/(平均WC粒度)の値Lは0.3≦L≦0.7の範囲内であって、さらに、係数αが0.3≦α≦0.55の値を満足するWC接着度Cを有するWC基超硬合金とすることにより、Al合金、炭素鋼等の切削加工において、硬さと剛性を低下させることなく靱性を向上させ、耐欠損性を高めたWC基超硬工具が提案されている。 In Patent Document 3, in the WC-based cemented carbide tool, when the component composition of the WC-based cemented carbide is expressed by WC-x mass% Co-y mass% Cr 3 C 2- z mass% VC, 6 ≦ x ≦ 14, 0.4 ≦ y ≦ 0.8, 0 ≦ z ≦ 0.6, (y + z) ≦ 0.1x are satisfied, and the WC adhesion degree C of the WC-based cemented carbide is C = 1-V. b When expressed in α · exp (0.391 · L), the value V b of the bonded phase volume ratio of the WC-based cemented carbide in this equation is 0.11 ≦ V b ≦ 0.25, and (WC particles). The value L of (standard deviation of particle size distribution) / (average WC particle size) is within the range of 0.3 ≦ L ≦ 0.7, and the value of the coefficient α is 0.3 ≦ α ≦ 0.55. By using a WC-based cemented carbide having a satisfactory WC adhesion degree C, in cutting of Al alloys, carbon steels, etc., the toughness is improved without lowering the hardness and rigidity, and the WC group with improved fracture resistance. Carbide tools have been proposed.

特許文献4では、WC基超硬工具において、WC−WC接着界面長さをL1とし、WC−Co接着界面長さをL2とした時、
R>(0.82−0.086×D)×(10/V)
の式を満足させることにより、Ni基耐熱合金の切削加工において、WC基超硬工具の耐熱塑性変形性と靱性を向上させることが提案されている。
なお、R=(L1)/((L1)+(L2))
D:WC面積平均粒径(μm)であって、0.6≦D≦1.7の範囲である。
ここで、前記Dは、WCの面積率が50%となるときのWCの粒径をいう。
V:結合相体積(vol%)であって、9≦V≦14の範囲である。
In Patent Document 4, when the WC-WC bonding interface length is L1 and the WC-Co bonding interface length is L2 in the WC-based cemented carbide tool,
R> (0.82-0.086 × D) × (10 / V)
It has been proposed to improve the heat-resistant plastic deformation and toughness of the WC-based cemented carbide tool in the cutting process of the Ni-based heat-resistant alloy by satisfying the above equation.
R = (L1) / ((L1) + (L2))
D: WC area average particle size (μm), which is in the range of 0.6 ≦ D ≦ 1.7.
Here, D refers to the particle size of WC when the area ratio of WC is 50%.
V: The bound phase volume (vol%), which is in the range of 9 ≦ V ≦ 14.

特許文献5では、重量%で、Crまたは/およびCr化合物:0〜4%(Cr換算で)、Vまたは/およびV化合物:0〜4%(V換算で)、TaC:0〜2%、TiC:0〜2%、
Nまたは/およびN化合物:0〜1%(N換算で)、Co:0.1〜10%、WCおよび不可避不純物:残からなる組成を有し、かつ、0.06〜30ナノメータのCo平均厚み(CFP)を有し、焼結に際し、昇温途中900度C〜1600度Cの温度範囲の1部または全範囲において、気体を圧力媒体として3気圧〜200気圧の圧力を負荷して高密度化を図った切削加工工具用WC−Co系超硬部品が提案されており、このWC−Co系超硬部品、望ましくは、WCの平均粒径が1μm以下、CFPが0.06〜30nmの範囲の超微粒低Co超硬合金部品の靱性を高めることができるとされている。
ただし、CFPは、Co平均厚み(nm)であって、
CFP=0.58*A/(100−A)*R
から算出した値であり、A:Co(重量%),2R:WC平均粒径(nm)である。
In Patent Document 5, in% by weight, Cr or / and Cr compounds: 0 to 4% (in terms of Cr), V or / and V compounds: 0 to 4% (in terms of V), TaC: 0 to 2%, TiC: 0-2%,
N or / and N compounds: 0 to 1% (in terms of N), Co: 0.1 to 10%, WC and unavoidable impurities: a composition consisting of the residue, and a Co average of 0.06 to 30 nanometers. It has a thickness (CFP), and during sintering, it is high by applying a pressure of 3 atm to 200 atm using gas as a pressure medium in a part or the whole range of the temperature range of 900 ° C to 1600 ° C during temperature rise. WC-Co-based cemented carbide parts for cutting tools with densification have been proposed, and these WC-Co-based cemented carbide parts, preferably, have an average particle size of WC of 1 μm or less and a CFP of 0.06 to 30 nm. It is said that the toughness of ultrafine low Co cemented carbide parts in the range of
However, CFP has a Co average thickness (nm) and is
CFP = 0.58 * A / (100-A) * R
It is a value calculated from A: Co (% by weight) and 2R: WC average particle size (nm).

特許第6256415号公報Japanese Patent No. 6256415 特開2017−88999号公報JP-A-2017-888999 特開2017−148895号公報JP-A-2017-148895 特開2017−179433号公報JP-A-2017-179433 特開平7−305136号公報Japanese Unexamined Patent Publication No. 7-305136

前記特許文献1〜5で提案されている従来のWC基超硬工具によれば、WC−WC粒子相互の接触点数、WCの粒度、WC接着度あるいは製造条件等をコントロールすることによって、WC基超硬工具の切削性能、工具特性の向上が図られている。
しかしながら、前記従来の工具では、合金鋼のエンドミル加工のような断続切削加工においては、耐塑性変形性や耐欠損性が十分ではなく、WC−WC粒子の界面でのクラック伸展、あるいは、結合相への応力集中による亀裂の発生等による欠損や工具変形等の発生を十分に抑制することができず、そのため、工具寿命は短命であった。
According to the conventional WC-based cemented carbide tools proposed in Patent Documents 1 to 5, the WC-based carbide tool is controlled by controlling the number of contact points between WC-WC particles, the particle size of WC, the degree of WC adhesion, the manufacturing conditions, and the like. The cutting performance and tool characteristics of cemented carbide tools have been improved.
However, the conventional tools do not have sufficient plastic deformation resistance and fracture resistance in intermittent cutting such as end milling of alloy steel, and crack extension or bonding phase at the interface of WC-WC particles. It was not possible to sufficiently suppress the occurrence of defects and tool deformation due to the occurrence of cracks due to stress concentration on the steel, and therefore the tool life was short.

そこで、本発明者らは、合金鋼のエンドミル加工のような断続切削加工において、すぐれた耐塑性変形性と耐欠損性を発揮するWC基超硬工具を開発すべく、WC基超硬合金の結合相の形態に着目し、鋭意研究を進めたところ、次のような知見を得た。 Therefore, the present inventors have developed a WC-based cemented carbide tool that exhibits excellent plastic deformation resistance and fracture resistance in intermittent cutting such as end milling of alloy steel. Focusing on the morphology of the bound phase, we conducted diligent research and obtained the following findings.

すなわち、前記特許文献1〜4に示されるWC基超硬工具においては、主として、WC粒子に着目した改善がなされ、また、前記特許文献5に示されるWC基超硬工具においては、主として、CFPに着目した改善がなされていたが、本発明者らは、従来の技術とは視点を変えて、結合相の形態に着目して研究を重ねたところ、WC基超硬合金の結合相粒子(主体は、Co粒子である)について、焼結条件を調整することによって、適度な大きさの結合相粒子を所定数有する場合、すなわち、累積10%粒子面積のときの結合相粒子一つが占める面積をA10、累積90%粒子面積のときの結合相粒子一つが占める面積をA90とした際、A10が0.15μm以上0.25μm未満であり、かつ、A90/A10が8.0以上、11.0未満である場合には、WCのスケルトン構造が強固となるため、耐塑性変形性が向上する結果、かかるWC基超硬合金基体を用いたWC基超硬工具を合金鋼等の断続切削加工に供した場合には、靱性の向上、耐欠損性の向上によって、工具の長寿命化が図られることを見出したものである。 That is, in the WC-based cemented carbide tools shown in Patent Documents 1 to 4, improvements are made mainly focusing on WC particles, and in the WC-based cemented carbide tools shown in Patent Document 5, mainly CFP. However, the present inventors have changed the viewpoint from the conventional technique and conducted research focusing on the morphology of the bonded phase. As a result, the bonded phase particles of the WC-based cemented carbide (the bonded phase particles of the WC-based cemented carbide ( By adjusting the sintering conditions, the main body is Co particles), and when a predetermined number of bonded phase particles having an appropriate size are provided, that is, the area occupied by one bonded phase particle when the cumulative particle area is 10%. Is A10, and the area occupied by one bonded phase particle when the cumulative 90% particle area is A90, A10 is 0.15 μm 2 or more and less than 0.25 μm 2 , and A90 / A10 is 8.0 or more. If it is less than 11.0, the WC skeleton structure becomes strong, and as a result, the plastic deformation resistance is improved. It has been found that when the tool is subjected to cutting, the life of the tool can be extended by improving the toughness and the fracture resistance.

本発明は、上記知見に基づいてなされたものであって、
「(1)WC基超硬合金を基体とするWC基超硬合金製切削工具において、
前記WC基超硬合金の成分組成は、結合相形成成分としてのCoを6.0〜14.0質量%とCrを0.1〜1.4質量%含有し、残部はWC及び不可避不純物からなり、
前記WC基超硬合金の断面について結合相の粒度分布を解析し、累積10%粒子面積のときの結合相粒子一つが占める面積をA10、累積90%粒子面積のときの結合相粒子一つが占める面積をA90とした際、A10が0.15μm以上、0.25μm未満であり、かつ、A90/A10が8.0以上、11.0未満であることを特徴とするWC基超硬合金製切削工具。
(2)前記WC基超硬合金は、TaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を合計量で4.0質量%以下、さらに含有することを特徴とする(1)に記載のWC基超硬合金製切削工具。
(3) (1)または(2)に記載のWC基超硬合金製切削工具の少なくとも切れ刃には、硬質被覆層が形成されていることを特徴とする表面被覆WC基超硬合金製切削工具。」
を特徴とするものである。
なお、前記(1)、(2)におけるCr、TaC、NbC、TiC、ZrCの含有量は、WC基超硬合金の断面について測定したCr量、Ta量、Nb量、Ti量、Zr量を、いずれも炭化物換算した数値である。
また、本明細書中において、数値範囲を示す際に、「〜」を用いる場合は、その数値の下限および上限を含むことを意味する。
The present invention has been made based on the above findings.
"(1) In a cutting tool made of WC-based cemented carbide based on WC-based cemented carbide,
The composition of WC-based cemented carbide, a 6.0 to 14.0 wt% of Co and Cr 3 C 2 as the binder phase forming component containing 0.1 to 1.4 wt%, the balance being WC and Consists of unavoidable impurities
The particle size distribution of the bonded phase was analyzed for the cross section of the WC-based cemented carbide, and the area occupied by one bonded phase particle when the cumulative 10% particle area was occupied by A10 and one bonded phase particle when the cumulative 90% particle area was occupied. When the area is A90, A10 is 0.15 μm 2 or more and less than 0.25 μm 2 , and A90 / A10 is 8.0 or more and less than 11.0. Manufactured cutting tool.
(2) The WC-based cemented carbide is characterized by further containing at least one selected from TaC, NbC, TiC and ZrC in a total amount of 4.0% by mass or less (1). The WC-based cemented carbide cutting tool described.
(3) A surface-coated WC-based cemented carbide cutting characterized in that a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide cutting tool according to (1) or (2). tool. "
It is characterized by.
Incidentally, the (1), (2) Cr 3 C 2, TaC in, NbC, TiC, content of ZrC is, Cr content measured for the cross section of the WC-based cemented carbide, Ta amount, Nb amount, Ti amount, The amount of Zr is a value converted into carbide.
Further, in the present specification, when "~" is used to indicate a numerical range, it means that the lower limit and the upper limit of the numerical value are included.

本発明に係るWC基超硬工具および表面被覆WC基超硬合金製切削工具は、その基体を構成するWC基超硬合金の成分であるCo、Cr、あるいはさらに、TaC、NbC、TiC、ZrCが特定の組成範囲を有し、また、結合相の粒度分布を解析し、累積10%粒子面積のときの結合相粒子一つが占める面積をA10、累積90%粒子面積のときの結合相粒子一つが占める面積をA90とした際、A10が0.15μm以上、0.25μm未満であり、かつ、A90/A10が8.0以上、11.0未満を満たすことにより、WCのスケルトン構造が強固に組まれる結果、耐塑性変形性が向上するという効果を有する。
したがって、本発明のWC基超硬工具および表面被覆WC基超硬合金製切削工具は、合金鋼のエンドミル加工等の断続切削加工において、靱性の向上、耐欠損性の向上により、工具の長寿命化が図られる。
The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide cutting tool according to the present invention include Co, Cr 3 C 2 , which are components of the WC-based cemented carbide constituting the substrate, and further, TaC, NbC, and so on. TiC and ZrC have a specific composition range, and the particle size distribution of the bonded phase is analyzed. When the area occupied by one phase particle is A90, A10 is 0.15 μm 2 or more and less than 0.25 μm 2 , and A90 / A10 is 8.0 or more and less than 11.0. As a result of the skeleton structure being firmly assembled, it has the effect of improving the plastic deformation resistance.
Therefore, the WC-based cemented carbide tool and the surface-coated WC-based cemented carbide cutting tool of the present invention have a long life of the tool due to improved toughness and fracture resistance in intermittent cutting such as end milling of alloy steel. Is planned.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

Co:
Coは、WC基超硬合金の主たる結合相形成成分として含有させるが、Co含有量が6.0質量%未満では十分な靱性を保持することはできず、一方、Co含有量が14.0質量%を超えると急激に軟化し、切削工具として必要とされる所望の硬さが得られず、変形および摩耗進行が顕著になることから、WC基超硬合金中のCo含有量を6.0〜14.0質量%と定めた。
Co:
Co is contained as a main bonded phase forming component of the WC-based cemented carbide, but if the Co content is less than 6.0% by mass, sufficient toughness cannot be maintained, while the Co content is 14.0. If it exceeds% by mass, it softens rapidly, the desired hardness required for a cutting tool cannot be obtained, and deformation and wear progress become remarkable. Therefore, the Co content in the WC-based cemented carbide is set to 6. It was defined as 0 to 14.0% by mass.

Cr
Crは、主たる結合相を形成するCo中にCrが固溶し、硬質相を形成するWC相の成長を抑制して、WC相の粒径を微細化させ、WC基超硬合金を微粒・均粒組織とし、靱性を高める。しかし、この作用は、Cr含有量が、0.1質量%未満では不充分であり、一方、その含有量がCoの含有量に対し10%を超えると、CrとWの複合炭化物を析出し、靱性が低下し、また、欠損発生の起点となる。
本発明においてはCo含有量上限が14.0質量%であるため、Crの上限はCo含有量上限の10%である1.4質量%である。
したがって、WC基超硬合金中のCr含有量は、0.1〜1.4質量%と定めた。
Cr 3 C 2 :
Cr 3 C 2 is a WC-based cemented carbide in which Cr is dissolved in Co forming the main bonding phase to suppress the growth of the WC phase forming the hard phase, and the particle size of the WC phase is made finer. To increase toughness by forming a fine-grained / uniform-grained structure. However, this action is insufficient when the Cr 3 C 2 content is less than 0.1% by mass, while when the content exceeds 10% with respect to the Co content, a composite carbide of Cr and W is produced. Precipitates, the toughness decreases, and it becomes the starting point for the occurrence of defects.
Since the upper limit of the Co content is 14.0% by mass in the present invention, the upper limit of Cr 3 C 2 is 1.4% by mass, which is 10% of the upper limit of the Co content.
Therefore, the Cr 3 C 2 content in the WC-based cemented carbide was determined to be 0.1 to 1.4% by mass.

TaC、NbC、TiC、ZrC:
本発明のWC基超硬合金は、その成分として、さらに、TaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を合計量で4.0質量%以下、さらに含有することができる。
Ta、Nb、Ti、Zrはいずれも、主たる結合相を形成するCo中に固溶して硬さを高める効果を有するが、それらを炭化物換算した合計含有量が4.0質量%を超えると、炭化物析出により靱性を低下させ、欠損発生の起点となる。
したがって、WC基超硬合金中の成分としてTaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を含有させる場合には、その合計含有量は、4.0質量%以下とすることが望ましい。
なお、前記したCr、TaC、NbC、TiC、ZrCの含有量は、WC基超硬合金についてEPMAによって測定したCr量、Ta量、Nb量、Ti量、Zr量を、いずれも炭化物換算した数値である。
TaC, NbC, TiC, ZrC:
The WC-based cemented carbide of the present invention can further contain at least one selected from TaC, NbC, TiC and ZrC as a component thereof in a total amount of 4.0% by mass or less.
Ta, Nb, Ti, and Zr all have the effect of increasing the hardness by solid solution in Co forming the main bonding phase, but when the total content in terms of carbides exceeds 4.0% by mass. , The toughness is lowered by the precipitation of carbides, which serves as a starting point for the occurrence of defects.
Therefore, when at least one selected from TaC, NbC, TiC and ZrC is contained as a component in the WC-based cemented carbide, the total content may be 4.0% by mass or less. desirable.
The content of Cr 3 C 2 , TaC, NbC, TiC, and ZrC described above is the amount of Cr, Ta, Nb, Ti, and Zr measured by EPMA for the WC-based cemented carbide, all of which are carbides. It is a converted value.

結合相の粒度分布
本発明は、WC基超硬合金において、結合相の粒度分布を範囲に規定することにより、適度な大きさの結合相粒子を多数有し、WCのスケルトン構造が強固に組まれた、耐塑性変形性にすぐれた組織を得るものである。
具体的には、WC基超硬合金における結合相の粒度分布を解析し、累積10%粒子面積のときの結合相粒子一つが占める面積をA10、累積90%粒子面積のときの結合相粒子一つが占める面積をA90とした際、A10が0.15μm以上0.25μm未満であり、かつ、A90/A10が8.0以上、11.0未満と規定することにより得ることができる。
これに対し、A10が、0.15μm未満では、微細な結合性が多く存在し、粗大な結合相が不足することにより、耐塑性変形性が十分でなく、A10が0.25μm以上では、粗大な結合相が多く存在し、微細な結合相が不足するため耐欠損性が十分でないため、所望の効果を発揮できない。また、A90/A10が8.0未満では、結合相の粒度分布が狭く、均質な組織となるため耐欠損性は向上するものの、WCのスケルトン構造が分断され、十分な耐塑性変形を発揮することが難しく、A90/A10が11.0以上では、粗大な結合相が非常に多く存在し、粗大な結合相が破壊の起点となることから、十分な耐欠損性を発揮できない。
SEM像からの結合相の抽出は、例えば、画像解析ソフトImageJを用いることができ、抽出した結合相各粒子の面積を、面積の小さい粒子から累積していき、累積面積率が結合相全面積の10%となったときの結合相面積をA10、累積面積率が結合相全面積の90%となったときの結合相面積をA90として求めることができる。なお、本発明ではWC基超硬合金の一枚の断面画像においてWCにより分断された各結合相領域を結合相粒子と称する。
Particle size distribution of the bonded phase In the WC-based cemented carbide, by defining the particle size distribution of the bonded phase in the range, a large number of bonded phase particles of appropriate size are provided, and the WC skeleton structure is firmly assembled. It is possible to obtain a structure that is sown and has excellent plastic deformation resistance.
Specifically, the particle size distribution of the bonded phase in the WC-based superhard alloy is analyzed, and the area occupied by one bonded phase particle when the cumulative particle area is 10% is A10, and the area occupied by the bonded phase particle when the cumulative 90% particle area is one. When the area occupied by the particles is A90, it can be obtained by defining that A10 is 0.15 μm 2 or more and less than 0.25 μm 2 and A90 / A10 is 8.0 or more and less than 11.0.
On the other hand, when A10 is less than 0.15 μm 2 , there are many fine bonds and the coarse bonding phase is insufficient, so that the plastic deformation resistance is not sufficient, and when A10 is 0.25 μm 2 or more, Since there are many coarse bonded phases and the fine bonded phases are insufficient, the fracture resistance is not sufficient, so that the desired effect cannot be exhibited. Further, when A90 / A10 is less than 8.0, the particle size distribution of the bonded phase is narrow and the structure becomes homogeneous, so that the fracture resistance is improved, but the skeleton structure of the WC is divided and sufficient plastic deformation resistance is exhibited. It is difficult, and when A90 / A10 is 11.0 or more, a large number of coarse bonded phases are present, and the coarse bonded phase becomes the starting point of fracture, so that sufficient fracture resistance cannot be exhibited.
For the extraction of the bound phase from the SEM image, for example, the image analysis software ImageJ can be used, and the area of each particle of the extracted bound phase is accumulated from the particles having the smallest area, and the cumulative area ratio is the total area of the bound phase. The bonded phase area when it becomes 10% of the above can be obtained as A10, and the bonded phase area when the cumulative area ratio becomes 90% of the total area of the bonded phase can be obtained as A90. In the present invention, each bonded phase region divided by WC in a cross-sectional image of one WC-based cemented carbide is referred to as a bonded phase particle.

本発明のWC基超硬工具は、例えば、以下の工程によって作製することができる。
まず、所定の平均粒径の粗粒WC粉末、細粒WC粉末、粗粒Co粉末、細粒Co粉末、および、Cr粉末からなる原料粉末、あるいは、必要に応じて、さらに、TaC粉末、NbC粉末、TiC粉末、ZrC粉末のうちの1種以上の粉末を含有する原料粉末を、所定の組成になるように配合・混合した混合粉末を作製する。
ついで、前記混合粉末を成形して圧粉成形体を作製し、この圧粉成形体を、加圧雰囲気中にて固相再配列工程(1000〜1100℃にて300〜1100分加圧)を経た後、低温焼結(1350〜1400℃、60〜120分)により、WC基超硬合金を作製する。
ついで、前記WC基超硬合金を、機械加工、研削加工し、所望サイズ・形状のWC基超硬工具を作製することができる。
The WC-based cemented carbide tool of the present invention can be produced, for example, by the following steps.
First, a raw material powder composed of coarse-grained WC powder, fine-grained WC powder, coarse-grained Co powder, fine-grained Co powder, and Cr 3 C 2 powder having a predetermined average particle size, or, if necessary, TaC. A mixed powder is prepared by blending and mixing a raw material powder containing one or more of powder, NbC powder, TiC powder, and ZrC powder so as to have a predetermined composition.
Then, the mixed powder is molded to prepare a powder compact, and the powder compact is subjected to a solid phase rearrangement step (pressurization at 1000 to 1100 ° C. for 300 to 1100 minutes) in a pressurized atmosphere. After that, a WC-based cemented carbide is produced by low-temperature sintering (1350 to 1400 ° C., 60 to 120 minutes).
Then, the WC-based cemented carbide can be machined and ground to produce a WC-based cemented carbide tool having a desired size and shape.

また、前記WC基超硬工具の少なくとも切れ刃に、Ti−Al系、Al−Cr系等の炭化物、窒化物、炭窒化物あるいはAl等の硬質皮膜を、PVD、CVD等の成膜法により被覆形成することにより、表面被覆WC基超硬合金製切削工具を作製することができる。
なお、表面被覆WC基超硬合金製切削工具の作製にあたり、硬質皮膜の種類、成膜法は、当業者に既によく知られている膜種、成膜手法を採用すればよく、特に、制限するものではない。
Further, at least the cutting edge of the WC-based cemented carbide, Ti-Al-based, carbide Al-Cr system and the like, nitrides, carbonitrides or hard film such as Al 2 O 3, PVD, growth of CVD etc. By forming a coating by the film method, a cutting tool made of a surface-coated WC-based cemented carbide can be manufactured.
When manufacturing a cutting tool made of a surface-coated WC-based cemented carbide, the type of hard film and the film forming method may be a film type and a film forming method already well known to those skilled in the art, and are particularly limited. It is not something to do.

本発明のWC基超硬工具および表面被覆WC基超硬工具について、実施例により具体的に説明する。 The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide tool of the present invention will be specifically described with reference to Examples.

≪本発明WC基超硬工具≫
(a)まず、焼結用の粉末として、表1に示す平均粒径(d50)4.0〜8.0μmの粗粒WC粉末、平均粒径(d50)0.5〜2.0μmの微粒WC粉末、平均粒径(d50)3.0〜4.0μmの粗粒Co粉末、平均粒径(d50)0.5〜1.5μmの微粒Co粉末、および、平均粒径1.0〜3.0μmの範囲である、Cr粉末、TaC粉末、NbC粉末、TiC粉末、ZrC粉末を用意する。なお、粉末の平均粒径(d50)は体積基準で算出した。
これらの粉末を、表1に示す配合組成となるように配合して、焼結用粉末を作製した。
表1には、各種粉末の配合組成(質量%)を示す。
<< WC-based carbide tool of the present invention >>
(A) First, as the powder for sintering, coarse WC powder having an average particle size (d50) of 4.0 to 8.0 μm and fine particles having an average particle size (d50) of 0.5 to 2.0 μm are shown in Table 1. WC powder, coarse Co powder with an average particle size (d50) of 3.0 to 4.0 μm, fine Co powder with an average particle size (d50) of 0.5 to 1.5 μm, and an average particle size of 1.0 to 3 in the range of .0μm, Cr 3 C 2 powder, TaC powder, NbC powder, TiC powder, to prepare a ZrC powder. The average particle size (d50) of the powder was calculated on a volume basis.
These powders were blended so as to have the blending composition shown in Table 1 to prepare a powder for sintering.
Table 1 shows the compounding composition (mass%) of various powders.

(b)表1に示す配合組成に配合した焼結用粉末を、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して、所定の形状を有する圧粉成形体を作製した。 (B) The sintering powder blended in the blending composition shown in Table 1 is wet-mixed with a ball mill for 72 hours, dried, and then press-molded at a pressure of 100 MPa to prepare a powder compact having a predetermined shape. bottom.

(c)ついで、表2に示す条件にて、加圧仮焼工程(1000〜1100℃、300〜1100分)、および、低温焼結工程を経て、WC超硬合金を作製した。 (C) Then, under the conditions shown in Table 2, a WC cemented carbide was prepared through a pressure calcining step (1000 to 1100 ° C., 300 to 1100 minutes) and a low-temperature sintering step.

(d)ついで、前記WC基超硬合金を、機械加工、研削加工し、CNMG120408−GMのインサート形状を持ったWC基超硬工具1〜10(以下、本発明工具1〜10という)を作製した。本発明工具の作製条件及び組成を表3に示す。 (D) Next, the WC-based cemented carbide is machined and ground to prepare WC-based cemented carbide tools 1 to 10 (hereinafter referred to as tools 1 to 10 of the present invention) having an insert shape of CNMG120408-GM. bottom. Table 3 shows the manufacturing conditions and composition of the tool of the present invention.

≪比較例WC基超硬工具≫
比較のために、比較例のWC基超硬工具1〜10(以下、比較例工具1〜10という)を製造した。
その製造工程は、表4に示す原料粉末を用い、通常条件での焼結を行ったものであり、具体的には、表4に示す配合組成に配合した焼結用粉末を、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して圧粉成形体を作製し、表5に示す、加熱温度:1360℃以上1500℃以下、かつ、加熱保持時間:30〜120分、真空雰囲気という通常の条件で焼結して、WC基超硬合金焼結体を作製し、これを機械加工、研削加工し、CNMG120408−GMのインサート形状としたものである。
≪Comparative example WC-based carbide tool≫
For comparison, WC-based cemented carbide tools 1 to 10 of Comparative Example (hereinafter referred to as Comparative Example Tools 1 to 10) were manufactured.
The manufacturing process is performed by sintering under normal conditions using the raw material powder shown in Table 4. Specifically, the sintering powder blended in the compounding composition shown in Table 4 is used in a ball mill 72. After wet mixing for hours and drying, press molding was performed at a pressure of 100 MPa to prepare a powder compact, and the heating temperature: 1360 ° C. or higher and 1500 ° C. or lower and the heating holding time: 30 to 120 minutes shown in Table 5 were obtained. , A WC-based cemented carbide sintered body is produced by sintering under normal conditions of a vacuum atmosphere, and this is machined and ground to form an insert shape of CNMG120408-GM.

≪結合相の面積割合および結合相の個数の測定≫
本発明工具1〜10及び比較例工具1〜10のWC基超硬合金の断面について、EPMAにより、その成分であるCo、Cr、Ta、Nb、Ti、Zrの含有量を10点測定し、その平均値を各成分の含有量とした。
なお、Cr、Ta、Nb、Ti、Zrは、それぞれの炭化物に換算して含有量を算出した。表3、表6、それぞれの平均含有量を示す。
≪Measurement of area ratio of bonded phase and number of bonded phases≫
With respect to the cross section of the WC-based cemented carbide of the tools 1 to 10 of the present invention and the tools 1 to 10 of the comparative example, the contents of Co, Cr, Ta, Nb, Ti, and Zr, which are the components thereof, were measured at 10 points by EPMA. The average value was taken as the content of each component.
The contents of Cr, Ta, Nb, Ti, and Zr were calculated by converting them into their respective carbides. Tables 3 and 6 show the average contents of each.

つぎに、本発明工具1〜10及び比較例工具1〜10のWC基超硬合金の断面について、走査型電子顕微鏡(SEM)を用いて、例えば、倍率200〜500倍でWC基超硬合金の断面を観察して、画像サイズ120×96mm、pixel数1280×1024pixelでSEM像を取得し、これを画像解析ソフトImageJにて画像処理し、一つの観察視野内の個々の結合相の面積を測定し、結合相各粒子の面積を、面積の小さい粒子から累積していき、累積面積が結合相全面積の10%を超えたところでの結合相粒子一つが占める面積をA10、累積面積が結合相全面積の90%を超えたところでの結合相粒子一つが占める面積をA90として求める。
つぎに、得られたA90をA10で除することにより、A90/A10を得る。
なお、結合相の個数は、WC粒子により分断された個々の結合相を各々一つの結合相として計測する。
また、十分な数の結合相を画像内に含めるため、倍率200〜500倍での観察を行い、画像処理後に計測される結合相の個数が5000〜15000個の範囲に入るように観察倍率を選定した。
Next, with respect to the cross section of the WC-based superhard alloy of the tools 1 to 10 of the present invention and the tools 1 to 10 of the comparative example, using a scanning electron microscope (SEM), for example, the WC-based superhard alloy at a magnification of 200 to 500 times. An SEM image was acquired with an image size of 120 × 96 mm and a Magnification of 1280 × 1024 Magnifier, and the area of each coupled phase in one observation field was determined by image processing with the image analysis software ImageJ. Measure and accumulate the area of each particle of the bonding phase from the particle with the smallest area, and the area occupied by one bonding phase particle when the cumulative area exceeds 10% of the total area of the bonding phase is A10, and the cumulative area is bonded. The area occupied by one bonded phase particle when it exceeds 90% of the total area of the phase is determined as A90.
Next, A90 / A10 is obtained by dividing the obtained A90 by A10.
The number of bonded phases is measured by measuring each of the individual bonded phases divided by the WC particles as one bonded phase.
Further, in order to include a sufficient number of coupled phases in the image, observation is performed at a magnification of 200 to 500 times, and the observation magnification is adjusted so that the number of coupled phases measured after image processing falls within the range of 5000 to 15000. Selected.

Figure 2021134364
Figure 2021134364


Figure 2021134364
Figure 2021134364


Figure 2021134364
Figure 2021134364

Figure 2021134364
Figure 2021134364

Figure 2021134364
Figure 2021134364

Figure 2021134364
Figure 2021134364


上記本発明工具1〜10、比較例工具1〜10について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の湿式連続切削加工試験を行った。
被削材:JIS・SUS304(HB170)の丸棒、
切削速度:100m/min、
切り込み:2.0mm、
送り:0.6mm/rev、
切削時間:4分、
湿式水溶性切削油使用。
上記湿式連続切削加工試験後の、切れ刃の逃げ面塑性変形量を測定するとともに、切れ刃の損耗状態を観察した。なお、切れ刃の逃げ面塑性変形量は、工具の主切れ刃側逃げ面について、切れ刃から十分離れた位置で主切れ刃側逃げ面とすくい面が交差する稜線上に線分を引き、同線分を切れ刃部方向に延伸し、延伸した線分と切れ刃部稜線間の距離(延伸した線分の垂直方向)が最も離れている部分を測定し、切れ刃の逃げ面塑性変形量とした。また、逃げ面塑性変形量が0.04mm以上であった時、損耗状態を刃先変形とした。
表7に、この試験結果を示す。
The following wet continuous cutting test was performed on the tools 1 to 10 of the present invention and the tools 1 to 10 of the comparative examples in a state where they were screwed to the tip of the tool steel cutting tool with a fixing jig.
Work material: JIS / SUS304 (HB170) round bar,
Cutting speed: 100 m / min,
Notch: 2.0 mm,
Feed: 0.6mm / rev,
Cutting time: 4 minutes,
Uses wet water-soluble cutting oil.
After the wet continuous cutting test, the flank plastic deformation amount of the cutting edge was measured, and the worn state of the cutting edge was observed. The amount of plastic deformation of the flank surface of the cutting edge is determined by drawing a line segment on the flank surface on the main cutting edge side of the tool at a position sufficiently distant from the cutting edge on the ridge line where the flank surface on the main cutting edge side and the rake face intersect. The same line segment is stretched in the direction of the cutting edge, and the part where the distance between the stretched line segment and the ridgeline of the cutting edge (vertical direction of the stretched line segment) is the longest is measured, and the flank plastic deformation of the cutting edge is measured. The amount was taken. Further, when the flank plastic deformation amount was 0.04 mm or more, the worn state was defined as the cutting edge deformation.
Table 7 shows the test results.

Figure 2021134364
Figure 2021134364

また、前記本発明工具1〜4、比較例工具1〜4の切刃表面に、表8に示す平均層厚の硬質被覆層をPVD法あるいはCVD法で被覆形成し、本発明表面被覆WC基超硬合金製切削工具(以下、「本発明被覆工具」という)1〜4、比較例表面被覆WC基超硬合金製切削工具(以下、「比較例被覆工具」という)1〜4を作製した。
上記の各被覆工具について、以下に示す、湿式連続切削加工試験を実施し、切れ刃の逃げ面塑性変形量を測定するとともに、切れ刃の損耗状態を観察した。
切削条件:
被削材:JIS・SUS304(HB170)の丸棒、
切削速度:190m/min、
切り込み:2.0mm、
送り:0.5mm/rev、
切削時間:4分、
湿式水溶性切削油使用。
表9に、切削試験の結果を示す。
Further, a hard coating layer having an average layer thickness shown in Table 8 is coated on the cutting tool surfaces of the tools 1 to 4 of the present invention and tools 1 to 4 of the comparative example by the PVD method or the CVD method, and the surface coating WC group of the present invention is formed. Cemented Carbide Cutting Tools (hereinafter referred to as "Coating Tools of the Present Invention") 1 to 4 and Comparative Example Surface Coated WC-based Cemented Carbide Cutting Tools (hereinafter referred to as "Comparative Example Covering Tools") 1 to 4 were produced. ..
The wet continuous cutting test shown below was carried out for each of the above-mentioned covering tools, the amount of plastic deformation of the flank of the cutting edge was measured, and the state of wear of the cutting edge was observed.
Cutting conditions:
Work material: JIS / SUS304 (HB170) round bar,
Cutting speed: 190m / min,
Notch: 2.0 mm,
Feed: 0.5 mm / rev,
Cutting time: 4 minutes,
Uses wet water-soluble cutting oil.
Table 9 shows the results of the cutting test.

Figure 2021134364
Figure 2021134364

Figure 2021134364
Figure 2021134364

表7及び表9に示される試験結果によれば、本発明工具および本発明被覆工具は、欠損を発生することもなく、すぐれた耐塑性変形性を発揮するのに対して、比較例工具および比較例被覆工具は、欠損の発生もしくは塑性変形により工具寿命が短命であることがわかる。 According to the test results shown in Tables 7 and 9, the tools of the present invention and the coated tools of the present invention exhibit excellent plastic deformation resistance without causing defects, whereas the comparative tool and the comparative tool and the tool of the present invention have excellent plastic deformation resistance. Comparative example It can be seen that the coated tool has a short life due to the occurrence of defects or plastic deformation.

以上のとおり、本発明工具および本発明被覆工具は、合金鋼等の断続切削加工に供した場合、すぐれた耐塑性変形性、耐欠損性を発揮し、他の被削材、切削条件に適用した場合にも、長期の使用にわたってすぐれた切削性能を発揮し、工具の長寿命化が図られることが期待される。
As described above, the tool of the present invention and the covering tool of the present invention exhibit excellent plastic deformation resistance and fracture resistance when subjected to intermittent cutting of alloy steel, etc., and are applicable to other work materials and cutting conditions. Even in such a case, it is expected that excellent cutting performance will be exhibited over a long period of use and the life of the tool will be extended.

Claims (3)

WC基超硬合金を基体とするWC基超硬合金製切削工具において、
前記WC基超硬合金の成分組成は、結合相形成成分としてのCoを6.0〜14.0質量%とCrを0.1〜1.4質量%含有し、残部はWC及び不可避不純物からなり、
前記WC基超硬合金の断面について結合相の粒度分布を解析し、累積10%粒子面積のときの結合相粒子一つが占める面積をA10、累積90%粒子面積のときの結合相粒子一つが占める面積をA90とした際、A10が0.15μm以上0.25μm未満であり、かつ、A90/A10が8.0以上、11.0未満であることを特徴とするWC基超硬合金製切削工具。
In a cutting tool made of WC-based cemented carbide based on WC-based cemented carbide,
The composition of WC-based cemented carbide, a 6.0 to 14.0 wt% of Co and Cr 3 C 2 as the binder phase forming component containing 0.1 to 1.4 wt%, the balance being WC and Consists of unavoidable impurities
The particle size distribution of the bonded phase was analyzed for the cross section of the WC-based cemented carbide, and the area occupied by one bonded phase particle when the cumulative 10% particle area was occupied by A10 and one bonded phase particle when the cumulative 90% particle area was occupied. Made of WC-based cemented carbide, characterized in that A10 is 0.15 μm 2 or more and less than 0.25 μm 2 and A90 / A10 is 8.0 or more and less than 11.0 when the area is A90. Cutting tools.
前記WC基超硬合金は、TaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を合計量で4.0質量%以下、さらに含有することを特徴とする請求項1に記載のWC基超硬合金製切削工具。 The WC according to claim 1, wherein the WC-based cemented carbide further contains at least one selected from TaC, NbC, TiC and ZrC in a total amount of 4.0% by mass or less. Cutting tool made of basic cemented carbide. 請求項1または請求項2に記載のWC基超硬合金製切削工具の少なくとも切れ刃には、硬質被覆層が形成されていることを特徴とする表面被覆WC基超硬合金製切削工具。
A surface-coated WC-based cemented carbide cutting tool, characterized in that a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide cutting tool according to claim 1 or 2.
JP2020028532A 2020-02-21 2020-02-21 WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance Active JP7385829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020028532A JP7385829B2 (en) 2020-02-21 2020-02-21 WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028532A JP7385829B2 (en) 2020-02-21 2020-02-21 WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance

Publications (2)

Publication Number Publication Date
JP2021134364A true JP2021134364A (en) 2021-09-13
JP7385829B2 JP7385829B2 (en) 2023-11-24

Family

ID=77660394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028532A Active JP7385829B2 (en) 2020-02-21 2020-02-21 WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance

Country Status (1)

Country Link
JP (1) JP7385829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188012A1 (en) 2022-03-29 2023-10-05 住友電工ハードメタル株式会社 Cemented carbide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE509609C2 (en) 1996-07-19 1999-02-15 Sandvik Ab Carbide body with two grain sizes of WC
JP2001279363A (en) 2000-03-29 2001-10-10 Ngk Spark Plug Co Ltd Cutting tool
JP2003155537A (en) 2001-11-16 2003-05-30 Sumitomo Electric Ind Ltd High-toughness hard alloy and its manufacturing method
CN101956114A (en) 2010-10-14 2011-01-26 浙江恒成硬质合金有限公司 Formula of tungstate and cobalt hard alloy
EP3577242B1 (en) 2017-01-31 2022-10-12 Tallinn University of Technology Method of making a double-structured bimodal tungsten cemented carbide composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188012A1 (en) 2022-03-29 2023-10-05 住友電工ハードメタル株式会社 Cemented carbide

Also Published As

Publication number Publication date
JP7385829B2 (en) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6953674B2 (en) Cemented Carbide and Cutting Tools
KR100231267B1 (en) Hard alloy and production thereof
JP5413047B2 (en) Composite sintered body
KR20090028444A (en) Coated cutting insert for milling applications
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JP5856752B2 (en) Tungsten carbide-based sintered body and wear-resistant member using the same
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
KR101302374B1 (en) Cemented carbide having good wear resistance and chipping resistance
JP4703122B2 (en) Method for producing TiCN-based cermet
JP2006111947A (en) Ultra-fine particle of cermet
JP7388431B2 (en) Cemented carbide and cutting tools containing it as a base material
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance
WO2020196590A1 (en) Wc-based cemented carbide cutting tool having excellent defect resistance and chipping resistance, and surface-coated wc-based cemented carbide cutting tool
JP7209216B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP7307394B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP2005200668A (en) Cermet and coated cermet, and manufacturing methods for them
JP7161677B2 (en) WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance
JP2021085052A (en) Cemented carbide and cutting tool including the same as base material
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP5031610B2 (en) TiCN-based cermet
JP2016030846A (en) Cemented carbide and cutting tool
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP4540791B2 (en) Cermet for cutting tools
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
WO2021193159A1 (en) Cutting tool made of wc-based cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231026

R150 Certificate of patent or registration of utility model

Ref document number: 7385829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150