WO2021193159A1 - Cutting tool made of wc-based cemented carbide - Google Patents

Cutting tool made of wc-based cemented carbide Download PDF

Info

Publication number
WO2021193159A1
WO2021193159A1 PCT/JP2021/010161 JP2021010161W WO2021193159A1 WO 2021193159 A1 WO2021193159 A1 WO 2021193159A1 JP 2021010161 W JP2021010161 W JP 2021010161W WO 2021193159 A1 WO2021193159 A1 WO 2021193159A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
cemented carbide
cutting tool
based cemented
particles
Prior art date
Application number
PCT/JP2021/010161
Other languages
French (fr)
Japanese (ja)
Inventor
佳祐 河原
龍 市川
五十嵐 誠
岡田 一樹
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP21776329.1A priority Critical patent/EP4129540A4/en
Priority to JP2022509932A priority patent/JPWO2021193159A1/ja
Publication of WO2021193159A1 publication Critical patent/WO2021193159A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor

Abstract

This cutting tool made of WC-based cemented carbide is characterized in that: 1) said cutting tool contains 8.0-14.0 mass% of Co, 0.1-1.4 mass% of Cr3C2, and 0.6-4.0 mass% of one or more selected from among TaC, NbC, TiC, and ZrC, with the remainder consisting of WC and inevitable impurities; and 2) when the boundary length between WC grains is denoted by L1, the boundary length between a WC grain and a bonded phase or γ phase is denoted by L2, the area ratio of the bonded phase is denoted by V(%), the average grain diameter of WC grains is denoted by D (μm), the theoretical volume fraction of the γ phase is denoted by Vγ, and a WC-WC boundary length ratio is denoted by R, R=(L1)/((L1)+(L2)), R≥(0.76-0.059×D)×(10/V)-Vγ×0.06, and 1.0≤D≤4.0 are satisfied.

Description

WC基超硬合金製切削工具WC-based cemented carbide cutting tool
 本発明は、WC基超硬合金製切削工具(以下、WC基超硬工具ということがある)に関する。本出願は、2020年3月26日に出願した日本国出願である2020-56624号に基づく優先権を主張する。当該日本国出願に記載された全ての記載内容は、参照により本願明細書に援用される。 The present invention relates to a WC-based cemented carbide cutting tool (hereinafter, may be referred to as a WC-based cemented carbide tool). This application claims priority under 2020-56624, a Japanese application filed on March 26, 2020. All the contents of the application in Japan are incorporated herein by reference.
 WC基超硬合金は硬さが高く、また、靱性を備えることから、これを工具基体とするWC基超硬工具は、優れた耐摩耗性を発揮し、また、長期の使用にわたって長寿命を有する切削工具として用いられている。
 一方、近年、被削材の種類、切削加工条件等に応じて、WC基超硬工具の切削性能、工具寿命をより一段と向上させるべく、各種の提案がなされている。
Since the WC-based cemented carbide has high hardness and toughness, the WC-based cemented carbide tool using this as a tool base exhibits excellent wear resistance and has a long life over a long period of use. It is used as a cutting tool to have.
On the other hand, in recent years, various proposals have been made to further improve the cutting performance and tool life of WC-based cemented carbide tools according to the type of work material, cutting conditions, and the like.
 例えば、特許文献1では、WC粒子数をA、他のWC粒子との接触点の点数が1点以下のWC粒子の粒子数をBとするとき、B/A≦0.05を満たすようにしたWC基超硬合金製切削工具が提案され、該工具は耐塑性変形性が向上し、炭素鋼、ステンレス鋼の湿式連続切削加工において、長寿命であるとされている。 For example, in Patent Document 1, when the number of WC particles is A and the number of WC particles having one or less contact points with other WC particles is B, B / A ≤ 0.05 is satisfied. A WC-based cemented carbide cutting tool has been proposed, which is said to have improved plastic deformation resistance and a long life in wet continuous cutting of carbon steel and stainless steel.
 また、例えば、特許文献2では、Co量が10~13質量%、Co量に対するCr量の比が2~8%、TaCとNbCの少なくとも1種が0.2~0.5質量%、残部がWCからなり、硬さが88.6~89.5HRAであって、研磨面上の面積比におけるWC積算粒度80%径(D80)と積算粒度20%径(D20)の比D80/D20を2.0~4.0とし、また、D80を4.0~7.0μmとし、かつWC接着度を0.36~0.43としたWC基超硬合金製切削工具が提案され、該工具は、ステンレス鋼等の難削材の切削加工において、被削材の凝着を防止し耐欠損性が向上しているとされている。 Further, for example, in Patent Document 2, the amount of Co is 10 to 13% by mass, the ratio of the amount of Cr to the amount of Co is 2 to 8%, at least one of TaC and NbC is 0.2 to 0.5% by mass, and the balance. Is composed of WC and has a hardness of 88.6 to 89.5 HRA, and the ratio D80 / D20 of the WC integrated particle size 80% diameter (D80) and the integrated particle size 20% diameter (D20) in the area ratio on the polished surface is calculated. A WC-based cemented carbide cutting tool having a D80 of 2.0 to 4.0, a D80 of 4.0 to 7.0 μm, and a WC adhesion of 0.36 to 0.43 has been proposed. Is said to prevent adhesion of the work material and improve fracture resistance in cutting difficult-to-cut materials such as stainless steel.
 さらに、例えば、特許文献3では、WC-WC接着界面長さをL1とし、WC-Co接着界面長さをL2としたとき、
 R>(0.82-0.086×D)×(10/V)
 R=(L1)/((L1)+(L2))
 D:WCの面積率が50%となるときのWCの粒径(μm)で、0.6≦D≦1.5
 V:結合相体積(体積%)であって、9≦V≦14
を満足するWC基超硬合金製切削工具が提案され、該工具は、Ni基耐熱合金の切削加工において、耐熱塑性変形性と靱性が向上するとされている。
Further, for example, in Patent Document 3, when the WC-WC bonding interface length is L1 and the WC-Co bonding interface length is L2,
R> (0.82-0.086 x D) x (10 / V)
R = (L1) / ((L1) + (L2))
D: The particle size (μm) of WC when the area ratio of WC is 50%, 0.6 ≦ D ≦ 1.5
V: Bonded phase volume (volume%), 9 ≦ V ≦ 14
A WC-based cemented carbide cutting tool that satisfies the above requirements has been proposed, and the tool is said to have improved heat-resistant plastic deformability and toughness in cutting Ni-based heat-resistant alloys.
特許第6256415号公報Japanese Patent No. 6256415 特開2017-88999号公報Japanese Unexamined Patent Publication No. 2017-88999 特開2017-179433号公報JP-A-2017-179433
 本発明は、前記事情や前記提案を鑑みてなされたものであって、特に、ステンレス鋼等の切削加工においても、長期の使用にわたり、優れた切削性能を発揮するWC基超硬合金製切削工具を提供することを目的とする。 The present invention has been made in view of the above circumstances and the above proposals, and in particular, a WC-based cemented carbide cutting tool that exhibits excellent cutting performance over a long period of time even in cutting of stainless steel and the like. The purpose is to provide.
 本発明の実施形態に係るWC基超硬合金製切削工具は、
1)Co:8.0~14.0質量%、
Cr:0.1~1.4質量%、
TaC、NbC、TiCおよびZrCのうちから選ばれる1種または2種以上:0.6~4.0質量%
を含み、
残部はWCおよび不可避不純物であって、
2)WC粒子同士の界面長をL1、
WC粒子と、結合相またはγ相との界面長をL2、
結合相の面積率をV(%)、
WC粒子の平均粒径をD(μm)、
γ相の理論体積率をVγ、
WC-WC界面長比率をRと、それぞれ、したとき、
R=(L1)/((L1)+(L2))、
R≧(0.76-0.059×D)×(10/V)-Vγ×0.06、
1.0≦D≦4.0
を満足する。
The WC-based cemented carbide cutting tool according to the embodiment of the present invention
1) Co: 8.0 to 14.0% by mass,
Cr 3 C 2 : 0.1 to 1.4% by mass,
One or more selected from TaC, NbC, TiC and ZrC: 0.6 to 4.0% by mass
Including
The rest are WC and unavoidable impurities,
2) The interface length between WC particles is L1,
The interface length between the WC particles and the bound phase or γ phase is L2,
The area ratio of the bonded phase is V (%),
The average particle size of WC particles is D (μm),
The theoretical volume fraction of the γ phase is Vγ,
When the WC-WC interface length ratio is R, respectively,
R = (L1) / ((L1) + (L2)),
R ≧ (0.76-0.059 × D) × (10 / V) -Vγ × 0.06,
1.0 ≤ D ≤ 4.0
To be satisfied.
 さらに、前記実施形態に係るWC基超硬合金製切削工具は、以下の(1)~(2)いずれかまたは両方を満足してもよい。 Further, the WC-based cemented carbide cutting tool according to the embodiment may satisfy either or both of the following (1) and (2).
(1)前記γ相の平均粒径は、0.2~4.0μmであること。
(2)切刃には、被覆層が形成されていること。
(1) The average particle size of the γ phase is 0.2 to 4.0 μm.
(2) A coating layer is formed on the cutting edge.
 前記によれば、ステンレス鋼等の加工においても、高温硬さ、耐塑性変形性、耐チッピング性に優れたWC基超硬合金製切削工具を得ることができる。 According to the above, it is possible to obtain a WC-based cemented carbide cutting tool having excellent high-temperature hardness, plastic deformation resistance, and chipping resistance even in the processing of stainless steel and the like.
本実施形態に係るWC基超硬合金製切削工具の組織の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the WC-based cemented carbide cutting tool which concerns on this embodiment. 切刃の逃げ面塑性変形量の測定の一例を示す逃げ面の側面を示す模式図である。It is a schematic diagram which shows the side surface of the flank surface which shows an example of the measurement of the flank plastic deformation amount of a cutting edge.
 本発明者は、前記特許文献1~3に記載されているWC基超硬合金製切削工具について鋭意検討を行った結果、以下の事項を認識した。 The present inventor has recognized the following matters as a result of diligent studies on the WC-based cemented carbide cutting tools described in Patent Documents 1 to 3.
(1)前記特許文献1で提案されたWC基超硬合金製切削工具では、WC-WC粒子相互の接触点数を制御することによって、WC基超硬合金製切削工具の耐塑性変形性の向上を図っているものの、耐塑性変形性が不十分であること。 (1) In the WC-based cemented carbide cutting tool proposed in Patent Document 1, the plastic deformation resistance of the WC-based cemented carbide cutting tool is improved by controlling the number of contact points between WC-WC particles. However, the plastic deformation resistance is insufficient.
(2)前記特許文献2で提案されたWC基超硬合金製切削工具では、WC粒度分布等を制御することによって、WC基超硬合金製切削工具の耐欠損性、耐凝着性の向上を図っているものの、TaCとNbCはそれらが結合相中に固溶する範囲でしか含有されていないため、それらが構成するγ相がWC-WC粒子間に接着してWC-WC界面すべりを抑制させる働き、高温硬さが不十分となり、ステンレス鋼等の旋削切削加工においては工具寿命が短命であること。 (2) In the WC-based cemented carbide cutting tool proposed in Patent Document 2, the fracture resistance and adhesion resistance of the WC-based cemented carbide cutting tool are improved by controlling the WC particle size distribution and the like. However, since TaC and NbC are contained only in the range where they are solid-dissolved in the bonding phase, the γ phase formed by them adheres between the WC-WC particles to cause WC-WC interfacial slip. It works to suppress, the high temperature hardness is insufficient, and the tool life is short in turning cutting of stainless steel etc.
(3)前記特許文献3で提案されたWC基超硬合金製切削工具によれば、WC-WC粒子相互の接着界面比率を制御することによって、耐塑性変形性の向上を図っているものの、γ相成分を含んでおらず、高温硬さが不十分であり、かつWC-WC粒子相互の界面長比率を上げることのみに着目しており、γ相がWC-WC粒子間に接着してWC-WC粒子の粒界すべりを抑制する効果が十分に得られないことがあるため、ステンレス鋼等の切削加工においては耐塑性変形性が不十分である場合があること。 (3) According to the WC-based cemented carbide cutting tool proposed in Patent Document 3, although the adhesive interface ratio between WC-WC particles is controlled to improve the plastic deformation resistance. It does not contain the γ phase component, the high temperature hardness is insufficient, and the focus is only on increasing the interface length ratio between the WC-WC particles, and the γ phase adheres between the WC-WC particles. Since the effect of suppressing the grain boundary slip of the WC-WC particles may not be sufficiently obtained, the plastic deformation resistance may be insufficient in the cutting process of stainless steel or the like.
 そこで、本発明者らは、これらの認識を基に鋭意検討を重ねた。その結果、WC基超硬合金製切削工具において、以下の(1)~(4)の知見を得た。 Therefore, the present inventors have conducted diligent studies based on these recognitions. As a result, the following findings (1) to (4) were obtained in the WC-based cemented carbide cutting tool.
(1)結合相を形成するCo含有量を減少させることなく、所定量の結合相を確保した上で、
ヤング率の高いWC粒子同士が接触する界面(以下、「WC-WC界面」という。)における接触長(以下、「WC-WC界面長」という。)の比率を高めると、WC粒子が塑性変形を妨げる骨格(スケルトン)として働き、
さらに、WC基超硬合金製切削工具中に、適切な量と適切な粒径のγ相を含むことにより、WC-WC界面における粒界すべりが低減されて、
WC基超硬合金製切削工具の耐塑性変形性が向上すること。
(1) After securing a predetermined amount of the bound phase without reducing the Co content forming the bound phase,
Increasing the ratio of the contact length (hereinafter referred to as "WC-WC interface length") at the interface where WC particles having a high Young's modulus contact each other (hereinafter referred to as "WC-WC interface") causes the WC particles to undergo plastic deformation. Acts as a skeleton that interferes with
Furthermore, by including an appropriate amount and an appropriate particle size of γ phase in the WC-based cemented carbide cutting tool, the grain boundary slip at the WC-WC interface is reduced.
Improve the plastic deformation resistance of WC-based cemented carbide cutting tools.
(2)WC粒子の平均粒径が所定値以上の粗粒のものである場合には、結合相中の刃状転位の上昇運動が抑制され、加えて、Crが結合相中に含有されることにより、結合相が固溶強化されるため、WC基超硬合金製切削工具の耐塑性変形性がさらに向上すること。 (2) When the average particle size of the WC particles is coarser than a predetermined value, the ascending motion of the blade-shaped dislocations in the bonded phase is suppressed, and in addition, Cr 3 C 2 is contained in the bonded phase. Since the bonded phase is solid-solved and strengthened by being contained, the plastic deformation resistance of the WC-based cemented carbide cutting tool is further improved.
(3)γ相形成元素であるTa、Nb、Ti、Zrのいずれか一つ以上が結合相中に含有されることにより、優れた耐酸化性、高温硬さを発揮すること。 (3) By containing at least one of Ta, Nb, Ti, and Zr, which are γ phase forming elements, in the bonded phase, excellent oxidation resistance and high temperature hardness are exhibited.
(4)前記(1)~(3)を満足するWC基超硬合金製切削工具をステンレス鋼等の難削材の切削加工に供すると、同切削工具は、耐塑性変形性、高温硬さが向上しているため、工具の刃先の変形や塑性変形を起因としたチッピング等の異常損傷の発生が抑制され、また、γ相の存在により、耐酸化性、高温硬さが向上するため、同切削工具の長寿命化が達成されるものであること。 (4) When a WC-based superhard alloy cutting tool satisfying the above (1) to (3) is used for cutting a difficult-to-cut material such as stainless steel, the cutting tool has plastic deformation resistance and high-temperature hardness. Is improved, so that the occurrence of abnormal damage such as chipping due to deformation of the cutting edge of the tool and plastic deformation is suppressed, and the presence of the γ phase improves oxidation resistance and high temperature hardness. The life of the cutting tool should be extended.
 これらの知見に基づいて、WC基超硬合金製切削工具における「WC-WC界面長」と「WC-(結合相またはγ相:結合相+γ相と表す))の界面長」の和に対する「WC-WC界面長」の比率R(WC-WC界面長比率)が、結合相の面積率、平均WC粒子径、γ相の理論体積率との間に特定の関係を有するとき、前記課題を解決できることを見出したのである。 Based on these findings, "WC-WC interface length" and "WC- (bonded phase or γ phase: bonded phase + γ phase) interface length" in a WC-based superhard alloy cutting tool is "" When the ratio R (WC-WC interface length ratio) of "WC-WC interface length" has a specific relationship with the area ratio of the bonded phase, the average WC particle size, and the theoretical volume ratio of the γ phase, the above-mentioned problem is solved. He found that it could be solved.
 以下、本発明の実施形態に係るWC基超硬合金製切削工具について詳述する。
 なお、本明細書および特許請求の範囲において、数値範囲を「L~M」(L、Mは共に数値)で表現するときは、その範囲は上限値(M)および下限値(L)を含んでおり、上限値(M)と下限値(L)の単位は同じである。また、数値は公差を含む。
Hereinafter, the WC-based cemented carbide cutting tool according to the embodiment of the present invention will be described in detail.
In addition, in the present specification and claims, when a numerical range is expressed by "LM" (both L and M are numerical values), the range includes an upper limit value (M) and a lower limit value (L). The unit of the upper limit value (M) and the lower limit value (L) is the same. In addition, the numerical values include tolerances.
1.成分組成
 成分組成について説明する。
1. 1. Component composition The component composition will be described.
(1)Co
 Coは、主たる結合相の構成成分として含有している。Co含有量が8.0質量%未満ではWC基超硬合金製切削工具が十分な靱性を有することはできず、一方、Co含有量が14.0質量%を超えると急激に軟化し、切削工具として必要とされる所望の硬さが得られず、変形および摩耗進行が顕著になる。よって、WC基超硬合金切削工具中のCo含有量は8.0~14.0質量%が好ましい。そして、Coの含有量は8.5~12.0質量%であることがより好ましい。
(1) Co
Co is contained as a component of the main binding phase. If the Co content is less than 8.0% by mass, the WC-based cemented carbide cutting tool cannot have sufficient toughness, while if the Co content exceeds 14.0% by mass, it rapidly softens and cuts. The desired hardness required for a tool cannot be obtained, and deformation and wear progress become remarkable. Therefore, the Co content in the WC-based cemented carbide cutting tool is preferably 8.0 to 14.0% by mass. The Co content is more preferably 8.5 to 12.0% by mass.
 結合相には、WやC、その他の不可避不純物が含まれていてもよい。さらに、Cr、およびγ相を構成する金属成分の元素であるTa、Nb、Ti、Zrの少なくとも一種を含んでいてもよい。これら元素がCo中に存在するときは、Coに固溶した状態であると推定される。 The bonded phase may contain W, C, and other unavoidable impurities. Further, Cr and at least one of Ta, Nb, Ti, and Zr, which are elements of the metal component constituting the γ phase, may be contained. When these elements are present in Co, it is presumed that they are in a solid solution state in Co.
 Coは、fcc構造とhcp構造の2種類の結晶構造を有しており、WやC、Cr、およびγ相を構成する金属成分の元素であるTa、Nb、Ti、Zrの少なくとも一種を含んだ結合相においても、主たる結合相の形成成分であるCoと同様に、fcc構造とhcp構造を有する。そのため、WC基超硬合金製切削工具中のこれら2つの結晶構造を有する結合相領域を、それぞれ、結合相(fcc)、結合相(hcp)と呼称する。 Co has two types of crystal structures, an fcc structure and an hcp structure, and contains at least one of Ta, Nb, Ti, and Zr, which are elements of metal components constituting W, C, Cr, and the γ phase. However, the bound phase also has an fcc structure and an hcp structure, similarly to Co, which is a forming component of the main bound phase. Therefore, the bonded phase regions having these two crystal structures in the WC-based cemented carbide cutting tool are referred to as a bonded phase (fcc) and a bonded phase (hcp), respectively.
(2)Cr
 Crは、0.1~1.4質量%が含有することが好ましい。Crは、結合相を主に形成するCo中にCrとして固溶し、Coを固溶強化することで、WC基超硬合金製切削工具の強度を高める。この作用は、Cr含有量が0.1質量%未満では不充分であり、一方、その含有量がCoの含有量に対し10%を超えると、CrがWとの複合炭化物として析出し、靱性の低下や、欠損発生の起点となるおそれがあるため、Co含有量上限の14.0質量%を考慮し、その10%である1.4質量%をCrの含有量の上限とする。
(2) Cr 3 C 2
Cr 3 C 2 is preferably contained in an amount of 0.1 to 1.4% by mass. Cr 3 C 2 is solid-solved as Cr in Co that mainly forms a bonding phase, and Co is solid-solved and strengthened to increase the strength of the WC-based cemented carbide cutting tool. This action is insufficient when the Cr 3 C 2 content is less than 0.1% by mass, while when the content exceeds 10% with respect to the Co content, Cr is precipitated as a composite carbide with W. However, since there is a risk of a decrease in toughness and a starting point for the occurrence of defects, the upper limit of Co content of 14.0% by mass is taken into consideration, and 1.4% by mass, which is 10% of the upper limit, is the content of Cr 3 C 2. The upper limit of.
(3)TaC、NbC、TiC、ZrC
 TaC、NbC、TiCおよびZrCのうちから選ばれる少なくとも1種または2種以上を合計量で0.6~4.0質量%にて含有することが好ましい。これら成分はいずれもγ相を構成する成分でもある。
(3) TaC, NbC, TiC, ZrC
It is preferable to contain at least one or two or more selected from TaC, NbC, TiC and ZrC in a total amount of 0.6 to 4.0% by mass. All of these components are also components constituting the γ phase.
 これら成分の金属元素は、主たる結合相を形成するCo中に一部が固溶することにより、結合相の高温硬さを向上させる。一方、これら成分の金属元素は、結合相中に固溶せずに、炭化物相であるγ相(これら成分の金属元素とは別に、Wをさらに含んでもよい)として存在することにより、耐酸化性や耐クレーター摩耗性を高める働きを有し、かつ、WC-WC界面に接着して、WC-WC界面の粒界すべりを抑制する。 Part of the metal elements of these components are dissolved in Co forming the main bonding phase, thereby improving the high temperature hardness of the bonding phase. On the other hand, the metal elements of these components do not dissolve in the bonded phase and are present as a γ phase (which may further contain W in addition to the metal elements of these components), which is a carbide phase, so that they are oxidation resistant. It has a function of enhancing properties and crater wear resistance, and adheres to the WC-WC interface to suppress grain boundary slip at the WC-WC interface.
 そして、これら金属成分を炭化物換算(金属成分と炭素が1:1で結合した炭化物)した合計含有量が0.6質量%未満では、前述の働きが不十分であり、一方、4.0質量%を超えると、凝集体ができやすく、欠損発生の起点となる場合があるため、合計含有量は、0.6~4.0質量%とすることが好ましい。 If the total content of these metal components in terms of carbide (carbide in which the metal component and carbon are bonded at a ratio of 1: 1) is less than 0.6% by mass, the above-mentioned function is insufficient, while 4.0 mass. If it exceeds%, aggregates are likely to be formed, which may be a starting point for the occurrence of defects. Therefore, the total content is preferably 0.6 to 4.0% by mass.
 また、γ相の平均粒径は、WC粒子との接触頻度が適切となる0.2~4.0μmであることがより好ましい。γ相の平均粒径は、WC基超硬合金製切削工具の任意の表面または断面を鏡面加工し、その加工面を走査型電子顕微鏡(SEM)で観察し、画像解析によって、少なくとも300個の各γ相の面積を求め、その面積に等しい円の直径を算出して平均したものである。なお、鏡面加工は、例えば、集束イオンビーム装置(FIB装置)、クロスセクションポリッシャー装置(CP装置)等を用いる。 Further, the average particle size of the γ phase is more preferably 0.2 to 4.0 μm, which makes the contact frequency with the WC particles appropriate. The average particle size of the γ phase is at least 300 by mirror processing any surface or cross section of a WC-based cemented carbide cutting tool, observing the processed surface with a scanning electron microscope (SEM), and performing image analysis. The area of each γ phase is obtained, and the diameter of a circle equal to the area is calculated and averaged. For mirror surface processing, for example, a focused ion beam device (FIB device), a cross section polisher device (CP device), or the like is used.
 なお、前記したCr、および、TaC、NbC、TiC、ZrCの含有量は、WC基超硬合金製切削工具について電子線マイクロアナライザ(EPMA)によって測定したCr量、Ta量、Nb量、Ti量、Zr量を、いずれも前記炭化物として換算した数値である。 The contents of Cr 3 C 2 and TaC, NbC, TiC, and ZrC described above are the Cr amount, Ta amount, and Nb amount measured by an electron probe microanalyzer (EPMA) for a WC-based cemented carbide cutting tool. , Ti amount, and Zr amount are all numerical values converted as the carbides.
(4)WC
 WCは、残部成分であり、製造過程で不可避的に混入する不可避的不純物を含んでもよい。
 また、WCの含有割合はWとCが1:1で化合したと仮定して炭化物換算をして求める。
(4) WC
WC is a residual component and may contain unavoidable impurities that are unavoidably mixed in during the manufacturing process.
Further, the content ratio of WC is obtained by converting into carbides on the assumption that W and C are combined at a ratio of 1: 1.
(5)不可避的不純物
 前記のように、残部成分、結合相は製造過程で不可避的に混入する不純物を含んでいてもよく、その量はWC基超硬合金製切削工具全体を100質量%としたとき、外数として0.3質量%以下が好ましい。
(5) Inevitable Impurities As described above, the remaining components and the bonding phase may contain impurities that are inevitably mixed in during the manufacturing process, and the amount thereof is 100% by mass for the entire WC-based cemented carbide cutting tool. When this is done, the outer number is preferably 0.3% by mass or less.
2.組織
 WC基超硬合金製切削工具の焼結体組織は、WC-WC界面長比率(R値)、WC面積平均粒径(D)(μm)、および、結合相面積比率(V)、γ相理論体積率により、規定される。
2. Structure The sintered body structure of the WC-based cemented carbide cutting tool has a WC-WC interface length ratio (R value), a WC area average particle size (D) (μm), and a bonded phase area ratio (V), γ. It is defined by the phase theoretical volume ratio.
 以下、詳述する。 The details will be described below.
(1)WC-WC界面長比率(R)
 WC-WC界面長比率(R)が高いことにより、ヤング率の高いWC粒子が塑性変形を妨げる骨格(スケルトン)として働くため、耐塑性変形性に優れたWC基超硬合金製切削工具を得ることができる。
(1) WC-WC interface length ratio (R)
Since the WC-WC interface length ratio (R) is high, WC particles with a high Young's modulus act as a skeleton that hinders plastic deformation, so that a WC-based cemented carbide cutting tool with excellent plastic deformation resistance can be obtained. be able to.
 WC-WC界面長比率(R)は、WC-WC界面長をL1、WC-(結合相+γ相)界面長をL2としたとき、R=(L1)/((L1)+(L2))により求めることができる。
 ここで、WC-WC界面長とは、WC粒子同士の界面長であり、WC-(結合相+γ相)界面長とは、WC粒子と結合相およびWC粒子とγ相との界面長である。
The WC-WC interface length ratio (R) is R = (L1) / ((L1) + (L2)) when the WC-WC interface length is L1 and the WC- (bonded phase + γ phase) interface length is L2. Can be obtained by.
Here, the WC-WC interface length is the interface length between WC particles, and the WC- (bonding phase + γ phase) interface length is the interface length between the WC particles and the bonding phase and the WC particles and the γ phase. ..
 なお、前述のとおり、結合相はCoを主成分としてWやC、Cr、γ相成分の金属元素(Ta、Nb、Ti、Zr)を固溶しており、γ相はTa、Nb、Ti、Zrのいずれか1種または2種以上のγ相成分の金属元素を主として形成されるそれらの炭化物相である。 As described above, the bonded phase contains Co as a main component and the metal elements (Ta, Nb, Ti, Zr) of the W, C, Cr, and γ phase components are solid-dissolved, and the γ phase is Ta, Nb, Ti. , Zr, one or more of the carbide phases formed mainly of the metal element of the γ phase component.
 WC-WC界面長L1とWC-(結合相+γ相)界面長L2の測定方法について、図1を参照して説明する。
 すなわち、WC基超硬合金製切削工具の任意の表面または断面をイオンミリング加工し、その加工面に対して、後方散乱電子回折装置(EBSD)を備えた走査型電子顕微鏡(SEM)にて観察を行う。観察視野1個の大きさを24μm×72μmとし、視野内を二次元方向に0.1μm間隔の測定点(点として表現しているが、正六角形の領域である)に対して、電子線を照射する。視野の数は、WC粒子(1)の数が4000個以上となるように複数とする。そして、電子線を照射して得られるEBSDパターンを基に、WC粒子(1)、結合相(hcp)(3)、結合相(fcc)(4)、γ相(5)を同定する。
A method for measuring the WC-WC interface length L1 and the WC- (bonded phase + γ phase) interface length L2 will be described with reference to FIG.
That is, an arbitrary surface or cross section of a WC-based cemented carbide cutting tool is ion-milled, and the processed surface is observed with a scanning electron microscope (SEM) equipped with a backscattering electron diffractometer (EBSD). I do. The size of one observation field of view is 24 μm × 72 μm, and an electron beam is transmitted to measurement points (expressed as points, which are regular hexagonal regions) in the field of view at intervals of 0.1 μm in the two-dimensional direction. Irradiate. The number of visual fields is set to a plurality so that the number of WC particles (1) is 4000 or more. Then, the WC particles (1), the bound phase (hcp) (3), the bound phase (fcc) (4), and the γ phase (5) are identified based on the EBSD pattern obtained by irradiating the electron beam.
 なお、この時、γ相(5)はfcc構造を有しているため、結合相(fcc)(4)との分離ができず、実際は結合相(fcc)(4)+γ相(5)として同定される。 At this time, since the γ phase (5) has an fcc structure, it cannot be separated from the bound phase (fcc) (4), and is actually as the bound phase (fcc) (4) + γ phase (5). Be identified.
 図1に示すように、隣接するWC粒子(1)同士が、2°~180°の方位差を有するとき、その界面の長さをWC-WC界面(2)長L1、
WC(1)粒と結合相(hcp)(3)が隣接した界面の長さをWC-結合相(hcp)界面(6)長L2-1、
WC(1)粒と(結合相(fcc)(4)+γ相(5))が隣接した界面の長さをWC-(結合相(fcc)+γ相)界面(7)長L2-2、とする。
 また、WC-(結合相+γ相)界面長であるL2は、L2-1とL2-2を足し合わせたものである。
As shown in FIG. 1, when adjacent WC particles (1) have an orientation difference of 2 ° to 180 °, the length of the interface is defined as the WC-WC interface (2) length L1.
The length of the interface where the WC (1) grain and the bound phase (hcp) (3) are adjacent to each other is the length of the WC-bonded phase (hcp) interface (6) length L2-1.
The length of the interface where the WC (1) grain and (bonded phase (fcc) (4) + γ phase (5)) are adjacent to each other is defined as WC- (bonded phase (fcc) + γ phase) interface (7) length L2-2. do.
Further, L2, which is the WC- (bonded phase + γ phase) interface length, is the sum of L2-1 and L2-2.
(2)WC粒子の平均粒径(D)
 WC粒子の平均粒径D(μm)は、1.0μm~4.0μmであることが好ましい。WC粒子の平均粒径Dをこの範囲とすることにより、高温下での刃状転位の上昇運動による塑性変形を生じにくいWC基超硬合金焼結体組織を得ることができる。WC粒子の平均粒径D(μm)は、1.6~3.0μm以下の範囲とすることがより好ましい。
(2) Average particle size of WC particles (D)
The average particle size D (μm) of the WC particles is preferably 1.0 μm to 4.0 μm. By setting the average particle size D of the WC particles in this range, it is possible to obtain a WC-based cemented carbide sintered body structure in which plastic deformation due to the ascending motion of blade-shaped dislocations at a high temperature is unlikely to occur. The average particle size D (μm) of the WC particles is more preferably in the range of 1.6 to 3.0 μm or less.
 ここで、WC粒子の平均粒径D(μm)は、γ相の平均粒径を導出する際と同様に、WC基超硬合金製切削工具の任意の表面または断面をイオンミリング加工し、その加工面を、EBSDを備えたSEMにて測定することによって求める。すなわち、1視野の大きさが24μm×72μmの視野にて二次元方向に測定を0.1μm間隔の測定点を設け、画像解析によって、観察領域内における少なくとも4000個の個々のWC粒子の面積を測定し、該WC粒子を同一面積の円形に近似し、その直径とともにその直径を有するWC粒子が占める面積割合を算出し、各WC粒子の直径と面積割合を乗算した値の総和として求める。 Here, the average particle size D (μm) of the WC particles is obtained by ion-milling an arbitrary surface or cross section of a WC-based cemented carbide cutting tool in the same manner as when deriving the average particle size of the γ phase. The machined surface is determined by measuring with an SEM equipped with EBSD. That is, the area of at least 4000 individual WC particles in the observation area is determined by setting measurement points at intervals of 0.1 μm in the two-dimensional direction in a field having a size of 1 field of 24 μm × 72 μm. The measurement is performed, the WC particles are approximated to a circle having the same area, the area ratio occupied by the WC particles having the diameter is calculated together with the diameter, and the sum of the values obtained by multiplying the diameter and the area ratio of each WC particle is obtained.
(3)結合相の面積率(V)
 結合相の面積率は、二次元平面の結合相の面積率が三次元方向においても同じ比率となっていることを前提として求める。WC基超硬合金製切削工具の任意の表面または断面を鏡面加工した面において、複数(例えば、3視野)の視野を選定し、各視野において電解放出型走査型電子顕微鏡(FE-SEM)を用い、2000~3000倍にて観察を行い、反射電子像を撮影し、その画像を画像処理にて2値化し、WC粒子およびγ相と結合相とを分け、撮影視野全体に対する結合相の面積率を求める。
(3) Area ratio of bonded phase (V)
The area ratio of the bonded phase is obtained on the premise that the area ratio of the bonded phase on the two-dimensional plane is the same in the three-dimensional direction. Multiple (for example, 3 fields of view) fields of view are selected on any surface or cross section of a WC-based superhard alloy cutting tool that has been mirror-finished, and an electrolytic emission scanning electron microscope (FE-SEM) is used in each field of view. Using, observation is performed at 2000 to 3000 times, a reflected electron image is taken, the image is binarized by image processing, the WC particles and the γ phase and the bound phase are separated, and the area of the bound phase with respect to the entire field of view of photography. Find the rate.
(4)γ相の理論体積率(Vγ)
 γ相の理論体積率Vγは、TaC、NbC、TiC、ZrCの密度をそれぞれ14.4、7.82、4.92、6.66とし(ゲ・ヴェ・サムソノフ(著)、イ・エム・ヴイニッキー(著)、日・ソ通信社翻訳部(訳)「データブック 高融点化合物便覧」、日・ソ通信社、1977年12月発行を参照)、EPMAによって測定されたTaC、NbC、TiC、ZrCの各含有量(質量%)を、それぞれの密度で除した数値の足し合わせた値、として求める。
(4) Theoretical volume fraction of γ phase (Vγ)
The theoretical volume ratio Vγ of the γ phase has TaC, NbC, TiC, and ZrC densities of 14.4, 7.82, 4.92, and 6.66, respectively (Ge We Samsonov (Author), Lee M. Vinicky (Author), Japan-Soviet Newsletter Translation Department (Translation) "Databook Refractory Compounds Handbook", Japan-Soviet Union, December 1977), TaC, NbC, TiC measured by EPMA, Each content (mass%) of ZrC is obtained as the sum of the numerical values divided by the respective densities.
(5)WC-WC界面長比率(R)、結合相面積比率(V)、WC面積平均粒径(D)およびγ相の理論体積率(Vγ)との関係
 WC-WC界面長比率(R)が、結合相の面積比率(V)(%)、およびWC面積平均粒径(D)(μm)、γ相の理論体積率(Vγ)により規定される関係式、すなわち、R≧(0.76-0.059×D)×(10/V)-Vγ×0.06を満足することが好ましい。
 この関係を満足するとき、耐塑性変形性、および、耐チッピング性に優れた特性を発揮する。
(5) Relationship between WC-WC interface length ratio (R), bonded phase area ratio (V), WC area average particle size (D) and theoretical volume ratio (Vγ) of γ phase WC-WC interface length ratio (R) ) Is a relational expression defined by the area ratio (V) (%) of the bonded phase, the WC area average particle size (D) (μm), and the theoretical volume ratio (Vγ) of the γ phase, that is, R ≧ (0). It is preferable to satisfy .76-0.059 × D) × (10 / V) −Vγ × 0.06.
When this relationship is satisfied, it exhibits excellent plastic deformation resistance and chipping resistance.
 なお、Rの上限値は、特に制約がないが、好ましくは0.70、より好ましくは0.60とする。Rがこの上限値以下であれば、刃先の微小チッピングをより確実に抑制することができる。 The upper limit of R is not particularly limited, but is preferably 0.70, more preferably 0.60. When R is not more than this upper limit value, minute chipping of the cutting edge can be suppressed more reliably.
3.製造方法
 本実施形態に係るWC基超硬合金切削工具は、例えば、以下の(1)~(3)の工程を経て作製することができる。
3. 3. Manufacturing Method The WC-based cemented carbide cutting tool according to the present embodiment can be manufactured, for example, through the following steps (1) to (3).
(1)原料粉末と配合
 粒径分布の異なる2種のWC粉末(粒径分布の最頻値がr1(μm)であるWC粉末と、同r2(μm)であるWC粉末。ただし、r1>r2)を、所定の配合割合、所定の粒径比となるように配合し、Co粉末、Cr粉末からなる原料粉末を配合し、さらに、TaC粉末、NbC粉末、TiC粉末、ZrC粉末のうちの1種または2種以上の粉末を含有する原料粉末を加える。
(1) Mixing with raw material powder Two types of WC powder with different particle size distributions (WC powder with the mode of particle size distribution r1 (μm) and WC powder with the same particle size distribution r2 (μm), where r1> r2) is blended so as to have a predetermined blending ratio and a predetermined particle size ratio, a raw material powder composed of Co powder and Cr 3 C 2 powder is blended, and further, TaC powder, NbC powder, TiC powder, ZrC powder. A raw material powder containing one or more of the powders is added.
 そして、例えば、メディア量を減らしたアトライターや、好ましくは超音波ホモジナイザー、サイクロンミキサーなどのメディアレス混合により、大きな破砕力を加えないような条件で配合・混合して、混合粉末を作製する。 Then, for example, a mixed powder is prepared by blending and mixing under conditions that do not apply a large crushing force by medialess mixing such as an attritor with a reduced amount of media, preferably an ultrasonic homogenizer, or a cyclone mixer.
 なお、前記2種のWC粉末の配合について、粒径分布の最頻値の比、すなわち、r2/r1は0.15~0.60を満たすことが好ましい。 It is preferable that the ratio of the most frequent values of the particle size distribution, that is, r2 / r1 satisfies 0.15 to 0.60 for the blending of the two types of WC powders.
(2)成形体の作製と焼結
 前記混合粉末を成形して圧粉成形体を作製し、この圧粉成形体を、真空雰囲気下、加熱温度:1300~1450℃、より好ましくは1300~1400℃、かつ、加熱保持時間:15~90分、より好ましくは15~60分の条件で焼結する。これにより、粒成長によるWC粒子の形状や粒度分布の変化を抑制させる。焼結後には、1100~1200℃で5~100時間の熱処理を行う固相焼結工程を行って、粒界拡散によるWC粒子同士の接着度を高める。この固相焼結工程は、焼結後に連続して行ってもよいし、一度冷却が完了してから行ってもよい。また、雰囲気については、不活性ガス、還元性ガス雰囲気等を用いることもできるが、真空下で行うことが好ましい。
(2) Preparation and Sintering of Molded Body The mixed powder is molded to prepare a powder compact, and the powder compact is heated in a vacuum atmosphere at a heating temperature of 1300 to 1450 ° C., more preferably 1300 to 1400. Sintering is performed under the conditions of ° C. and heating holding time: 15 to 90 minutes, more preferably 15 to 60 minutes. As a result, changes in the shape and particle size distribution of WC particles due to grain growth are suppressed. After sintering, a solid phase sintering step of heat treatment at 1100 to 1200 ° C. for 5 to 100 hours is performed to increase the degree of adhesion between WC particles by diffusion of grain boundaries. This solid phase sintering step may be continuously performed after sintering, or may be performed once cooling is completed. As the atmosphere, an inert gas, a reducing gas atmosphere, or the like can be used, but it is preferable to carry out the atmosphere under vacuum.
(3)後処理
 前記焼結体を、機械加工、研削加工し、所望の大きさ、形状のWC基超硬合金製切削工具を作製する。
(3) Post-treatment The sintered body is machined and ground to produce a WC-based cemented carbide cutting tool having a desired size and shape.
(4)被覆層の形成
 前記WC基超硬合金製切削工具の少なくとも切刃部分に、Ti-Al系、Al-Cr系の炭化物、窒化物、炭窒化物あるいはAl等の被覆層を、PVD、CVD等の成膜法により被覆形成することにより、表面被覆WC基超硬合金製切削工具を作製してもよい。
 なお、表面被覆WC基超硬合金製切削工具の作製にあたり、皮膜の種類、成膜法は、当業者に既によく知られているものを採用すればよい。
(4) at least in the cutting edge portion of forming the WC-based cemented carbide cutting tools of the coating layer, Ti-Al-based, Al-Cr-based carbides, nitrides, carbonitrides or Al 2 O 3, or the like coating layer May be produced by forming a coating by a film forming method such as PVD or CVD to produce a cutting tool made of a surface-coated WC-based cemented carbide.
When manufacturing a cutting tool made of a surface-coated WC-based cemented carbide, the type of film and the film forming method may be those already well known to those skilled in the art.
 次に、実施例を挙げて本発明を説明するが、本発明は実施例に何ら限定されるものではない。 Next, the present invention will be described with reference to examples, but the present invention is not limited to the examples.
 以下の手順により、実施例を作製した。 An example was prepared by the following procedure.
(1)原料粉末と配合
 焼結用の原料粉末として、粒径分布の異なる2種のWC粉末(粒径分布の最頻値がr1(μm)である粗粒WC粉末と粒径分布の最頻値がr2(μm)である微粒WC粉末)と、Co粉末、Cr粉末、TaC粉末、NbC粉末、TiC粉末およびZrC粉末を用意した。
(1) Mixing with raw material powder As raw material powder for sintering, two types of WC powder with different particle size distribution (coarse grain WC powder having the most frequent value of particle size distribution of r1 (μm) and the most of the particle size distribution Shikichi is an r2 fine WC powder is ([mu] m)), was prepared Co powder, Cr 3 C 2 powder, TaC powder, NbC powder, a TiC powder and ZrC powder.
 表1は、各種粉末の配合組成(質量%)を示すとともに、2種類のWC粉末の粒径分布の最頻値およびその比を示す。なお、Co粉末、Cr粉末、TaC粉末、NbC粉末、TiC粉末、ZrC粉末の平均粒径(D50)は、いずれも、1.0~3.0μmの範囲内であった。また、不可避不純物は、WC基超硬合金製切削工具全体を100質量%としたとき、外数として0.3質量%以下であった。 Table 1 shows the compounding composition (mass%) of various powders, and also shows the mode values and the ratios of the particle size distributions of the two types of WC powders. The average particle size (D50) of the Co powder, Cr 3 C 2 powder, TaC powder, NbC powder, TiC powder, and ZrC powder was all in the range of 1.0 to 3.0 μm. Further, the unavoidable impurities were 0.3% by mass or less as an outside number when the entire cutting tool made of WC-based cemented carbide was taken as 100% by mass.
(2)成形体の作製
 表1に示す配合組成に配合した焼結用粉末を、メディアレスのアトライター混合で回転数50rpm、8時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して圧粉成形体を作製した。
(2) Preparation of molded product The sintering powder blended in the compounding composition shown in Table 1 is wet-mixed at a rotation speed of 50 rpm for 8 hours by medialess attritor mixing, dried, and then press-molded at a pressure of 100 MPa. A powder compact was produced.
(3)焼結
 これらの圧粉成形体を、表3に示す加熱温度1340~1440℃にて、かつ、加熱保持時間:0.5~1.5時間、真空雰囲気で焼結を行った後、粒界拡散によるWC粒子同士の接着度を高めるために、連続して1100~1200℃にて10~100時間の固相焼結を実施し、焼結体を作製した。
(3) Sintering After sintering these powder compacts at a heating temperature of 1340 to 1440 ° C. shown in Table 3 and a heating holding time of 0.5 to 1.5 hours in a vacuum atmosphere. In order to increase the degree of adhesion between WC particles due to intergranular diffusion, solid-phase sintering was continuously carried out at 1100 to 1200 ° C. for 10 to 100 hours to prepare a sintered body.
(4)後処理
 焼結体を、機械加工、研削加工し、CNMG120408-GMのインサート形状の表5に示すWC基超硬合金製切削工具1~10(以下、実施例1~10という)を作製した。
(4) Post-treatment The sintered body is machined and ground, and the WC-based cemented carbide cutting tools 1 to 10 (hereinafter referred to as Examples 1 to 10) shown in Table 5 of the insert shape of CNMG120408-GM are used. Made.
 また、比較のために、表6に示すWC基超硬合金製切削工具11~18(以下、比較例11~18という)を製造した。
 その製造工程では、実施例に対し、表2、表4に示すように、配合組成(質量%)、混合条件、あるいは、焼結条件を変更した。なお、不可避不純物は、WC基超硬合金製切削工具全体を100質量%としたとき、外数として0.3質量%以下であった。
For comparison, WC-based cemented carbide cutting tools 11 to 18 (hereinafter referred to as Comparative Examples 11 to 18) shown in Table 6 were manufactured.
In the manufacturing process, as shown in Tables 2 and 4, the blending composition (mass%), mixing conditions, or sintering conditions were changed with respect to the examples. The unavoidable impurities were 0.3% by mass or less as an outside number when the entire cutting tool made of WC-based cemented carbide was taken as 100% by mass.
 つづいて、実施例1~10および比較例11~18のWC基超硬合金製切削工具の断面について、EPMAにより、その成分であるCo、Cr、Ta、Nb、Ti、Zrの含有量を10点測定した。その平均値を各成分の含有量とした。その結果を表5、表6に示す。
 なお、Cr、Ta、Nb、Ti、Zrについては、それぞれ、炭化物に換算して含有量を算出した。
Subsequently, with respect to the cross sections of the WC-based cemented carbide cutting tools of Examples 1 to 10 and Comparative Examples 11 to 18, the contents of Co, Cr, Ta, Nb, Ti, and Zr, which are the components thereof, are set to 10 by EPMA. Point measurement was performed. The average value was taken as the content of each component. The results are shown in Tables 5 and 6.
The contents of Cr, Ta, Nb, Ti, and Zr were calculated by converting them into carbides.
 次に、実施例1~10および比較例工具11~18のWC基超硬合金製切削工具の断面を、前述した方法により、EBSDを備えたSEMにて観察し、WC-WC界面長L1、および、WC-(結合相+γ相)界面長L2を測定し、WC-WC界面長比率(R値)を算出した。また、WC面積平均粒径D(μm)を求めた。その結果を表5、表6に示す。 Next, the cross sections of the WC-based cemented carbide cutting tools of Examples 1 to 10 and Comparative Examples Tools 11 to 18 were observed by the SEM equipped with EBSD by the method described above, and the WC-WC interface length L1 was observed. Then, the WC- (bonded phase + γ phase) interface length L2 was measured, and the WC-WC interface length ratio (R value) was calculated. Moreover, the WC area average particle diameter D (μm) was determined. The results are shown in Tables 5 and 6.
 さらに、結合相面積比率V(%)については、実施例1~10および比較例11~18のWC基超硬合金製切削工具の断面において、1視野あたり、WC粒子が300個以上含まれる視野において、3視野を選択し、FE-SEM(電解放出型走査型電子顕微鏡)を用い、観察像を撮影し、画像処理にて2値化し、WC粒子+γ相と結合相とを分け、結合相の面積比率を算出した。その結果を表5、6に示す。 Further, regarding the bonded phase area ratio V (%), in the cross section of the WC-based cemented carbide cutting tool of Examples 1 to 10 and Comparative Examples 11 to 18, a field of view containing 300 or more WC particles per field of view. In, three visual fields are selected, an observation image is taken using an FE-SEM (field emission scanning electron microscope), binarized by image processing, the WC particle + γ phase and the bound phase are separated, and the bound phase is separated. The area ratio of was calculated. The results are shown in Tables 5 and 6.
 そして、γ相の粒径については、実施例1~10および比較例11~18のWC基超硬合金製切削工具の縦断面において、前述した方法により、各γ相の面積を測定し、γ相の平均粒径を算出した。その結果を表5、6に示す。 Regarding the particle size of the γ phase, the area of each γ phase was measured in the vertical cross section of the WC-based cemented carbide cutting tool of Examples 1 to 10 and Comparative Examples 11 to 18 by the method described above, and γ was measured. The average particle size of the phase was calculated. The results are shown in Tables 5 and 6.
 さらに、γ相の理論体積率(Vγ)は、前述のとおりであり、その結果を表5、6に示す。 Furthermore, the theoretical volume fraction (Vγ) of the γ phase is as described above, and the results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 次いで、実施例1~10、比較例11~18について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の湿式連続切削加工試験を行った。 Next, with respect to Examples 1 to 10 and Comparative Examples 11 to 18, the following wet continuous cutting test was performed with the tip of the tool steel cutting tool screwed with a fixing jig.
 被削材:JIS・SUS304(HB170)の丸棒
 切削速度:100m/min
 切り込み:2.0mm
 送り:0.7mm/rev
 切削時間:5分
 湿式水溶性切削油使用
Work material: JIS / SUS304 (HB170) round bar Cutting speed: 100 m / min
Notch: 2.0 mm
Feed: 0.7mm / rev
Cutting time: 5 minutes Wet water-soluble cutting oil is used
 上記湿式連続切削加工試験後の切刃の逃げ面塑性変形量を測定するとともに、切刃の損耗状態を観察した。なお、切刃の逃げ面塑性変形量(10)は、工具の主切刃側逃げ面(8)について、切刃(9)から十分離れた位置で主切刃側逃げ面(8)とすくい面(12)が交差する稜線上に線分(11)を引き、同線分を切刃部方向に延伸し、延伸した線分と切刃部稜線間の距離(延伸した線分の垂直方向)が最も離れている部分を測定し、切刃の逃げ面塑性変形量(10)とした。また、逃げ面塑性変形量が0.04mm以上であった時、損耗状態を刃先変形とした(図2を参照)。
 表7に、この測定結果を示す。
The amount of plastic deformation of the flank of the cutting edge after the wet continuous cutting test was measured, and the state of wear of the cutting edge was observed. The amount of plastic deformation of the flank surface of the cutting edge (10) is determined by scooping the flank surface (8) on the main cutting edge side of the tool with the flank surface (8) on the main cutting edge side at a position sufficiently distant from the cutting edge (9). A line segment (11) is drawn on the ridge line where the surfaces (12) intersect, and the same line segment is extended in the direction of the cutting edge portion, and the distance between the extended line segment and the ridge line of the cutting edge portion (vertical direction of the extended line segment). ) Was measured and used as the flank plastic deformation amount (10) of the cutting edge. Further, when the flank plastic deformation amount was 0.04 mm or more, the worn state was defined as the cutting edge deformation (see FIG. 2).
Table 7 shows the measurement results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 また、実施例1~4、比較例11~14の切刃表面に、表8に示す平均層厚の被覆層をPVD法あるいはCVD法で被覆形成し、実施例21~24、比較例31~34を作製した。 Further, a coating layer having an average layer thickness shown in Table 8 was formed on the cutting edge surfaces of Examples 1 to 4 and Comparative Examples 11 to 14 by a PVD method or a CVD method, and Examples 21 to 24 and Comparative Examples 31 to 31 to were formed. 34 was made.
 実施例21~24および比較例31~34について、以下に示す、湿式連続切削加工試験を実施し、同様に切刃の逃げ面塑性変形量を測定するとともに、切刃の損耗状態を観察した。 For Examples 21 to 24 and Comparative Examples 31 to 34, the wet continuous cutting test shown below was carried out, the flank plastic deformation amount of the cutting edge was measured in the same manner, and the wear state of the cutting edge was observed.
切削条件:
 被削材:JIS・SUS304(HB170)の丸棒
 切削速度:150m/min
 切り込み:2.0mm
 送り:0.7mm/rev
 切削時間:5分
 湿式水溶性切削油使用
 表9に、切削試験の結果を示す。
Cutting conditions:
Work material: JIS / SUS304 (HB170) round bar Cutting speed: 150 m / min
Notch: 2.0 mm
Feed: 0.7mm / rev
Cutting time: 5 minutes Wet water-soluble cutting oil used Table 9 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表7および表9に示される試験結果によれば、実施例は、いずれも、チッピングを発生することもなく、優れた耐チッピング性、耐塑性変形性を発揮することが分かる。
 これに対して、比較例は、いずれも、耐チッピング性、耐塑性変形性に劣り、短時間で寿命に至った。
According to the test results shown in Tables 7 and 9, it can be seen that all of the examples exhibit excellent chipping resistance and plastic deformation resistance without causing chipping.
On the other hand, all of the comparative examples were inferior in chipping resistance and plastic deformation resistance, and reached the end of their life in a short time.
 前記開示した実施の形態はすべての点で例示にすぎず、制限的なものではない。本発明の範囲は前記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The disclosed embodiment is merely an example in all respects and is not restrictive. The scope of the present invention is indicated by the scope of claims rather than the embodiment described above, and is intended to include meaning equivalent to the scope of claims and all modifications within the scope.
1 WC粒子
2 WC-WC界面
3 結合相(hcp)
4 結合相(fcc)
5 γ相
6 WC-結合相(hcp)界面
7 WC-(結合相(fcc)+γ相)界面
8 主切刃側逃げ面
9 切刃
10 逃げ面の塑性変形量
11 逃げ面とすくい面の交差する稜線を延伸した線分
12 すくい面
1 WC particle 2 WC-WC interface 3 Bonded phase (hcp)
4 Bonding phase (fcc)
5 γ phase 6 WC-bonded phase (hcp) interface 7 WC- (bonded phase (fcc) + γ phase) interface 8 Main cutting edge side flank surface 9 Cutting edge 10 Spacing amount of flank surface 11 Intersection of flank surface and rake face Line segment 12 rake face that extends the ridgeline

Claims (3)

  1. 1)Co:8.0~14.0質量%、
    Cr:0.1~1.4質量%、
    TaC、NbC、TiCおよびZrCのうちから選ばれる1種または2種以上:0.6~4.0質量%
    を含み、
    残部はWCおよび不可避不純物であって、
    2)WC粒子同士の界面長をL1、
    WC粒子と、結合相またはγ相との界面長をL2、
    結合相の面積率をV(%)、
    WC粒子の平均粒径をD(μm)、
    γ相の理論体積率をVγ、
    WC-WC界面長比率をRと、それぞれ、したとき、
    R=(L1)/((L1)+(L2))、
    R≧(0.76-0.059×D)×(10/V)-Vγ×0.06、
    1.0≦D≦4.0
    を満足することを特徴とするWC基超硬合金製切削工具。
    1) Co: 8.0 to 14.0% by mass,
    Cr 3 C 2 : 0.1 to 1.4% by mass,
    One or more selected from TaC, NbC, TiC and ZrC: 0.6 to 4.0% by mass
    Including
    The rest are WC and unavoidable impurities,
    2) The interface length between WC particles is L1,
    The interface length between the WC particles and the bound phase or γ phase is L2,
    The area ratio of the bonded phase is V (%),
    The average particle size of WC particles is D (μm),
    The theoretical volume fraction of the γ phase is Vγ,
    When the WC-WC interface length ratio is R, respectively,
    R = (L1) / ((L1) + (L2)),
    R ≧ (0.76-0.059 × D) × (10 / V) -Vγ × 0.06,
    1.0 ≤ D ≤ 4.0
    A WC-based cemented carbide cutting tool characterized by satisfying.
  2.  前記γ相の平均粒径は、0.2~4.0μmであることを特徴とする請求項1に記載のWC基超硬合金製切削工具。 The WC-based cemented carbide cutting tool according to claim 1, wherein the average particle size of the γ phase is 0.2 to 4.0 μm.
  3.  切刃には、被覆層が形成されていることを特徴とする請求項1または2に記載のWC基超硬合金製切削工具。
     
    The WC-based cemented carbide cutting tool according to claim 1 or 2, wherein a coating layer is formed on the cutting edge.
PCT/JP2021/010161 2020-03-26 2021-03-12 Cutting tool made of wc-based cemented carbide WO2021193159A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21776329.1A EP4129540A4 (en) 2020-03-26 2021-03-12 Cutting tool made of wc-based cemented carbide
JP2022509932A JPWO2021193159A1 (en) 2020-03-26 2021-03-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-056624 2020-03-26
JP2020056624 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193159A1 true WO2021193159A1 (en) 2021-09-30

Family

ID=77891801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010161 WO2021193159A1 (en) 2020-03-26 2021-03-12 Cutting tool made of wc-based cemented carbide

Country Status (3)

Country Link
EP (1) EP4129540A4 (en)
JP (1) JPWO2021193159A1 (en)
WO (1) WO2021193159A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027241A1 (en) * 1996-12-16 1998-06-25 Sumitomo Electric Industries, Ltd. Cemented carbide, process for the production thereof, and cemented carbide tools
JP2013244590A (en) * 2012-05-29 2013-12-09 Sumitomo Electric Ind Ltd Cutting tool base material formed of cemented carbide, and surface-coated cutting tool using the same
JP2014005529A (en) * 2012-05-29 2014-01-16 Sumitomo Electric Ind Ltd Cemented carbide and surface-coated cutting tool using the same
JP2017088999A (en) 2015-11-11 2017-05-25 三菱日立ツール株式会社 Hard metal alloy, tool for cutting work using the same and insert for milling work
JP2017179433A (en) 2016-03-29 2017-10-05 三菱マテリアル株式会社 Wc-based hard metal alloy-made tool excellent in thermal resisting plastic deformation property
JP6256415B2 (en) 2014-06-19 2018-01-10 住友電気工業株式会社 Cemented carbide and cutting tools
JP2020056624A (en) 2018-09-28 2020-04-09 日本電産トーソク株式会社 Ring magnet and magnetic sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665308B1 (en) * 1993-08-16 2000-01-05 Sumitomo Electric Industries, Ltd. Cemented carbide alloy for cutting tool and coated cemented carbide alloy
CN111566241B (en) * 2018-01-09 2022-04-29 住友电工硬质合金株式会社 Cemented carbide and cutting tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027241A1 (en) * 1996-12-16 1998-06-25 Sumitomo Electric Industries, Ltd. Cemented carbide, process for the production thereof, and cemented carbide tools
JP2013244590A (en) * 2012-05-29 2013-12-09 Sumitomo Electric Ind Ltd Cutting tool base material formed of cemented carbide, and surface-coated cutting tool using the same
JP2014005529A (en) * 2012-05-29 2014-01-16 Sumitomo Electric Ind Ltd Cemented carbide and surface-coated cutting tool using the same
JP6256415B2 (en) 2014-06-19 2018-01-10 住友電気工業株式会社 Cemented carbide and cutting tools
JP2017088999A (en) 2015-11-11 2017-05-25 三菱日立ツール株式会社 Hard metal alloy, tool for cutting work using the same and insert for milling work
JP2017179433A (en) 2016-03-29 2017-10-05 三菱マテリアル株式会社 Wc-based hard metal alloy-made tool excellent in thermal resisting plastic deformation property
JP2020056624A (en) 2018-09-28 2020-04-09 日本電産トーソク株式会社 Ring magnet and magnetic sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. V. SAMSONOVI. M. VUJNICKI: "Databook of High Melting Point Compounds", TRANSLATION BY JAPAN-SOVIET NEWS AGENCY, December 1977 (1977-12-01)
See also references of EP4129540A4

Also Published As

Publication number Publication date
EP4129540A4 (en) 2024-04-03
JPWO2021193159A1 (en) 2021-09-30
EP4129540A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
CN105283570B (en) Cermet and cutting tool
WO2021193159A1 (en) Cutting tool made of wc-based cemented carbide
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
WO2020196590A1 (en) Wc-based cemented carbide cutting tool having excellent defect resistance and chipping resistance, and surface-coated wc-based cemented carbide cutting tool
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
WO2019039037A1 (en) Composite sintered compact
JP7432109B2 (en) Cemented carbide and cutting tools
CN112055757B (en) Composite sintered body
JP2001179507A (en) Cutting tool
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP2005272877A (en) Ti BASED CERMET, ITS PRODUCTION METHOD AND CUTTING TOOL
JP2021139022A (en) Wc-based super-hard alloy and wc-based super-hard alloy cutting tool
JP2020132971A (en) Cemented carbide and cutting tool
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP7307394B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance
JP2020132972A (en) Cemented carbide and cutting tool
JP7209216B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP4284153B2 (en) Cutting method
JP7161677B2 (en) WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance
JP2021152190A (en) Wc based cemented carbide cutting tool excellent in plastic deformation resistance and defect resistance and surface coated wc based cemented carbide cutting tool
JP2022108807A (en) Cutting tool
JP2008156756A (en) TiCN CERMET
JPH10298697A (en) Titanium-carbonitride-base alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021776329

Country of ref document: EP

Effective date: 20221026