JP7161677B2 - WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance - Google Patents
WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance Download PDFInfo
- Publication number
- JP7161677B2 JP7161677B2 JP2019026945A JP2019026945A JP7161677B2 JP 7161677 B2 JP7161677 B2 JP 7161677B2 JP 2019026945 A JP2019026945 A JP 2019026945A JP 2019026945 A JP2019026945 A JP 2019026945A JP 7161677 B2 JP7161677 B2 JP 7161677B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- based cemented
- binder phase
- cutting tool
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、合金鋼等の断続切削加工において、すぐれた耐欠損性を示すWC基超硬合金製切削工具(「WC基超硬工具」ともいう)および表面被覆WC基超硬合金製切削工具に関する。 The present invention provides a WC-based cemented carbide cutting tool (also referred to as "WC-based cemented carbide tool") and a surface-coated WC-based cemented carbide cutting tool that exhibit excellent fracture resistance in interrupted cutting of alloy steel and the like. Regarding.
WC基超硬合金は硬さが高く、また、靱性を備えることから、これを基体とするWC基超硬工具は、すぐれた耐摩耗性を発揮し、また、長期の使用にわたって長寿命を有する切削工具として知られている。
しかし、近年、被削材の種類、切削加工条件等に応じて、WC基超硬工具の切削性能、工具寿命をより一段と向上させるべく、各種の提案がなされている。
Since WC-based cemented carbide has high hardness and toughness, WC-based cemented carbide tools based on it exhibit excellent wear resistance and have a long life over long-term use. Known as a cutting tool.
However, in recent years, various proposals have been made to further improve the cutting performance and tool life of WC-based cemented carbide tools according to the type of work material, cutting conditions, and the like.
例えば、特許文献1では、炭化タングステンを主成分とする硬質相と、鉄族元素(コバルトを含み、コバルトの含有量は超硬合金中において8質量%以上であることが好ましい)を主成分とする結合相とを備える超硬合金において、炭化タングステンの粒子数をA、他の炭化タングステン粒子との接触点の点数が1点以下の炭化タングステン粒子の粒子数をBとするとき、B/A≦0.05を満たすようにすることで、超硬合金の耐塑性変形性を向上させ、その結果として、炭素鋼、ステンレス鋼の湿式連続切削加工において、WC基超硬工具の長寿命化を図ることが提案されている。 For example, in Patent Document 1, a hard phase containing tungsten carbide as a main component and an iron group element (including cobalt, and the cobalt content is preferably 8% by mass or more in the cemented carbide) are used as main components. In a cemented carbide comprising a binder phase, where A is the number of tungsten carbide particles and B is the number of tungsten carbide particles having one or less contact points with other tungsten carbide particles, B / A By satisfying ≦0.05, the plastic deformation resistance of the cemented carbide is improved, and as a result, the life of the WC-based cemented carbide tool is extended in continuous wet cutting of carbon steel and stainless steel. It is proposed to
特許文献2では、Co量が10~13質量%、Co量に対するCr量の比が2~8%、TaCとNbCの少なくとも1種をTaCとNbCの総量が0.2~0.5質量%となる範囲で含有し、残部がWCから成り、硬さが88.6HRA~89.5HRAであるWC基超硬工具において、研磨面上の面積比におけるWC積算粒度80%径D80と積算粒度20%径D20の比D80/D20を2.0≦D80/D20≦4.0の範囲とし、また、D80を4.0~7.0μmの範囲とし、かつWC接着度cを0.36≦c≦0.43とすることにより、ステンレス鋼に代表される難削材の切削加工において、被削材の凝着を防止し耐欠損性を向上させることが提案されている。 In Patent Document 2, the Co amount is 10 to 13% by mass, the ratio of the Cr amount to the Co amount is 2 to 8%, and at least one of TaC and NbC is used, and the total amount of TaC and NbC is 0.2 to 0.5% by mass. In a WC-based cemented carbide tool having a hardness of 88.6 HRA to 89.5 HRA, the balance is made of WC, and the area ratio on the polished surface is 80% of the WC cumulative grain size, the diameter D80 and the cumulative grain size of 20 The ratio D80/D20 of the % diameter D20 is in the range of 2.0 ≤ D80/D20 ≤ 4.0, D80 is in the range of 4.0 to 7.0 μm, and the degree of WC adhesion c is 0.36 ≤ c It has been proposed that by setting the ratio to ≦0.43, adhesion of the work material can be prevented and chipping resistance can be improved in cutting difficult-to-cut materials such as stainless steel.
特許文献3では、WC基超硬工具において、WC基超硬合金の成分組成を、WC-x質量%Co-y質量%Cr3C2-z質量%VCで表したとき、6≦x≦14、0.4≦y≦0.8、0≦z≦0.6、(y+z)≦0.1xを満足し、また、WC基超硬合金のWC接着度Cを、C=1-Vb α・exp(0.391・L)で表したとき、この式におけるWC基超硬合金の結合相体積率の値Vbは0.11≦Vb≦0.25、また、(WC粒子の粒度分布の標準偏差)/(平均WC粒度)の値Lは0.3≦L≦0.7の範囲内であって、さらに、係数αが0.3≦α≦0.55の値を満足するWC接着度Cを有するWC基超硬合金とすることにより、Al合金、炭素鋼等の切削加工において、硬さと剛性を低下させることなく靱性を向上させ、耐欠損性を高めたWC基超硬工具が提案されている。 In Patent Document 3, in the WC-based cemented carbide tool, when the chemical composition of the WC-based cemented carbide is represented by WC-x mass % Co-y mass % Cr 3 C 2 -z mass % VC, 6 ≤ x ≤ 14, 0.4 ≤ y ≤ 0.8, 0 ≤ z ≤ 0.6, (y + z) ≤ 0.1x, and the WC adhesion C of the WC-based cemented carbide is C = 1-V When represented by b α exp (0.391 L), the value V b of the binder phase volume fraction of the WC-based cemented carbide in this formula is 0.11 ≤ V b ≤ 0.25, and (WC particles The value L of the particle size distribution (standard deviation of the particle size distribution)/(average WC particle size) is within the range of 0.3 ≤ L ≤ 0.7, and the coefficient α has a value of 0.3 ≤ α ≤ 0.55 By using a WC-based cemented carbide having a satisfactory WC-adhesion degree C, a WC-based cemented carbide with improved fracture resistance and improved toughness without lowering hardness and rigidity in cutting Al alloys, carbon steel, etc. Carbide tools have been proposed.
特許文献4では、WC基超硬工具において、WC-WC接着界面長さをL1とし、WC-Co接着界面長さをL2とした時、
R>(0.82-0.086×D)×(10/V)
の式を満足させることにより、Ni基耐熱合金の切削加工において、WC基超硬工具の耐熱塑性変形性と靱性を向上させることが提案されている。
なお、R=(L1)/((L1)+(L2))
D:WC面積平均粒径(μm)であって、0.6≦D≦1.7の範囲である。
ここで、前記Dは、WCの面積率が50%となるときのWCの粒径をいう。
V:結合相体積(vol%)であって、9≦V≦14の範囲である。
In Patent Document 4, in the WC-based cemented carbide tool, when the WC-WC bonding interface length is L1 and the WC-Co bonding interface length is L2,
R>(0.82−0.086×D)×(10/V)
It has been proposed to improve the thermal plastic deformation resistance and toughness of WC-based cemented carbide tools in cutting Ni-based heat-resistant alloys by satisfying the following formula.
Note that R=(L1)/((L1)+(L2))
D: WC area average particle diameter (μm), in the range of 0.6≦D≦1.7.
Here, D is the grain size of WC when the area ratio of WC is 50%.
V: Bound phase volume (vol%), in the range of 9≤V≤14.
特許文献5では、重量%で、Crまたは/およびCr化合物:0~4%(Cr換算で)、Vまたは/およびV化合物:0~4%(V換算で)、TaC:0~2%、TiC:0~2%、
Nまたは/およびN化合物:0~1%(N換算で)、Co:0.1~10%、WCおよび不可避不純物:残からなる組成を有し、かつ、0.06~30ナノメータのCo平均厚み(CFP)を有し、焼結に際し、昇温途中900度C~1600度Cの温度範囲の1部または全範囲において、気体を圧力媒体として3気圧~200気圧の圧力を負荷して高密度化を図った切削加工工具用WC-Co系超硬部品が提案されており、このWC-Co系超硬部品、望ましくは、WCの平均粒径が1μm以下、CFPが0.06~30nmの範囲の超微粒低Co超硬合金部品の靱性を高めることができるとされている。
ただし、CFPは、Co平均厚み(nm)であって、
CFP=0.58*A/(100-A)*R
から算出した値であり、A:Co(%),2R:WC平均粒径(nm)である。
In Patent Document 5, in weight %, Cr or/and Cr compound: 0 to 4% (in terms of Cr), V or/and V compound: 0 to 4% (in terms of V), TaC: 0 to 2%, TiC: 0-2%,
N or/and N compounds: 0 to 1% (in terms of N), Co: 0.1 to 10%, WC and unavoidable impurities: balance, and a Co average of 0.06 to 30 nanometers It has a thickness (CFP), and during sintering, a high pressure of 3 atm to 200 atm is applied using gas as a pressure medium in part or all of the temperature range of 900°C to 1600°C during heating. WC—Co based cemented carbide parts for cutting tools with increased density have been proposed, and these WC—Co based cemented carbide parts preferably have an average WC grain size of 1 μm or less and a CFP of 0.06 to 30 nm. It is said that the toughness of ultrafine grained low Co cemented carbide parts in the range of can be increased.
However, CFP is Co average thickness (nm),
CFP = 0.58*A/(100-A)*R
A: Co (%), 2R: WC average grain size (nm).
前記特許文献1~5で提案されている従来のWC基超硬工具によれば、WC-WC粒子相互の接触点数、WCの粒度、WC接着度あるいは製造条件等をコントロールすることによって、WC基超硬工具の切削性能、工具特性の向上を図っている。
しかし、前記従来の工具では、合金鋼のエンドミル加工のような断続切削加工においては、WC-WC粒子の界面でのクラック伸展、あるいは、結合相への応力集中による亀裂の発生等により、欠損の発生を十分に抑制することができず、そのため、工具寿命は短命であった。
According to the conventional WC-based cemented carbide tools proposed in Patent Documents 1 to 5, by controlling the number of contact points between WC-WC particles, the grain size of WC, the degree of WC adhesion, manufacturing conditions, etc., WC-based We are trying to improve the cutting performance and tool characteristics of cemented carbide tools.
However, with the above-mentioned conventional tools, in interrupted cutting such as end milling of alloy steel, crack extension at the interface of WC-WC particles or crack generation due to stress concentration in the binder phase may cause chipping. The occurrence could not be sufficiently suppressed, so the tool life was short-lived.
本発明者らは、合金鋼のエンドミル加工のような断続切削加工において、すぐれた耐欠損性を発揮するWC基超硬工具を開発すべく、WC基超硬合金の結合相の形態に着目し、鋭意研究を進めたところ、次のような知見を得た。 The present inventors focused on the morphology of the binder phase of WC-based cemented carbide in order to develop a WC-based cemented carbide tool that exhibits excellent fracture resistance in interrupted cutting such as end milling of alloy steel. As a result of intensive research, the following findings were obtained.
前記特許文献1~4に示されるWC基超硬工具においては、主として、WC粒子に着目した改善がなされ、また、前記特許文献5に示されるWC基超硬工具においては、主として、CFPに着目した改善がなされていたが、本発明者らは、従来の技術とは視点を変えて、結合相の形態に着目して研究を重ねたところ、WC基超硬合金の微細結合相粒子(主体は、Co粒子である)について、焼結条件を調整することによって、その真円度が0.3~0.6の範囲内となるようにした場合には、WC基超硬合金の焼結時に結合相粒子がWC粒子の周囲に回り込み、WC基超硬合金中において結合相が均一に存在するようになりWC基超硬合金の靱性が向上し、切削加工時の負荷による亀裂の発生、あるいは、発生した亀裂がWC基超硬合金中を伝播・進展することが抑制されるため、欠損の発生が抑制されること、また、WC基超硬合金中においてWC粒子の凝集体が少なくなることから、これを起点とする欠損発生が低減することを見出した。
つまり、WC基超硬合金の結合相のうちの微細結合相粒子について、その真円度を0.3~0.6の範囲内に定めたWC基超硬工具を、合金鋼等の断続切削加工に供した場合には、靱性の向上、耐欠損性の向上によって、工具の長寿命化が図られることを見出したのである。
The WC-based cemented carbide tools shown in Patent Documents 1 to 4 have been improved mainly by focusing on WC particles, and the WC-based cemented carbide tools shown in Patent Document 5 have mainly focused on CFP. However, the present inventors changed their point of view from the conventional technology and conducted repeated research focusing on the morphology of the binder phase, and found that fine binder phase particles (mainly are Co particles), by adjusting the sintering conditions so that the circularity is within the range of 0.3 to 0.6, sintering of the WC-based cemented carbide Sometimes, the binder phase particles wrap around the WC particles, and the binder phase is uniformly present in the WC-based cemented carbide, improving the toughness of the WC-based cemented carbide, and cracking occurs due to the load during cutting. Alternatively, since the propagation and progress of the generated cracks in the WC-based cemented carbide are suppressed, the occurrence of defects is suppressed, and the aggregates of WC particles in the WC-based cemented carbide are reduced. Therefore, the inventors have found that the occurrence of defects originating from this is reduced.
In other words, for the fine binder phase particles of the binder phase of the WC-based cemented carbide, a WC-based cemented carbide tool having a circularity within the range of 0.3 to 0.6 is used for intermittent cutting of alloy steel, etc. It was found that when used for machining, the life of the tool can be extended due to improved toughness and fracture resistance.
本発明は、上記知見に基づいてなされたものであって、
「(1)WC基超硬合金を基体とするWC基超硬合金製切削工具において、
前記WC基超硬合金の成分組成は、結合相形成成分としてのCoを6~14質量%とCr3C2を0.1~1.4質量%含有し、残部はWC及び不可避不純物からなり、前記WC基超硬合金の断面について測定した結合相粒子の個数積算10%粒度における粒子面積をA10としたとき、A10以下の面積を有する微細結合相粒子の平均真円度が0.3~0.6の範囲内であることを特徴とするWC基超硬合金製切削工具。
(2)前記WC基超硬合金は、TaC、NbC、TiC、ZrC及びVCのうちから選ばれる少なくとも1種以上を合計量で4質量%以下、さらに含有することを特徴とする(1)に記載のWC基超硬合金製切削工具。
(3)(1)または(2)に記載のWC基超硬合金製切削工具の少なくとも切れ刃には、硬質被覆層が形成されていることを特徴とする表面被覆WC基超硬合金製切削工具。」
を特徴とするものである。
なお、前記(1)、(2)におけるCr3C2、TaC、NbC、TiC、ZrC、VCの含有量は、WC基超硬合金の断面について測定したCr量、Ta量、Nb量、Ti量、Zr量、V量を、いずれも炭化物換算した数値である。
The present invention has been made based on the above findings,
"(1) In a WC-based cemented carbide cutting tool based on a WC-based cemented carbide,
The composition of the WC-based cemented carbide contains 6 to 14% by mass of Co and 0.1 to 1.4% by mass of Cr 3 C 2 as binder phase forming components, and the balance is WC and unavoidable impurities. , where A10 is the particle area at 10% of the total number of binder phase particles measured on the cross section of the WC-based cemented carbide, the average roundness of the fine binder phase particles having an area of A10 or less is 0.3 to A cutting tool made of WC-based cemented carbide, characterized by being within the range of 0.6.
(2) The WC-based cemented carbide further contains at least one selected from TaC, NbC, TiC, ZrC and VC in a total amount of 4% by mass or less. A WC-based cemented carbide cutting tool as described.
(3) Surface-coated WC-based cemented carbide cutting, characterized in that a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide cutting tool according to (1) or (2). tool. ”
It is characterized by
The contents of Cr 3 C 2 , TaC, NbC, TiC, ZrC, and VC in (1) and (2) above are the amounts of Cr, Ta, Nb, and Ti measured on the cross section of the WC-based cemented carbide. The amount, Zr amount, and V amount are all converted to carbide values.
本発明のWC基超硬工具および表面被覆WC基超硬合金製切削工具は、その基体を構成するWC基超硬合金の成分であるCo、Cr3C2、あるいはさらに、TaC、NbC、TiC、ZrC、VCが特定の組成範囲を有し、また、WC基超硬合金における結合相粒子の個数積算10%粒度における粒子面積をA10としたとき、A10以下の面積を有する微細結合相粒子の平均真円度が0.3~0.6の範囲であることから、WC基超硬合金中のWC粒子の周囲には結合相粒子が回り込み、結合相が均一に存在するようになることから、WC基超硬合金の靱性の向上が図られ、その結果、切削加工時の負荷による亀裂の発生、あるいは、発生した亀裂がWC基超硬合金中を伝播・進展することが抑制されるため、耐欠損性が向上する。
また、WC基超硬合金中においてWC粒子の凝集体が少なくなることから、これを起点とする欠損発生も低減される。
したがって、本発明のWC基超硬工具および表面被覆WC基超硬合金製切削工具は、合金鋼のエンドミル加工等の断続切削加工において、靱性の向上、耐欠損性の向上により、工具の長寿命化が図られる。
The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide cutting tool of the present invention contain Co, Cr 3 C 2 , or further TaC, NbC, TiC, which are components of the WC-based cemented carbide constituting the substrate. , ZrC, and VC have a specific composition range, and when the particle area of the binder phase grains in the WC-based cemented carbide at a cumulative 10% grain size is A10, fine binder phase particles having an area of A10 or less Since the average roundness is in the range of 0.3 to 0.6, the binder phase particles wrap around the WC particles in the WC-based cemented carbide, and the binder phase is uniformly present. , the toughness of the WC-based cemented carbide is improved, and as a result, the occurrence of cracks due to the load during cutting, or the propagation and progress of the generated cracks in the WC-based cemented carbide is suppressed. , chipping resistance is improved.
In addition, since the aggregates of WC particles are reduced in the WC-based cemented carbide, the occurrence of defects originating from such aggregates is also reduced.
Therefore, the WC-based cemented carbide tool and the surface-coated WC-based cemented carbide cutting tool of the present invention have improved toughness and fracture resistance in interrupted cutting such as end-milling of alloy steel, resulting in a long tool life. is planned.
以下、本発明について詳細に説明する。 The present invention will be described in detail below.
Co:
Coは、WC基超硬合金の主たる結合相形成成分として含有させるが、Co含有量が6質量%未満では十分な靱性を保持することはできず、一方、Co含有量が14質量%を超えると急激に軟化し、切削工具として必要とされる所望の硬さが得られず、変形および摩耗進行が顕著になることから、WC基超硬合金中のCo含有量を6~14質量%と定めた。
Co:
Co is contained as a main binder phase forming component of the WC-based cemented carbide, but if the Co content is less than 6% by mass, sufficient toughness cannot be maintained, while the Co content exceeds 14% by mass. When the Co content in the WC-based cemented carbide is 6 to 14% by mass, the Co content in the WC-based cemented carbide is set to 6 to 14% by mass. determined.
Cr3C2:
Cr3C2は、主たる結合相を形成するCo中にCrが固溶し、硬質相を形成するWC相の成長を抑制して、WC相の粒径を微細化させ、WC基超硬合金を微粒・均粒組織とし、靱性を高める。しかし、この作用は、Cr3C2含有量が、0.1質量%未満では不充分であり、一方、その含有量がCoの含有量に対し10%を超えると、CrとWの複合炭化物を析出し、靱性が低下し、また、欠損発生の起点となる。
本発明においてはCo含有量上限が14質量%であるため、Cr3C2の上限はCo含有量上限の10%である1.4質量%である。
したがって、WC基超硬合金中のCr3C2含有量は、0.1~1.4質量%と定めた。
Cr3C2 :
Cr 3 C 2 forms a solid solution of Cr in Co that forms the main binder phase, suppresses the growth of the WC phase that forms the hard phase, and refines the grain size of the WC phase, resulting in a WC-based cemented carbide. to a fine grain/uniform grain structure to increase toughness. However, this effect is insufficient when the Cr 3 C 2 content is less than 0.1% by mass. is precipitated, the toughness is lowered, and it becomes the starting point of chipping.
In the present invention, the upper limit of the Co content is 14% by mass, so the upper limit of Cr 3 C 2 is 1.4% by mass, which is 10% of the upper limit of the Co content.
Therefore, the Cr 3 C 2 content in the WC-based cemented carbide is set at 0.1 to 1.4% by mass.
TaC、NbC、TiC、ZrC、VC:
本発明のWC基超硬合金は、その成分として、さらに、TaC、NbC、TiC、ZrC及びVCのうちから選ばれる少なくとも1種以上を合計量で4質量%以下、さらに含有することができる。
Ta、Nb、Ti、Zr、Vはいずれも、主たる結合相を形成するCo中に固溶して硬さを高める効果を有するが、それらを炭化物換算した合計含有量が4質量%を超えると、炭化物析出により靱性を低下させ、欠損発生の起点となる。
したがって、WC基超硬合金中の成分としてTaC、NbC、TiC、ZrC及びVCのうちから選ばれる少なくとも1種以上を含有させる場合には、その合計含有量は、4質量%以下とすることが望ましい。
なお、前記したCr3C2、TaC、NbC、TiC、ZrC、VCの含有量は、WC基超硬合金についてEPMAによって測定したCr量、Ta量、Nb量、Ti量、Zr量、V量を、いずれも炭化物換算した数値である。
TaC, NbC, TiC, ZrC, VC:
The WC-based cemented carbide of the present invention may further contain at least one selected from TaC, NbC, TiC, ZrC and VC in a total amount of 4% by mass or less.
All of Ta, Nb, Ti, Zr, and V have the effect of increasing the hardness by solid-solving in Co forming the main binder phase, but when the total content of them in terms of carbide exceeds 4% by mass , decrease the toughness due to carbide precipitation, and become the starting point of chipping.
Therefore, when at least one selected from TaC, NbC, TiC, ZrC and VC is contained as a component in the WC-based cemented carbide, the total content thereof should be 4% by mass or less. desirable.
The contents of Cr 3 C 2 , TaC, NbC, TiC, ZrC, and VC are the amounts of Cr, Ta, Nb, Ti, Zr, and V measured by EPMA on the WC-based cemented carbide. are all values converted into carbide.
微細結合相粒子の平均真円度(Circularity):
本発明でいうWC基超硬合金の微細結合相粒子の平均真円度とは、WC基超硬合金の断面について、走査型電子顕微鏡(SEM)を使用した観察によって特定した個々の微細結合相粒子の真円度を求め、求めた真円度を平均した値をいう。
ここで、微細結合相粒子とは、例えば、走査型電子顕微鏡(SEM)を用いて、倍率3000~4000倍でWC基超硬合金の断面を観察して、結合相(Coを主成分とする相)のコントラストが他の相のコントラストから明確に分離可能なSEM像を取得し、これを画像処理して個々の結合相粒子の面積と個数を求め、結合相粒子の面積を横軸とし、また、結合相粒子の個数を縦軸とし、結合相面積の小さい粒子から個数を積み上げた累積分布を作成し、個数積算10%における粒子面積をA10とした場合に、A10以下の面積を有する結合相粒子を微細結合相粒子いう。
そして、微細結合相粒子の真円度については、例えば、走査型電子顕微鏡(SEM)を用いて、倍率3000~4000倍でWC基超硬合金の断面を観察してSEM像を取得し、該SEM像における微細結合相粒子を特定して抽出し、画像解析ソフトImageJを用いて測定することにより、個々の微細結合相粒子の真円度を求めることができる。
Average Circularity of Fine Binder Phase Particles:
The average roundness of the fine binder phase particles of the WC-based cemented carbide referred to in the present invention refers to the individual fine binder phases identified by observation using a scanning electron microscope (SEM) for the cross section of the WC-based cemented carbide. It is the average value of the circularity obtained by obtaining the circularity of the particles.
Here, the fine binder phase particles are, for example, a binder phase (mainly composed of Co A SEM image in which the contrast of the phase) can be clearly separated from the contrast of the other phases is obtained, and the image is processed to determine the area and number of individual binder phase particles, and the area of the binder phase particle is taken as the horizontal axis, In addition, when the number of binder phase particles is taken as the vertical axis, a cumulative distribution is created by stacking the number of particles from the smaller binder phase area, and the particle area at 10% of the number accumulation is A10, the bond having an area of A10 or less. The phase grains are referred to as fine bonding phase grains.
Then, regarding the roundness of the fine binder phase particles, for example, using a scanning electron microscope (SEM), a cross section of the WC-based cemented carbide is observed at a magnification of 3000 to 4000 times to obtain an SEM image. By specifying and extracting the fine binder phase particles in the SEM image and measuring using the image analysis software ImageJ, the circularity of each fine binder phase particle can be determined.
より具体的に説明すれば、次のとおり。
WC基超硬合金の断面の1つの観察視野においてn個の微細結合相粒子が特定された場合、個々の微細結合相粒子に番号1からnを付与し、番号1~nの微細結合相粒子の面積をそれぞれA1~Anとし、また、番号1~nの微細結合相粒子の周長をL1~Lnとした時、番号mの微細結合相粒子の真円度Cmは、
Cm=4π×Am/Lm
2
で定義される。
そして、m=1~nとしてC1~Cnの値を求め、さらに、これらC1~Cnの平均値C1~nを求め、このC1~nが前記1つの観察視野における微細結合相粒子の真円度となる。
そして、複数の観察視野(例えば、10ヶ所の観察視野)で、それぞれの観察視野における微細結合相粒子の真円度を求め、これらを平均した値を、本発明でいうWC基超硬合金の断面の微細結合相粒子の平均真円度とする。
真円度の定義からも明らかなように、真円度あるいは平均真円度の値が1に近いほど、WC基超硬合金の微細結合相粒子の形状は真円に近づき、一方、この値が0に近づくにつれ、微細結合相粒子の形状は円ではなく細長形状になっていくので、真円度あるいは平均真円度の値は、WC基超硬合金中における微細結合相粒子の形状の指標であるといえる。
More specifically, it is as follows.
When n fine binder phase particles are identified in one observation field of the cross section of the WC-based cemented carbide, the individual fine binder phase particles are numbered 1 to n, and the fine binder phase particles numbered 1 to n. are the areas of A 1 to A n , respectively, and the perimeters of the fine binder phase particles numbered 1 to n are L 1 to L n , the circularity C m of the fine binder phase particles numbered m is
Cm = 4π x Am / Lm2
defined by
Then, the values of C 1 to C n are obtained with m=1 to n, and the average values C 1 to n of these C 1 to C n are obtained. It becomes the circularity of the phase particles.
Then, in a plurality of observation fields (for example, 10 observation fields), the roundness of the fine binder phase particles in each observation field is obtained, and the average value of these is the value of the WC-based cemented carbide referred to in the present invention. The average circularity of the fine binder phase particles in the cross section.
As is clear from the definition of circularity, the closer the circularity or average circularity value is to 1, the closer the shape of the fine binder phase grains of the WC-based cemented carbide is to a perfect circle. approaches 0, the shape of the fine binder phase particles becomes elongated instead of circular. It can be said that it is an index.
本発明においては、微細結合相粒子の平均真円度を0.3~0.6の範囲内としているが、これは次の理由による。
WC基超硬合金中における微細結合相粒子の平均真円度が0.3未満では、WC粒子の周囲への微細結合相粒子の回り込みは多くなるが、その一方で、WC-WC粒子同士の接触界面長さが短くなるとともに、微細結合相粒子の先端部での応力集中の発生により、耐塑性変形性が低下し、さらに、微細結合相粒子の先端部に空隙が形成されやすくなり、この空隙は、WC基超硬工具の変形、破壊の起点となるため、靱性、耐欠損性等が低下する。
一方、微細結合相粒子の平均真円度が0.6を超えると、WC粒子の周囲への微細結合相粒子の回り込みが不十分となるため、靱性が低下し、欠損等の異常損傷が発生しやすくなる。
したがって、本発明においては、微粒結合相粒子の平均真円度は0.3~0.6の範囲内とする。
そして、これによって、合金鋼のエンドミル加工等の断続切削加工において、靱性が向上することで、欠損の発生が抑制され、切削工具の長寿命化を図ることができる。
In the present invention, the average circularity of the fine binder phase particles is set within the range of 0.3 to 0.6 for the following reasons.
When the average circularity of the fine binder phase particles in the WC-based cemented carbide is less than 0.3, the fine binder phase particles wrap around the WC particles more, but on the other hand, the WC-WC particles are separated from each other. As the length of the contact interface becomes shorter, stress concentration occurs at the tips of the fine binder phase particles, reducing the resistance to plastic deformation. Since the voids become starting points for deformation and fracture of the WC-based cemented carbide tool, the toughness, chipping resistance, etc. are lowered.
On the other hand, when the average roundness of the fine binder phase particles exceeds 0.6, the fine binder phase particles do not sufficiently wrap around the WC particles, resulting in a decrease in toughness and abnormal damage such as chipping. easier to do.
Therefore, in the present invention, the average circularity of the fine binder phase particles is set within the range of 0.3 to 0.6.
As a result, in interrupted cutting such as end milling of alloy steel, the toughness is improved, the occurrence of chipping is suppressed, and the life of the cutting tool can be extended.
本発明のWC基超硬工具は、例えば、以下の工程によって作製することができる。
まず、所定の平均粒径のWC粉末、Co粉末、Cr3C2粉末からなる原料粉末、あるいは、必要に応じて、さらに、TaC粉末、NbC粉末、TiC粉末、ZrC粉末、VC粉末のうちの1種以上の粉末を含有する原料粉末を、所定の組成になるように配合・混合して、混合粉末を作製する。
ついで、前記混合粉末を成形して圧粉成形体を作製し、この圧粉成形体を、真空雰囲気中で、結合相の液相出現温度(圧粉成形体の組成等に依存するが、概ね1300~1360℃)を挟んで、昇温及び降温を約10~30回程度繰り返す工程(以下、サイクル工程と称す)を行い、次いで1360~1500℃の温度で所定時間保持することにより焼結を行い、WC基超硬合金を作製する。
結合相の液相出現温度を挟んで昇温と降温を繰り返す条件のサイクル工程を行うことにより、WC粒子間に平均真円度が0.3~0.6のCoを主成分とする微細結合相粒子が形成される。
ついで、前記WC基超硬合金を、機械加工、研削加工し、所望サイズ・形状のWC基超硬工具を作製することができる。
The WC-based cemented carbide tool of the present invention can be produced, for example, by the following steps.
First, a raw material powder consisting of WC powder, Co powder, and Cr 3 C 2 powder having a predetermined average particle size, or, if necessary, TaC powder, NbC powder, TiC powder, ZrC powder, and VC powder. Raw material powders containing one or more kinds of powders are blended and mixed so as to have a predetermined composition to prepare a mixed powder.
Next, the mixed powder is molded to produce a compact, and the compact is placed in a vacuum atmosphere at a liquid phase appearance temperature of the binder phase (depending on the composition of the compact, but generally 1300 to 1360 ° C.), a step (hereinafter referred to as a cycle step) is repeated about 10 to 30 times, and then sintering is performed by holding at a temperature of 1360 to 1500 ° C. for a predetermined time. to produce a WC-based cemented carbide.
By performing a cycle process under conditions where the temperature is repeatedly raised and lowered with the liquid phase appearance temperature of the binder phase sandwiched between them, fine bonding mainly composed of Co with an average circularity of 0.3 to 0.6 is formed between WC grains. Phase particles are formed.
Then, the WC-based cemented carbide can be machined and ground to produce a WC-based cemented carbide tool having a desired size and shape.
前記の工程で作製されたWC基超硬工具においては、WC基超硬合金の微細結合相粒子の平均真円度が0.3~0.6の範囲となり、WC粒子の周囲に結合相が回り込んで、WC基超硬合金中において結合相が均一に存在するようになる。
その結果、WC基超硬合金の靱性が向上し、切削加工時の負荷による亀裂の発生、あるいは、発生した亀裂がWC基超硬合金中を伝播・進展することが抑制されるため、耐折損性が向上する。
さらに、WC粒子の凝集体が少なくなることから、これを起点とする欠損発生が低減される。
In the WC-based cemented carbide tool produced by the above process, the average roundness of the fine binder phase particles of the WC-based cemented carbide is in the range of 0.3 to 0.6, and the binder phase is formed around the WC particles. It wraps around and the binder phase comes to exist uniformly in the WC-based cemented carbide.
As a result, the toughness of the WC-based cemented carbide is improved, and the generation of cracks due to the load during cutting, or the propagation and propagation of the generated cracks in the WC-based cemented carbide, is suppressed, resulting in breakage resistance. improve sexuality.
Furthermore, since the aggregates of WC particles are reduced, the occurrence of defects originating from such aggregates is reduced.
また、前記WC基超硬工具の少なくとも切れ刃に、Ti-Al系、Al-Cr系等の炭化物、窒化物、炭窒化物あるいはAl2O3等の硬質皮膜を、PVD、CVD等の成膜法により被覆形成することにより、表面被覆WC基超硬合金製切削工具を作製することができる。
なお、表面被覆WC基超硬合金製切削工具の作製にあたり、硬質皮膜の種類、成膜法は、当業者に既によく知られている膜種、成膜手法を採用すればよく、特に、制限するものではない。
Further, at least the cutting edge of the WC-based cemented carbide tool is coated with a hard coating such as Ti--Al-based, Al--Cr-based carbides, nitrides, carbonitrides, or Al 2 O 3 by PVD, CVD, or the like. A surface-coated WC-based cemented carbide cutting tool can be produced by forming a coating by a film method.
In the production of the surface-coated WC-based cemented carbide cutting tool, the type of the hard coating and the method of forming the hard coating may be those already well known to those skilled in the art. not something to do.
本発明のWC基超硬工具および表面被覆WC基超硬工具について、実施例により具体的に説明する。 The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide tool of the present invention will be specifically described with reference to examples.
≪本発明のWC基超硬工具≫
(a)まず、焼結用の粉末として、表1に示す平均粒径(d50)0.8~4.0μmのWC粉末、同じく表1に示す平均粒径(d50)1.0~3.0μmのCo粉末、Cr3C2粉末、TaC粉末、NbC粉末、TiC粉末、ZrC粉末、VC粉末を用意する。
これらの粉末を、表1に示す配合組成となるように配合して、焼結用粉末を作製した。
表1には、各種粉末の配合組成(質量%)を示す。
<<WC-based cemented carbide tool of the present invention>>
(a) First, WC powder having an average particle size (d50) of 0.8 to 4.0 μm shown in Table 1 and an average particle size (d50) of 1.0 to 3.0 μm shown in Table 1 were used as powders for sintering. 0 μm Co powder, Cr 3 C 2 powder, TaC powder, NbC powder, TiC powder, ZrC powder and VC powder are prepared.
These powders were blended so as to have the composition shown in Table 1 to prepare a powder for sintering.
Table 1 shows the composition (% by mass) of various powders.
(b)表1に示す配合組成に配合した焼結用粉末を、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して、所定の形状を有する圧粉成形体を作製した。 (b) The sintering powder blended in the formulation shown in Table 1 is wet-mixed in a ball mill for 72 hours, dried, and then press-molded at a pressure of 100 MPa to produce a compact having a predetermined shape. did.
(c)ついで、炉内を101Pa以下の真空雰囲気とし、表2に示す条件、即ち、結合相の液相出現温度(圧粉成形体の組成等に依存するが、概ね1300~1360℃)を挟んで、10~30回昇温降温を繰り返し行う条件でサイクル工程を実施した。 (c) Then, the inside of the furnace is set to a vacuum atmosphere of 10 1 Pa or less, and the conditions shown in Table 2, that is, the appearance temperature of the liquid phase of the binder phase (depending on the composition of the compact, but generally 1300 to 1360 ° C. ), the cycle step was performed under the condition that the temperature was repeatedly raised and lowered 10 to 30 times.
(d)続けて、101Pa以下の真空雰囲気で表3に示す条件、すなわち1360~1500℃に昇温し、同温度で所定時間保持し焼結することにより、WC基超硬合金を作製した。 (d) Subsequently, the temperature is raised to 1,360 to 1,500° C. under the conditions shown in Table 3 in a vacuum atmosphere of 10 1 Pa or less, and the WC-based cemented carbide is produced by maintaining the same temperature for a predetermined time and sintering. did.
(e)ついで、前記WC基超硬合金を、機械加工、研削加工し、AOMT123608PEERのインサート形状を持ったWC基超硬工具1~10(以下、本発明工具1~10と言う)及びXDGX175008PDERのインサート形状を持ったWC基超硬工具11、12(以下、本発明工具11、12という)を作製した。本発明工具の作製条件及び組成を表4に示す (e) Next, the WC-based cemented carbide is machined and ground, and WC-based cemented carbide tools 1 to 10 (hereinafter referred to as present invention tools 1 to 10) having an insert shape of AOMT123608PEER and XDGX175008PDER WC-based cemented carbide tools 11 and 12 having an insert shape (hereinafter referred to as inventive tools 11 and 12) were produced. Table 4 shows the production conditions and composition of the tool of the present invention.
≪比較例のWC基超硬工具≫
比較のために、比較例のWC基超硬工具1~12(以下、比較例工具1~12という)を製造した。
その製造工程は、前記本発明工具1~5及び11の製造工程において、前記(c)のサイクル工程を行わず、通常条件での焼結を行ったもの、また、前記本発明工具6~10及び12の製造工程において、前記(c)のサイクル工程で本発明の推奨条件外での処理を行ったものである。
<<WC-based cemented carbide tool of comparative example>>
For comparison, WC-based cemented carbide tools 1 to 12 of comparative examples (hereinafter referred to as comparative tools 1 to 12) were produced.
The manufacturing process is that in the manufacturing process of the present invention tools 1 to 5 and 11, the cycle process (c) is not performed, and sintering is performed under normal conditions, and the present invention tools 6 to 10 and 12, in the cycle step (c) above, treatment was performed outside the recommended conditions of the present invention.
つまり、表5に示す比較例工具1~5及び11は、表1に示す配合組成に配合した焼結用粉末を、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して圧粉成形体を作製し、加熱温度:1360℃以上1500℃以下、かつ、加熱保持時間:30~120分、真空雰囲気という通常の条件で焼結して、WC基超硬合金焼結体を作製し、これを機械加工、研削加工し、比較例工具1~5はAOMT123608PEERのインサート形状、比較例工具11はXDGX175008PDERのインサート形状としたものである。
また、表5に示す比較例工具6~10及び12は、表1に示す配合組成に配合した焼結用粉末を、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して丸棒圧粉成形体を作製した後、表2に示す条件で前記(c)工程を行った後、加熱温度:1360℃以上1500℃以下、かつ、加熱保持時間:30~120分、真空雰囲気という通常の条件で焼結して、WC基超硬合金焼結体を作製し、これを機械加工、研削加工し、比較例工具6~10はAOMT123608PEERのインサート形状、比較例工具12はXDGX175008PDERのインサート形状としたものである。
That is, the comparative tools 1 to 5 and 11 shown in Table 5 were obtained by wet-mixing the sintering powder blended in the composition shown in Table 1 in a ball mill for 72 hours, drying, and press molding at a pressure of 100 MPa. and sintered under normal conditions of heating temperature: 1360° C. or higher and 1500° C. or lower and heating and holding time: 30 to 120 minutes in a vacuum atmosphere to obtain a WC-based cemented carbide sintered body. were machined and ground, Comparative Example Tools 1 to 5 had an insert shape of AOMT123608PEER, and Comparative Example Tool 11 had an insert shape of XDGX175008PDER.
Comparative tools 6 to 10 and 12 shown in Table 5 were obtained by wet-mixing sintering powders blended in the formulation shown in Table 1 for 72 hours in a ball mill, drying, and press-molding at a pressure of 100 MPa. After producing a round bar compacted body, the step (c) was performed under the conditions shown in Table 2, and then the heating temperature was 1360°C or higher and 1500°C or lower, and the heating and holding time was 30 to 120 minutes, vacuum. A WC-based cemented carbide sintered body was produced by sintering under normal conditions of an atmosphere, and this was machined and ground. It is an insert shape.
本発明工具1~12及び比較例工具1~12のWC基超硬合金の断面について、EPMAにより、その成分であるCo、Cr、Ta、Nb、Ti、Zr、Vの含有量を10点測定し、その平均値を各成分の含有量とした。
なお、Cr、Ta、Nb、Ti、Zr、Vは、それぞれの炭化物に換算して含有量を算出した。
表4、表5に、それぞれの平均含有量を示す。
The contents of Co, Cr, Ta, Nb, Ti, Zr, and V, which are components of the cross sections of the WC-based cemented carbides of the present invention tools 1 to 12 and comparative example tools 1 to 12, were measured at 10 points by EPMA. and the average value was taken as the content of each component.
The contents of Cr, Ta, Nb, Ti, Zr, and V were calculated in terms of respective carbides.
Tables 4 and 5 show the respective average contents.
つぎに、本発明工具1~12及び比較例工具1~12のWC基超硬合金の断面について、走査型電子顕微鏡(SEM)を用いて、倍率3000~4000倍でWC基超硬合金の断面を観察して、画像サイズ120×96mm、pixel数1280×1024pixelでSEM像を取得し、これを画像処理し、一つの観察視野内の個々の結合相粒子の面積と個数を求め、結合相粒子の面積を横軸とし、また、結合相粒子の個数を縦軸とする結合相粒子の累積分布を作成し、個数積算10%における粒子面積をA10とし、A10以下の面積を有する微細結合相粒子について、画像解析ソフトImageJを用いて個々の微細結合相粒子の真円度を測定し、前記一つの観察視野における個々の微細結合相粒子の真円度の平均値を求めた。
なお、前記観察倍率とpixel数の関係から、3000倍観察では最小結合相面積は977nm2であり、4000倍観察では549nm2である。また、観察視野倍率は視野内に150~400個の結合相粒子が含まれるように倍率を選定した。本発明においては、WC粒子によって分断された個々の結合相を各々一つの結晶粒と見なしている。
そして、10箇所の観察視野で求めたそれぞれの真円度の平均値をさらに平均することにより、WC基超硬合金の断面における微細結合相粒子の平均真円度を算出した。
表4、表5に、A10の値と平均真円度の値を示す。
Next, the cross sections of the WC-based cemented carbides of the present invention tools 1 to 12 and the comparative example tools 1 to 12 were examined using a scanning electron microscope (SEM) at a magnification of 3000 to 4000 times. Observing the SEM image with an image size of 120 × 96 mm and a pixel number of 1280 × 1024 pixels, the image is processed, and the area and number of individual binder phase particles in one observation field are obtained, and the binder phase particles A cumulative distribution of binder phase particles is created with the area of the abscissa and the number of binder phase particles on the ordinate, and the particle area at a cumulative number of 10% is A10, and the fine binder phase particles having an area of A10 or less , the circularity of individual fine binder phase particles was measured using image analysis software ImageJ, and the average value of the circularity of the individual fine binder phase particles in the one observation field was obtained.
From the relationship between the observation magnification and the number of pixels, the minimum bonded phase area is 977 nm 2 when observed at 3000×, and 549 nm 2 when observed at 4000×. Further, the observation field magnification was selected so that 150 to 400 bonded phase particles were included in the field of view. In the present invention, each individual binder phase separated by WC grains is regarded as one grain.
Then, by further averaging the average values of the respective roundness obtained in the ten observation fields, the average roundness of the fine binder phase grains in the cross section of the WC-based cemented carbide was calculated.
Tables 4 and 5 show the A10 value and the average roundness value.
つぎに、前記本発明工具1~10、比較例工具1~10の切れ刃表面に、表6に示す平均層厚の硬質被覆層をPVD法で被覆形成し、本発明表面被覆WC基超硬合金製切削工具(以下、「本発明被覆工具」という)1~10、比較例表面被覆WC基超硬合金製切削工具(以下、「比較例被覆工具」という)1~10を作製した。
上記の各被覆工具をいずれもカッタ径25mmの工具鋼製カッタ先端部に固定治具にてクランプし、以下に示す、合金鋼の高送り断続切削の一種である乾式肩削り切削加工試験を実施した。
Next, a hard coating layer having an average layer thickness shown in Table 6 was formed by PVD on the cutting edge surfaces of the tools 1 to 10 of the present invention and the comparative tools 1 to 10, and the surface-coated WC-based cemented carbide of the present invention was formed. Alloy cutting tools (hereinafter referred to as "coated tools of the present invention") 1 to 10 and comparative surface-coated WC-based cemented carbide cutting tools (hereinafter referred to as "comparative coated tools") 1 to 10 were produced.
Each of the above coated tools was clamped to the tip of a tool steel cutter with a cutter diameter of 25 mm with a fixing jig, and the following dry shoulder cutting test, which is a type of high-feed interrupted cutting of alloy steel, was performed. did.
カッタ径: 25 mm、
被削材: JIS・SCM440、幅100mm、長さ400mmのブロック材、
切削速度: 200 m/min、
径方向切り込み: 5 mm、
軸方向切り込み: 3 mm、
一刃送り量: 0.3 mm/刃、
上記切削加工試験において、逃げ面摩耗幅が0.2mmに達するまでの切削長を測定し、また、切削加工試験後の切れ刃の損耗状態を観察した。
表7に、この試験結果を示す。
Cutter diameter: 25 mm,
Work material: JIS/SCM440, block material with a width of 100 mm and a length of 400 mm,
Cutting speed: 200 m/min,
radial cut: 5 mm,
axial cut: 3 mm,
Feed amount per blade: 0.3 mm/blade,
In the cutting test, the cutting length was measured until the flank wear width reached 0.2 mm, and the state of wear of the cutting edge after the cutting test was observed.
Table 7 shows the results of this test.
また、本発明工具11、12及び比較例工具11、12をいずれもカッタ径40mmの工具鋼製カッタ先端部に固定治具にてクランプし、以下に示す、アルミニウム合金の高送り断続切削の一種である湿式肩削り切削加工試験を実施した。切れ刃の逃げ面摩耗幅を測定するとともに、切れ刃の損耗状態を観察した。
カッタ径: 40 mm、
被削材: JIS・A7075、幅100mm、長さ400mmのブロック材、
切削速度: 500 m/min、
径方向切り込み: 6 mm、
軸方向切り込み: 30 mm、
一刃送り量: 0.15 mm/刃、
上記切削加工試験において、逃げ面摩耗幅が0.2mmに達するまでの切削長を測定し、また、切削加工試験後の切れ刃の損耗状態を観察した。
表8に、切削試験の結果を示す。
In addition, the present invention tools 11 and 12 and the comparative example tools 11 and 12 were both clamped to the tip of a tool steel cutter having a cutter diameter of 40 mm with a fixing jig, and a type of high-feed intermittent cutting of an aluminum alloy shown below was performed. A wet shoulder cutting test was carried out. The flank wear width of the cutting edge was measured and the state of wear of the cutting edge was observed.
Cutter diameter: 40mm,
Work material: JIS A7075, block material with a width of 100 mm and a length of 400 mm,
Cutting speed: 500 m/min,
radial cut: 6 mm,
axial cut: 30 mm,
Single blade feed amount: 0.15 mm/blade,
In the cutting test, the cutting length was measured until the flank wear width reached 0.2 mm, and the state of wear of the cutting edge after the cutting test was observed.
Table 8 shows the results of the cutting test.
表7及び表8に示される試験結果によれば、本発明工具および本発明被覆工具は、欠損を発生することもなく、すぐれた耐摩耗性を発揮するのに対して、比較例工具および比較例被覆工具は、欠損の発生により工具寿命が短命であることがわかる。 According to the test results shown in Tables 7 and 8, the tool of the present invention and the coated tool of the present invention exhibit excellent wear resistance without causing chipping, whereas the comparative example tool and the comparative tool It can be seen that coated tools have a short tool life due to chipping.
以上のとおり、本発明工具および本発明被覆工具は、合金鋼等の断続切削加工に供した場合、すぐれた耐欠損性を発揮するが、他の被削材、切削条件に適用した場合にも、長期の使用にわたってすぐれた切削性能を発揮し、工具の長寿命化が図られることが期待される。
As described above, the tool of the present invention and the coated tool of the present invention exhibit excellent chipping resistance when subjected to interrupted cutting of alloy steel, etc., but when applied to other work materials and cutting conditions, It is expected to exhibit excellent cutting performance over long-term use and to extend tool life.
Claims (3)
前記WC基超硬合金の成分組成は、結合相形成成分としてのCoを6~14質量%とCr3C2を0.1~1.4質量%含有し、残部はWC及び不可避不純物からなり、前記WC基超硬合金の断面について測定した結合相粒子の個数積算10%粒度における粒子面積をA10としたとき、A10以下の面積を有する微細結合相粒子の平均真円度が0.3~0.6の範囲内であることを特徴とするWC基超硬合金製切削工具。 In a WC-based cemented carbide cutting tool based on a WC-based cemented carbide,
The composition of the WC-based cemented carbide contains 6 to 14% by mass of Co and 0.1 to 1.4% by mass of Cr 3 C 2 as binder phase forming components, and the balance is WC and unavoidable impurities. , where A10 is the particle area at 10% of the total number of binder phase particles measured on the cross section of the WC-based cemented carbide, the average roundness of the fine binder phase particles having an area of A10 or less is 0.3 to A cutting tool made of WC-based cemented carbide, characterized by being within the range of 0.6.
A surface-coated WC-based cemented carbide cutting tool according to claim 1 or 2, wherein a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide cutting tool.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026945A JP7161677B2 (en) | 2019-02-18 | 2019-02-18 | WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026945A JP7161677B2 (en) | 2019-02-18 | 2019-02-18 | WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020132935A JP2020132935A (en) | 2020-08-31 |
JP7161677B2 true JP7161677B2 (en) | 2022-10-27 |
Family
ID=72277856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019026945A Active JP7161677B2 (en) | 2019-02-18 | 2019-02-18 | WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7161677B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009024214A (en) | 2007-07-19 | 2009-02-05 | Tungaloy Corp | Hard metal and manufacturing method therefor |
JP2009035810A (en) | 2007-07-11 | 2009-02-19 | Sumitomo Electric Hardmetal Corp | Cemented carbide |
JP2009172697A (en) | 2008-01-23 | 2009-08-06 | Mitsubishi Materials Corp | Wc-based cemented carbide cutting tool showing excellent chipping resistance, thermal crack resistance and wear resistance in high-speed intermittent heavy cutting |
JP2016020541A (en) | 2014-06-19 | 2016-02-04 | 住友電気工業株式会社 | Super hard alloy and cutting tool |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4923512A (en) * | 1989-04-07 | 1990-05-08 | The Dow Chemical Company | Cobalt-bound tungsten carbide metal matrix composites and cutting tools formed therefrom |
JP4177467B2 (en) * | 1996-10-04 | 2008-11-05 | 住友電工ハードメタル株式会社 | High toughness hard alloy and manufacturing method thereof |
-
2019
- 2019-02-18 JP JP2019026945A patent/JP7161677B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009035810A (en) | 2007-07-11 | 2009-02-19 | Sumitomo Electric Hardmetal Corp | Cemented carbide |
JP2009024214A (en) | 2007-07-19 | 2009-02-05 | Tungaloy Corp | Hard metal and manufacturing method therefor |
JP2009172697A (en) | 2008-01-23 | 2009-08-06 | Mitsubishi Materials Corp | Wc-based cemented carbide cutting tool showing excellent chipping resistance, thermal crack resistance and wear resistance in high-speed intermittent heavy cutting |
JP2016020541A (en) | 2014-06-19 | 2016-02-04 | 住友電気工業株式会社 | Super hard alloy and cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JP2020132935A (en) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6634647B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance | |
JP6330387B2 (en) | Sintered body and manufacturing method thereof | |
JP6439975B2 (en) | Cermet manufacturing method | |
JPWO2011002008A1 (en) | Cermet and coated cermet | |
JP5652113B2 (en) | WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting | |
WO2011136197A1 (en) | Cermet and coated cermet | |
US8765272B2 (en) | Cermet and coated cermet | |
JP7385829B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance | |
JP7402436B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance | |
JPH0711051B2 (en) | Cemented carbide and coated cemented carbide formed by forming a coating on the surface of the alloy | |
JP2005194573A (en) | Cermet, coated cermet, and method for manufacturing them | |
JP4703122B2 (en) | Method for producing TiCN-based cermet | |
JP7517483B2 (en) | Cemented carbide and cutting tools containing it as a substrate | |
JP7161677B2 (en) | WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance | |
KR101302374B1 (en) | Cemented carbide having good wear resistance and chipping resistance | |
JP6695566B2 (en) | Cemented carbide used as a tool for machining non-metallic materials | |
JP7432109B2 (en) | Cemented carbide and cutting tools | |
JP7209216B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance | |
JP7307394B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance | |
JP7441420B2 (en) | Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance | |
JP5031610B2 (en) | TiCN-based cermet | |
JP2020157473A (en) | Coated cutting tool | |
JP7473871B2 (en) | WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool | |
JP7441418B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance | |
JP2005200668A (en) | Cermet and coated cermet, and manufacturing methods for them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220915 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220928 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7161677 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |