KR101302374B1 - Cemented carbide having good wear resistance and chipping resistance - Google Patents

Cemented carbide having good wear resistance and chipping resistance Download PDF

Info

Publication number
KR101302374B1
KR101302374B1 KR1020100116489A KR20100116489A KR101302374B1 KR 101302374 B1 KR101302374 B1 KR 101302374B1 KR 1020100116489 A KR1020100116489 A KR 1020100116489A KR 20100116489 A KR20100116489 A KR 20100116489A KR 101302374 B1 KR101302374 B1 KR 101302374B1
Authority
KR
South Korea
Prior art keywords
carbide
cemented carbide
weight
particle size
cutting
Prior art date
Application number
KR1020100116489A
Other languages
Korean (ko)
Other versions
KR20120055026A (en
Inventor
한대석
조성우
이성구
안선용
박동복
Original Assignee
한국야금 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국야금 주식회사 filed Critical 한국야금 주식회사
Priority to KR1020100116489A priority Critical patent/KR101302374B1/en
Publication of KR20120055026A publication Critical patent/KR20120055026A/en
Application granted granted Critical
Publication of KR101302374B1 publication Critical patent/KR101302374B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Abstract

본 발명은 내마모성이 우수하고 특히 절삭가공시 피삭재와의 용착에 의한 입자탈락(즉 치핑)이 일어나는 것을 최대한 억제할 수 있어 스테인리스강과 같은 난삭재 가공용 절삭공구에 적합하게 사용될 수 있는 초경합금에 관한 것이다.
본 발명에 따른 초경합금은 WC : 70 ~ 95중량%, Co : 5 ~ 12중량%, 5a족 탄화물 : 0.1 ~ 3.0중량% 및 불가피한 불순물을 포함하는 초경합금으로서, 미세조직상 상기 5a족 입방탄화물의 입자크기는 1.5㎛ 이하이며, WC의 평균입자크기는 3.0 ~ 5.0㎛인 것을 특징으로 한다.
The present invention relates to a cemented carbide that is excellent in abrasion resistance and can be suitably used in cutting tools for machining difficult-to-cut materials such as stainless steel, since it is possible to suppress particle detachment (ie chipping) due to welding with a workpiece during cutting.
The cemented carbide according to the present invention is WC: 70 to 95% by weight, Co: 5 to 12% by weight, group 5a carbide: 0.1 to 3.0% by weight, and carbides containing unavoidable impurities, particles of the 5a group cubic carbide in microstructure The size is less than 1.5㎛, the average particle size of WC is characterized in that 3.0 ~ 5.0㎛.

Description

내마모성과 내치핑성이 우수한 초경합금 {CEMENTED CARBIDE HAVING GOOD WEAR RESISTANCE AND CHIPPING RESISTANCE}Cemented carbide with excellent wear resistance and chipping resistance {CEMENTED CARBIDE HAVING GOOD WEAR RESISTANCE AND CHIPPING RESISTANCE}

본 발명은 절삭공구용으로 사용될 수 있는 초경합금에 관한 것으로서, 보다 구체적으로는 내마모성이 우수하고 특히 절삭가공시 피삭재와의 용착에 의한 입자탈락(즉 치핑)이 일어나는 것을 최대한 억제할 수 있어 스테인리스강과 같은 난삭재 가공용 절삭공구에 적합하게 사용될 수 있는 초경합금에 관한 것이다.
The present invention relates to a cemented carbide that can be used for cutting tools, and more specifically, it has excellent abrasion resistance, and in particular, it is possible to minimize the occurrence of particle dropping (ie chipping) due to welding with a workpiece during cutting, such as stainless steel. It relates to a cemented carbide that can be suitably used for cutting tools for machining difficult-to-cut materials.

1929년 독일의 슈레터에 의해 탄화텅스텐(WC)과 코발트(Co)를 주성분으로 하는 초경합금이 개발된 이래, 여러 분야에 적합한 물성을 갖게 하기 위한 다양한 방법이 연구되어 왔으며, 탄화텅스텐(WC)과 코발트(Co)를 주성분으로 하는 초경합금은 특히 절삭공구 및 내마모 재료로 널리 사용되어 지고 있다.Since the development of cemented carbides based on tungsten carbide (WC) and cobalt (Co) by Shredder of Germany in 1929, various methods have been studied to have properties suitable for various fields, and tungsten carbide (WC) and Carbide alloys based on cobalt (Co) are widely used as cutting tools and wear-resistant materials.

절삭공구는 철, 강(탄소강, 합금강) 등의 소재를 절삭 가공하는 용도로서 사용되는데, 가공되는 다양한 종류의 피삭재의 특성에 맞는 내마모성과 인성을 구비하도록 하는 모재로 사용되는 초경합금의 제조 방법도 다양하게 개발되어 왔다.Cutting tools are used for cutting materials such as iron and steel (carbon steel, alloy steel), and various methods of manufacturing cemented carbide used as a base material to provide wear resistance and toughness suitable for the characteristics of various types of workpieces to be processed. Has been developed.

한편, 절삭공구의 내마모성과 인성을 보다 향상시키기 위하여, CVD(Chemical Vapor Deposition) 또는 PVD(Physical Vapor Deposition) 방법을 이용하여, 모재로 사용되는 초경합금의 표면에 Ti나 Al과 같은 금속 탄화물, 탄질화물, 탄산질화물, 산화물 등의 피복층을 형성한 피복 절삭 공구가 널리 사용되고 있고, 피복층의 물성 개선을 통한 절삭공구의 성능 향상을 위한 연구가 집중되고 있다.On the other hand, in order to further improve the wear resistance and toughness of the cutting tool, a metal carbide, carbonitride, such as Ti or Al, is used on the surface of the cemented carbide used as a base material by using a CVD (Chemical Vapor Deposition) or PVD (Physical Vapor Deposition) method. , A coating cutting tool having a coating layer such as carbonitride, oxide, etc. is widely used, and research for improving the performance of a cutting tool through improving the properties of the coating layer has been focused.

그런데, 실제 절삭 작업 중 발생하는 충격 및 고온을 극복하는 역할은 주로 절삭공구의 모재 부분이 담당하고 있으며, 지금까지 알려진 절삭공구 모재의 물성을 향상시키는 방법으로는, 경질상 입도 제어, 첨가제 종류 및 함량 제어 또는 결합상 함량 제어 등의 방법이 알려져 있다.However, the role of overcoming the impact and high temperature generated during the actual cutting operation is mainly performed by the base material portion of the cutting tool, and as a method of improving the physical properties of the cutting tool base material, the particle size control, additive type, and Methods such as content control or binder phase content control are known.

예를 들어, 한국공개특허공보 제2006-0110811호에는, WC와 Co, Ni 또는 Fe계 바인더상 및 감마상을 포함하며 감마상이 실질적으로 없는 바인더상 부화(rich) 표면 영역을 가지고 감마상의 평균입자 크기를 1㎛ 미만으로 한정함으로써 절삭 공구 모재의 내소성변형성과 인성을 개선한 방법이 개시되어 있다.For example, in Korean Patent Publication No. 2006-0110811, WC and Co, Ni, or Fe-based binder phases and gamma phases have substantially no gamma phase, and have a binder-rich rich surface area and mean particles of gamma phases. Disclosed is a method of improving the plastic deformation resistance and toughness of a cutting tool base material by limiting the size to less than 1 μm.

또한, 한국공개특허공보 제2007-0000358호에는, WC, 바인더상, 및 입방 탄화물상을 포함하고 기본적으로 입방 탄화물상이 없는 바인더상 부화 표면영역을 가지며, 3 ~ 20 중량%의 코발트, 0.1 ~ 20 중량%의 바나듐 및 나머지로서 70 ~ 95 중량%의 WC를 포함하고, 상기 바나듐 및 4a족과 5a족 원소인 타 입방 탄화물 형성제(former)의 총 함량은 1 ~ 20 중량% 이고, WC의 평균입도는 1.5㎛ 미만이며, 기재 조직에는 유리흑연(free graphite)이 없도록 함으로써, 서브마이크론 조직을 갖도록 첨가된 바나듐이나 크롬과 같은 결정립성장 억제제에 의한 인성 저하를 막도록 한 초경합금 모재가 개시되어 있다.In addition, in Korean Patent Publication No. 2007-0000358, WC, a binder phase, and a cubic carbide phase, and basically has a binder phase incubation surface area without a cubic carbide phase, 3 to 20 wt% cobalt, 0.1 to 20 The total content of vanadium in weight percent and 70 to 95 weight percent WC as the remainder, and the other vanadium and other cubic carbide formers of groups 4a and 5a are 1 to 20% by weight, the average of WC A particle size of less than 1.5 µm, and the base material structure is free of free graphite, and thus a cemented carbide base material is disclosed to prevent toughness reduction by a grain growth inhibitor such as vanadium or chromium added to have a submicron structure.

또한, 한국공개특허공보 제2008-0019571호에는, WC, 바인더상, 및 입방상을 포함하며 또한 본질적으로 입방상이 없는 바인더상 부화 표면 영역을 갖고, 3 ~ 20중량%의 코발트, 1 ~ 15중량% 의 바나듐, 1중량% 미만의 티타늄, 바나듐과 티타늄을 제외한 4A 및/또는 5A 족의 다른 입방상 형성 원소, 및 WC의 평균 소결 입도가 1.5㎛보다 큰 WC 입자를 70 ~ 92중량% 포함하며, 첨가된 4A 및/또는 5A 족의 원소의 총 함량이 1 ~ 15중량%가 되도록 함으로써, 인성과 함께 내열균열성을 높인 모재가 개시되어 있다.In addition, Korean Patent Publication No. 2008-0019571 includes WC, a binder phase, and a cubic phase and also has a binder-like hatching surface area essentially free of cubic phase, 3 to 20% by weight cobalt, 1 to 15% by weight. % Of vanadium, less than 1% by weight of titanium, other cubic forming elements of groups 4A and/or 5A except vanadium and titanium, and WC particles having an average sintered particle size of WC greater than 1.5 µm, 70 to 92% by weight, , By adding the total content of elements of the 4A and/or 5A group to be 1 to 15% by weight, a base material having improved heat cracking resistance along with toughness is disclosed.

그런데 상기 3가지 선행기술은 모두 바인더 부화층을 표면에 형성한 것으로, 일반적으로 강의 절삭가공시에는 절삭성능을 높이기 위해 입방 탄화물상의 함량을 많이 형성하도록 하는데, 강의 절삭시 발생하는 롱칩이 배출되는 과정에서 절삭공구인 인서트의 상면에 부딪치는 과정에서 인서트의 상면에 고온/고압의 마찰에 의한 화학적 마모로 인한 크레이터(crater) 마모가 쉽게 일어나는 문제가 있는데, 고온물성이 우수한 입방 탄화물상의 첨가가 크레이터 마모를 억제하는데 유리하다. 그러나 이러한 입방 탄화물이 첨가되면 입성장억제 효과 및 경질상 분포증가로 상대적으로 취성이 높아져서 충격에 견디는 저항성(내충격성)이 나빠지는 경우가 많다. 이를 보완하기 위하여 입방상이 없는 바인더 부화층을 형성하여 내충격성 저하 현상을 억제하는 것이다.However, all of the above three prior arts have a binder-enriched layer formed on the surface. In general, when cutting steel, a large amount of cubic carbide phase is formed to increase cutting performance, and a long chip generated during cutting of steel is discharged. In the process of hitting the upper surface of the insert, which is a cutting tool, there is a problem in that crater wear is easily caused by chemical wear due to high/high pressure friction on the upper surface of the insert. It is advantageous to suppress. However, when these cubic carbides are added, the brittleness is relatively increased due to the effect of inhibiting grain growth and increasing the distribution of the hard phase, so that resistance to impact (impact resistance) is often deteriorated. In order to compensate for this, the formation of a binder-enriched layer without a cubic phase is used to suppress a decrease in impact resistance.

한편, 스테인리스강은 일반 강 또는 합금강과 달리 난삭재로 분류되는데, 스테인리스강의 절삭시에는 절삭공구와 피삭재의 친화성이 우수하여 절삭공구에 피삭재인 스테인리스강이 용착되어 탈락하는 이른바 치핑이 주요 문제가 되므로, 탄화텅스텐(WC)보다 상대적으로 결합상과의 결합력이 약한 입방 탄화물상의 함량을 최소화한 모재가 유리한데, 상기 선행기술들의 모재는 다량의 입방 탄화물상을 포함하는 것이므로, 우수한 내치핑성을 구현하는데에는 한계가 있다.
On the other hand, stainless steel is classified as a difficult-to-cut material, unlike ordinary steel or alloy steel. When cutting stainless steel, the affinity between the cutting tool and the work material is excellent, so the so-called chipping, which is the falling off of stainless steel as a workpiece, is the main problem. Therefore, a base material having a minimized content of a cubic carbide phase having a weaker bonding strength with a bonding phase is more advantageous than tungsten carbide (WC). There are limits to its implementation.

본 발명은 내마모성은 물론 내치핑성이 우수하여 스테인리스강과 같은 난삭재 가공을 위한 절삭공구용 모재에 적합하게 사용될 수 있는 초경합금을 제공하는 것을 해결하려는 과제로 한다.
An object of the present invention is to solve the problem of providing a cemented carbide that can be suitably used as a base material for cutting tools for machining difficult-to-cut materials such as stainless steel because of excellent wear resistance and chipping resistance.

본 발명자들은 상기한 종래기술의 문제인 스테인리스강과 같은 난삭재 가공시 피삭재에 절삭공구가 용착되어 발생하는 치핑의 문제를 해결하기 위해 연구한 결과, WC를 제외한 탄화물(이하, '입방 탄화물상'이라 함)의 함량을 소정범위로 제한하고 입방 탄화물상을 구성하는 원소를 주기율표상 5a족으로 제한하며, 형성된 입방 탄화물상 입자의 크기를 소정 범위로 제한하고, WC의 입자크기를 소정범위로 제한함으로써, 종래에 비해 우수한 내치핑성이 구현될 수 있음을 밝혀내어 본 발명에 이르게 되었다.The present inventors have researched to solve the problem of chipping caused by welding of a cutting tool to a workpiece when machining difficult-to-cut materials such as stainless steel, which is a problem of the above-mentioned prior art. As a result, carbides (hereinafter referred to as'cubic carbide phases') By limiting the content of) to a predetermined range, limiting the elements constituting the cubic carbide phase to group 5a on the periodic table, limiting the size of the formed cubic carbide phase particles to a predetermined range, and limiting the particle size of WC to a predetermined range, It has been found that superior chipping resistance can be realized compared to the prior art, leading to the present invention.

상기 과제를 해결하기 위한 수단으로 본 발명은, WC : 70 ~ 95중량%, Co : 5 ~ 12중량%, 5a족 탄화물 : 0.1 ~ 3.0중량% 및 불가피한 불순물을 포함하는 초경합금으로서, 미세조직상 상기 5a족 입방탄화물의 입자크기는 1.5㎛ 이하이며, WC의 평균입자크기는 3.0 ~ 5.0㎛인 것을 특징으로 하는 초경합금을 제공한다.The present invention as a means for solving the above problems, WC: 70 ~ 95% by weight, Co: 5 ~ 12% by weight, Group 5a carbide: 0.1 ~ 3.0% by weight, and carbides containing unavoidable impurities, the microstructure of the A particle size of the 5a group cubic carbide is 1.5 µm or less, and the average particle size of WC is 3.0 to 5.0 µm.

본 발명에서 상기와 같이 초경합금의 조성과 미세 조직상 특징을 한정한 이유는 다음과 같다.The reasons for limiting the composition and microstructure characteristics of the cemented carbide as described above in the present invention are as follows.

출발 원료 조합에서 WC의 함량이 70중량% 미만이면, 초경합금의 장점인 경도가 현저히 저하되고, 95중량%를 초과하면 초경합금의 인성 및 내열성이 크게 떨어져 절삭 인성 및 내마모성의 동시 향상을 꾀하기 어렵기 때문에, 그 함량을 70 ~ 95중량%로 하는 것이 바람직하다.If the content of WC in the starting raw material combination is less than 70% by weight, the hardness, which is the advantage of cemented carbide, is significantly lowered, and when it exceeds 95% by weight, toughness and heat resistance of cemented carbide are greatly reduced, so it is difficult to simultaneously improve cutting toughness and wear resistance. , It is preferable that the content is 70 to 95% by weight.

또한, 결합상인 Co의 함량이 5중량% 미만이면 액상 소결 시 액상 부피비의 부족으로 치밀한 소결체를 얻기 어렵고 12중량%를 초과하면 상대적으로 경도가 떨어지는 결합상이 차지하는 부피가 늘어나 절삭시 내마모성의 급격한 저하를 초래하기 때문에, 5 ~ 12중량%의 범위로 함유하는 것이 바람직하다.In addition, if the content of Co as the bonding phase is less than 5% by weight, it is difficult to obtain a dense sintered body due to a lack of a liquid volume ratio during liquid phase sintering. Since it causes, it is preferable to contain it in the range of 5 to 12% by weight.

또한, 본 발명에서는 입성장 억제제로 5a족 탄화물을 사용하는데, 본 발명에 있어서 5a족 탄화물이란 V, Nb 및 Ta의 탄화물을 의미하며, 5a족 탄화물은 0.1 ~ 3.0 중량%의 범위로 함유되는 것이 바람직한데, 0.1중량% 미만으로 첨가될 경우에는 즉 입방 탄화물상이 거의 첨가되지 않을 경우에는 난삭재가 열전도도가 낮아서 저속절삭 가공 시에도 상대적으로 많은 열이 발생하므로 내열성 측면에서 더 우수한 효과를 나타낼 수 없고, 3.0중량%를 초과하여 첨가될 경우에는 탄화텅스텐(WC)보다 상대적으로 결합상과의 결합력이 약한 입방 탄화물상의 함량이 많아져서 용착에 의한 입자 탈락(치핑) 현상이 증가하여 결국 공구수명에 악영향을 주기 때문이다.In addition, in the present invention, a group 5a carbide is used as a particle growth inhibitor. In the present invention, a group 5a carbide means carbides of V, Nb, and Ta, and group 5a carbides are contained in a range of 0.1 to 3.0% by weight. Preferably, when added in an amount of less than 0.1% by weight, that is, when the cubic carbide phase is hardly added, the difficult-to-reduce material has low thermal conductivity, so relatively high heat is generated even during low-speed cutting, so it cannot exhibit a better effect in terms of heat resistance. , When added in excess of 3.0% by weight, the content of the cubic carbide phase, which has a relatively weaker bonding strength with the bonding phase than the tungsten carbide (WC), increases, resulting in increased particle dropping (chipping) by welding, which in turn adversely affects tool life. Because it gives.

또한, 본 발명에 따른 초경합금은 상기한 조성을 이용하여 아래와 같은 미세 조직적 특성을 갖도록 진공 소결 방법으로 제조함이 바람직하다.In addition, the cemented carbide according to the present invention is preferably manufactured by a vacuum sintering method to have the following micro-structure characteristics using the above composition.

본 발명은 상기와 같이 초경합금의 미세 조직적 특징을 한정하는 것에 구성적 특징이 있으며, 5a족 입방탄화물 및 WC의 입자크기는 도 1에 도시된 바와 같이, 상 형태 내부에 최대 내접원의 직경으로 규정한다.The present invention has a constitutional feature in limiting the microstructure characteristics of the cemented carbide as described above, and the particle size of the 5a group cubic carbide and WC is defined as the maximum inscribed circle diameter inside the phase shape, as shown in FIG. 1. .

먼저, 초경합금을 구성하는 주재료인 WC 평균입도가 3㎛ 미만인 미립WC의 분포가 너무 많아지면 소결체의 인성을 저하시키고, 5㎛를 초과하는 조립WC의 분포가 너무 많아질 경우 소결체의 내마모성이 떨어지고 절삭 시 용착에 의한 입자탈락 현상이 크게 일어날 수 있기 때문에, 평균입도는 3.0 ~ 5.0㎛의 범위로 유지하는 것이 가장 바람직하다.First, if the distribution of fine WC having a WC average particle size of less than 3 µm, which is the main material constituting the cemented carbide, is too large, the toughness of the sintered body is deteriorated, and if the distribution of granulated WC exceeding 5 µm is too large, the wear resistance of the sintered body is reduced and cutting Since particle detachment due to welding may occur largely, it is most preferable to maintain the average particle size in the range of 3.0 to 5.0 μm.

또한, 상기 5a족 입방탄화물의 입자크기가 1.5㎛를 초과하게 되면 하기 본 발명의 실시예와 비교예의 절삭시험결과에서 확인되는 바와 같이, 내치핑성과 내마모성이 저하되므로, 1.5㎛ 이하가 바람직하며, 0.01 ~ 1.5㎛의 범위로 유지하는 것이 보다 바람직하다.In addition, when the particle size of the group 5a cubic carbide exceeds 1.5 μm, as shown in the cutting test results of Examples and Comparative Examples of the present invention, chipping resistance and abrasion resistance are lowered, so 1.5 μm or less is preferable. It is more preferably maintained in the range of 0.01 to 1.5 µm.

또한, 본 발명에 따른 초경합금은, 바인더상 부화 표면영역을 형성하지 않는 것을 특징으로 한다.Further, the cemented carbide according to the present invention is characterized in that it does not form a binder-enriched surface area.

또한, 본 발명에 따른 초경합금에 있어서, 상기 초경합금 단면에서 1.0 ~ 6.0㎛ 크기의 WC 입자의 면적비율이 단면 전체 WC 입자 면적의 80% 이상이 되도록 하는 것이 바람직하다.In addition, in the cemented carbide according to the present invention, it is preferable that the area ratio of WC particles having a size of 1.0 to 6.0 μm in the cross-section of the cemented carbide is 80% or more of the total WC particle area of the cross-section.

또한, 본 발명에 따른 초경합금 모재 상에는 CVD 또는 PVD 방법으로 형성되는 금속의 탄화물, 탄질화물, 탄산질화물 또는 산화물로 이루어진 1개 이상의 코팅층이 형성될 수 있다.
In addition, one or more coating layers made of a carbide, carbonitride, carbonitride, or oxide of a metal formed by a CVD or PVD method may be formed on the cemented carbide base material according to the present invention.

본 발명에 따른 초경합금은 기존의 절삭공구용 초경합금에 비해 특히 내치핑성이 우수하여, 우수한 내치핑성이 요구되는 스테인리스강과 같은 난삭재 가공에 유용하게 사용될 수 있을 것으로 기대된다.
The cemented carbide according to the present invention is expected to be particularly useful for machining difficult-to-cut materials such as stainless steel, which is superior in chipping resistance, compared to a conventional cemented carbide for cutting tools.

도 1은 초경합금의 미세조직을 구성하는 입자와 본 발명의 실시예에서 탄화물의 크기 측정에 사용된 방식을 설명하기 위한 도면이다.
도 2는 본 발명의 실시예에 따라 제조한 초경합금의 단면에 대한 광학현미경 사진이다.
도 3은 본 발명의 실시예에 따라 제조한 초경합금의 단면조직을 나타낸 사진이다.
도 4는 비교예에 따라 제조한 초경합금의 단면조직을 나타낸 사진이다.
1 is a view for explaining the method used to measure the size of the carbides in the embodiment of the present invention and the particles constituting the microstructure of the cemented carbide.
2 is an optical microscope photograph of a cross section of a cemented carbide prepared according to an embodiment of the present invention.
3 is a photograph showing a cross-sectional structure of a cemented carbide manufactured according to an embodiment of the present invention.
4 is a photograph showing a cross-sectional structure of a cemented carbide prepared according to a comparative example.

이하에서는, 본 발명의 실시예에 기초하여 본 발명을 보다 구체적으로 설명한다. 그러나 하기 실시예는 본 발명의 이해를 돕기 위한 일 예에 불과한 것으로 이에 의해 본 발명의 권리범위가 축소 및 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail based on examples of the present invention. However, the following examples are only examples to help the understanding of the present invention, and thus the scope of the present invention is not reduced or limited.

초경합금의 제조Production of cemented carbide

본 발명자들은 하기 표 1과 같이 서로 다른 입도와 조성을 갖는 소결체를 제조하였다.The present inventors prepared sintered bodies having different particle sizes and compositions as shown in Table 1 below.

모든 조성에 대하여 배합방식은 배합 외팔보가 용기(jar) 내에 있어 강제 분쇄효과가 있는 어트리션밀(Attrition mill)로 특성에 맞게 6 ~ 9시간 동안 배합하였다. 배합 시에는 출발조성 원료에, 용기(jar) 전체부피의 30부피%에 해당하는 초경 볼과, 용기 전체 부피의 30부피%에 해당하는 에탄올을 사용하였다.The blending method for all compositions was compounded for 6 to 9 hours in accordance with the characteristics of an attrition mill with a forced grinding effect because the compound cantilever is in a jar. At the time of compounding, a starting composition raw material was used, a cemented carbide ball corresponding to 30% by volume of the total volume of the jar and ethanol corresponding to 30% by volume of the total volume of the container.

이와 같은 과정을 통해 배합한 슬러리를 스프레이드라이를 통하여 조립화한 후 CNMG120408 형태로 프레스하고 소결하였다.After the slurry formulated through this process was assembled through a spray dryer, it was pressed and sintered in the form of CNMG120408.

본 발명의 실시예와 비교예에 따른 소결체의 원료조성 및 소결방법Raw material composition and sintering method of the sintered body according to Examples and Comparative Examples of the present invention 구분division 조성(중량%)Composition (% by weight) 소결Sintering WCWC CoCo NbCNbC TaCTaC TaNbCTaNbC TiCTiC ZrCZrC 온도
(℃)
Temperature
(℃)
소결
방법
Sintering
Way
실시예1Example 1 90.090.0 8.08.0 2.02.0 14501450 진공vacuum 실시예2Example 2 90.090.0 8.08.0 2.02.0 14501450 진공vacuum 실시예3Example 3 90.090.0 8.08.0 2.02.0 14501450 진공vacuum 비교예1Comparative Example 1 90.090.0 8.08.0 2.02.0 14501450 진공vacuum 비교예2Comparative Example 2 86.086.0 8.08.0 6.06.0 14501450 진공vacuum 비교예3Comparative Example 3 90.090.0 8.08.0 2.02.0 14501450 진공vacuum 비교예4Comparative Example 4 90.090.0 8.08.0 2.02.0 14501450 진공vacuum 비교예5Comparative Example 5 90.090.0 8.08.0 2.02.0 14501450 진공vacuum 비교예6Comparative Example 6 90.090.0 8.08.0 1.01.0 1.01.0 14501450 진공vacuum 비교예7Comparative Example 7 92.092.0 8.08.0 14501450 진공vacuum

이하에서는 본 발명의 실시예 1 ~ 3과, 비교예 1 ~ 7의 제조조건의 차이에 대해 구체적으로 설명한다.Hereinafter, differences between the manufacturing conditions of Examples 1 to 3 and Comparative Examples 1 to 7 of the present invention will be described in detail.

<실시예 1 ~ 3><Examples 1 to 3>

실시예 1 ~ 3은 5a족 입방탄화물의 입도는 같고 조성이 다를 경우 절삭 공구의 물성에 미치는 영향을 확인하기 위한 것으로, WC와 Co의 조성은 모두 같게 하고 입방탄화물의 조성만 다르게 함으로써, 5a족 입방탄화물의 조성변화에 따른 절삭성능 변화를 확인하기 위하여 상기 표 1과 같은 소결방법으로 소결하여 얻은 초경합금이다.Examples 1 to 3 are for confirming the effect on the physical properties of the cutting tool when the particle size of the 5a group cubic carbide is the same and the composition is different. It is a cemented carbide obtained by sintering by the sintering method as shown in Table 1 to confirm the change in cutting performance according to the composition change of cubic carbide.

<비교예 1><Comparative Example 1>

비교예 1은 5a족 입방탄화물 Nb의 입도가 실시예 1과 다를 경우 절삭공구의 물성에 미치는 영향을 확인하기 위한 것으로, WC, Co 및 입방 탄화물의 조성을 동일하게 하고 밀링조건만 다르게 함으로써, 5a족 입방탄화물의 입도의 상한을 실시예 1보다 높게 0.01 ~ 4.0㎛ 수준으로 만든 후, 실시예 1과 동일한 소결방법으로 소결하여 얻은 초경합금이다.Comparative Example 1 is for confirming the effect on the physical properties of the cutting tool when the particle size of Group 5a cubic carbide Nb is different from Example 1, and the composition of WC, Co and cubic carbide are the same and different milling conditions are used. It is a cemented carbide obtained by making the upper limit of the particle size of cubic carbide to a level of 0.01 to 4.0 µm higher than that of Example 1, followed by sintering in the same sintering method as in Example 1.

<비교예 2><Comparative Example 2>

비교예 2는 5a족 입방탄화물 Ta의 함량이 실시예 2와 다를 경우 절삭공구의 물성에 미치는 영향을 확인하기 위한 것으로, 실시예 2와 비교할 때 WC의 중량을 86중량%로 하고 5a족 입방탄화물Ta의 함량을 6.0중량%로 함유하고, 그 외의 조건은 실시예 2와 동일한 소결방법으로 소결하여 얻은 초경합금이다.Comparative Example 2 is for confirming the effect on the physical properties of the cutting tool when the content of the group 5a cubic carbide Ta is different from Example 2, compared to Example 2, WC weight of 86% by weight and group 5a cubic carbide The content of Ta is 6.0% by weight, and other conditions are cemented carbides obtained by sintering in the same sintering method as in Example 2.

<비교예 3 ~ 4><Comparative Examples 3 to 4>

비교예 3 ~ 4는 입방탄화물의 종류가 실시예 1과 다를 경우 절삭공구의 물성에 미치는 영향을 확인하기 위한 것으로, 4a족 입방탄화물 TiC와 ZaC를 사용하여 실시예 1과 동일한 소결방법으로 소결하여 얻은 초경합금이다.Comparative Examples 3 to 4 are for confirming the effect on the physical properties of the cutting tool when the type of cubic carbide is different from Example 1, using the 4a group cubic carbide TiC and ZaC to sinter in the same sintering method as in Example 1 It is a cemented carbide obtained.

<비교예 5><Comparative Example 5>

비교예 5는 WC의 평균입도가 실시예 1과 다를 경우 절삭공구의 물성에 미치는 영향을 확인하기 위한 것으로, WC의 평균입도를 6.0㎛로 본 발명에 비해 크게 하고, 나머지 조건은 실시예 1과 동일하게 하여 소결하여 얻은 초경합금이다.Comparative Example 5 is for confirming the effect on the physical properties of the cutting tool when the average particle size of the WC is different from Example 1, the average particle size of the WC is 6.0㎛ larger than the present invention, the rest of the conditions are the same as Example 1 It is a cemented carbide obtained by sintering in the same way.

<비교예 6><Comparative Example 6>

비교예 6은 실시예 1과 다르게 5a족과 4a족의 입방탄화물을 혼합하였을 때 절삭공구의 물성에 미치는 영향을 확인하기 위한 것으로, WC의 평균입도는 4.2㎛ 로 하고 4a족 입방탄화물TiC 1중량%, 5a족 입방탄화물NbC 1중량%를 각각 첨가하고 그 입도는 실시예 1과 동일하게 하여 소결하여 얻은 초경합금이다.Comparative Example 6 is to check the effect on the physical properties of the cutting tool when mixing the 5a and 4a group cubic carbide, unlike Example 1, WC average particle size of 4.2㎛ and 4a group cubic carbide TiC 1 weight % And 5a group of cubic carbide NbC 1% by weight, respectively, and the particle size is the same as in Example 1, the cemented carbide obtained by sintering.

<비교예 7><Comparative Example 7>

비교예 7은 WC를 제외한 입방탄화물을 첨가하지 않고, WC의 평균입도도 실시예 1과 동일하게 적용하여 실시예 1과 동일한 소결방법으로 소결하여 얻은 초경합금이다.
Comparative Example 7 is a cemented carbide obtained by sintering in the same sintering method as in Example 1, without adding cubic carbide except WC, and applying the average particle size of WC in the same manner as in Example 1.

초경합금 미세조직 분석Analysis of microstructure of cemented carbide

상기 표 1에 나타낸 바와 같이 제조된 실시예 1과 비교예 1에 따른 초경합금의 단면을 경면 연마한 후 미세 조직을 광학현미경을 이용하여 관찰하였다.After cross-polishing the cross-sections of the cemented carbide according to Example 1 and Comparative Example 1 prepared as shown in Table 1, microstructures were observed using an optical microscope.

도 2는 본 발명의 실시예 1에 따라 제조된 초경합금의 단면을 보여주는데, 도 2에 보여진 바와 같이, 실시예 1에 따라 제조된 초경합금은 표면영역에 바인더 부화층이 없이 모든 영역에서 입방탄화물이 고르게 분포하고 있음을 알 수 있다.Figure 2 shows a cross-section of a cemented carbide prepared in accordance with Example 1 of the present invention, as shown in Figure 2, the cemented carbide prepared according to Example 1 is even in all areas without a binder enrichment layer in the surface area of the cubic carbide It can be seen that it is distributed.

또한, 도 3과 4는 각각 실시예 1과 비교예 1의 미세조직을 광학현미경으로 관찰한 사진인데, 사진에서 진한 갈색으로 보여지는 입방탄화물의 입자의 크기가 비교예 1의 경우 실시예 1에 비해 상대적으로 큼을 알 수 있다. In addition, FIGS. 3 and 4 are photographs obtained by observing the microstructures of Examples 1 and 1 with an optical microscope, respectively. It can be seen that it is relatively large.

이와 같은 미세조직 상의 WC, Co 및 첨가 입방탄화물의 입도와 면적비율을 이미지 분석기를 사용하여 정량적으로 측정하였으며, 그 결과는 하기 표 2와 같았다.The particle size and area ratio of WC, Co, and added cubic carbide on the microstructure were quantitatively measured using an image analyzer, and the results are shown in Table 2 below.

본 발명의 실시예 및 비교예에 따른 초경합금을 구성하는 탄화물의 평균입도 및 입도분포Average particle size and particle size distribution of carbides constituting the cemented carbide according to Examples and Comparative Examples of the present invention 구분division WCWC CoCo 5a족 탄화물Group 5a carbide 4a족 탄화물Group 4a carbide 중량%weight% 평균입도
(um)
Average particle size
(um)
중량%weight% 중량%weight% 입도분포
(um)
Particle size distribution
(um)
중량%weight% 입도분포
(um)
Particle size distribution
(um)
실시예 1Example 1 90.090.0 4.04.0 8.08.0 2.02.0 0.01~1.50.01~1.5 실시예 2Example 2 90.090.0 4.14.1 8.08.0 2.02.0 0.01~1.50.01~1.5 실시예 3Example 3 90.090.0 4.04.0 8.08.0 2.02.0 0.01~1.50.01~1.5 비교예 1Comparative Example 1 90.090.0 4.34.3 8.08.0 2.02.0 0.01~4.00.01~4.0 비교예 2Comparative Example 2 86.086.0 4.04.0 8.08.0 6.06.0 0.01~1.50.01~1.5 비교예 3Comparative Example 3 90.090.0 4.14.1 8.08.0 2.02.0 0.01~1.50.01~1.5 비교예 4Comparative Example 4 90.090.0 4.04.0 8.08.0 2.02.0 0.01~1.50.01~1.5 비교예 5Comparative Example 5 90.090.0 6.06.0 8.08.0 2.02.0 0.01~1.50.01~1.5 비교예 6Comparative Example 6 90.090.0 4.24.2 8.08.0 1.01.0 0.01~1.50.01~1.5 1.01.0 0.01~1.50.01~1.5 비교예 7Comparative Example 7 92.092.0 4.54.5 8.08.0

또한, 상기 표 2에는 표시하지 않았으나, 이미지 분석기를 사용하여 실시예 1 ~ 3의 초경합금의 모든 단면에 대해 WC의 입도를 분석한 결과, 1.0 ~ 6.0㎛ 크기를 갖는 입자가 전체 WC 면적의 80%를 초과하는 것으로 확인되었다.In addition, although not shown in Table 2 above, as a result of analyzing the particle size of WC for all cross-sections of the cemented carbides of Examples 1 to 3 using an image analyzer, particles having a size of 1.0 to 6.0 μm are 80% of the total WC area It was confirmed to exceed.

상기 표 2에서 4a족 및 5a족의 입도분포는 0.01 ~ 1.5㎛로 표시한 것은, 4a족 및 5a족의 입방탄화물의 입자크기가 실질적으로 1.5㎛ 이하이고, 하한치인 0.01㎛는 본 발명의 실시예에서 사용한 이미지 분석기로 식별가능한 최소한의 크기를 의미한다. 따라서 0.01㎛ 미만의 입자가 존재하지 않는 것을 의미하는 것은 아니다.
In Table 2, the particle size distributions of groups 4a and 5a are represented as 0.01 to 1.5 μm. The particle sizes of cubic carbides of groups 4a and 5a are substantially 1.5 μm or less, and the lower limit of 0.01 μm is practiced in the present invention. The minimum size that can be identified by the image analyzer used in the example. Therefore, it does not mean that particles smaller than 0.01 µm are not present.

CVDCVD 코팅 절삭공구의 제조 Preparation of coated cutting tools

상기와 같은 조성 및 미세조직적 특징을 갖는 초경합금을 모재로 하여, 이 기술분야에서 일반적으로 사용되는 CVD 방법을 이용하여 초경합금의 표면에 경질 박막층을 형성하여 피복 절삭공구를 제조하였다.Using a cemented carbide having the above composition and microstructure characteristics as a base material, a hard thin film layer was formed on the surface of the cemented carbide using a CVD method commonly used in the art to prepare a coated cutting tool.

박막의 구조는 TiN - TiCN - Al2O3 - TiN의 4층 구조로 이루어지고, 첫 번째 TiN층은 0.5㎛ 두께로 형성하였고, TiCN층은 중온(700 ~ 950℃) CVD법으로 4.5㎛의 두께로 형성하였으며, Al2O3층은 1.5㎛의 두께로 형성하였고, 최외각의 TiN층은 0.5㎛의 두께로 형성하였다.
The structure of the thin film is composed of a four layer structure of TiN-TiCN-Al 2 O 3 -TiN, the first TiN layer is formed to a thickness of 0.5㎛, and the TiCN layer is 4.5㎛ by medium temperature (700 ~ 950 ℃) CVD method It was formed to a thickness, the Al 2 O 3 layer was formed to a thickness of 1.5㎛, the outermost TiN layer was formed to a thickness of 0.5㎛.

절삭 성능 평가Cutting performance evaluation

절삭 시험은 절삭공구의 내마모성과 인성(내치핑성)을 평가하기 위한 것으로 아래와 같은 2가지 방법으로 실시하였다.
The cutting test is for evaluating the wear resistance and toughness (chipping resistance) of a cutting tool and was conducted in the following two methods.

(1) 내마모성 평가용 절삭 조건(1) Cutting conditions for evaluation of wear resistance

피삭재 : STS316Workpiece: STS316

절삭 속도 : 200 m/min.Cutting speed: 200 m/min.

이송(공급) : 0.25 mm/revFeed (supply): 0.25 mm/rev

절삭 깊이 : 1.5 mmCutting depth: 1.5 mm

절삭팁 형상 : CNMG120408Cutting tip shape: CNMG120408

습식 절삭 평가 : 6분 절삭 후 측면 마모량(Flank Wear, VB)
Wet cutting evaluation: Side wear after 6 minutes cutting (Flank Wear, VB)

(2) 인성(내치핑성) 평가용 절삭 조건(2) Cutting conditions for toughness (chipping resistance) evaluation

피삭재 : STS316-2홀Workpiece: STS316-2 hole

절삭속도 : 200 m/min.Cutting speed: 200 m/min.

이송(공급) : 0.25 mm/rev.Feed (supply): 0.25 mm/rev.

절삭 깊이 : 1.5 mmCutting depth: 1.5 mm

절삭팁 형상 : CNMG120408Cutting tip shape: CNMG120408

습식 절삭 평가 : 치핑 및 파손에 의한 수명 종료까지의 시간(측정값은 5회 평균값)
Wet cutting evaluation: Time to end of life due to chipping and breakage (measured value is 5 times average value)

이상과 같은 절삭 성능 평가 후의 결과를 하기 표 3에 나타내었다.Table 3 shows the results after evaluation of the cutting performance as described above.

본 발명의 실시예 및 비교예에 따른 절삭공구의 내마모성 및 인성(내치핑성) 평가 결과Evaluation results of wear resistance and toughness (chipping resistance) of cutting tools according to Examples and Comparative Examples of the present invention 구분division 절삭성능Cutting performance 내마모성Abrasion resistance 인성tenacity 마모량(mm)Amount of wear (mm) 수명종료시간(초)End of life time (seconds) 실시예 1Example 1 0.1800.180 225225 실시예 2Example 2 0.1820.182 220220 실시예 3Example 3 0.1810.181 225225 비교예 1Comparative Example 1 0.2200.220 200200 비교예 2Comparative Example 2 0.2300.230 160160 비교예 3Comparative Example 3 0.2400.240 190190 비교예 4Comparative Example 4 0.2430.243 195195 비교예 5Comparative Example 5 0.2300.230 183183 비교예 6Comparative Example 6 0.2350.235 191191 비교예 7Comparative Example 7 0.2550.255 200200

상기 표 3에서 확인되는 바와 같이, 본 발명의 실시예 1 ~ 3에 따른 초경합금으로 제조된 피복절삭공구의 경우, 비교예 1 ~ 7에 비해 내마모성은 물론 인성(내치핑성)이 크게 향상되었음을 알 수 있다.As can be seen from Table 3, in the case of a coated cutting tool made of a cemented carbide according to Examples 1 to 3 of the present invention, it was found that the abrasion resistance as well as the toughness (chipping resistance) were significantly improved compared to Comparative Examples 1 to 7 Can be.

구체적으로, 실시예 1에 비해 5a족 입방탄화물의 입도가 큰 비교예 1의 경우, 내마모성과 인성(내치핑성)이 각각 측면마모량이 0.220mm이고 수명종료시간이 200초로 실시예 1에 비해 좋지 않은데, 이는 5a족 입방탄화물의 입자크기를 1.5㎛ 이하의 수준으로 유지하는 것이 내마모성과 인성(내치핑성)에 상당한 영향을 미치는 것을 의미한다.Specifically, in Comparative Example 1, which has a larger particle size of Group 5a cubic carbide than Example 1, the wear resistance and toughness (chipping resistance) of each side are 0.220 mm and the end-of-life time is 200 seconds, which is better than in Example 1 This means that maintaining the particle size of group 5a cubic carbide at a level of 1.5 µm or less significantly affects wear resistance and toughness (chipping resistance).

또한, 실시예 2에 비해 5a족 입방탄화물의 함량이 6중량%로 높은 비교예 2의 경우, 측면마모량이 0.230mm이고 수명종료시간이 160초로 실시예 2에 비해 상당히 낮은 것으로 나타났다. 따라서, 내마모성 및 인성의 향상을 위해서는 5a족의 입방탄화물의 함량을 3중량% 이하로 유지하는 것이 요구된다.In addition, in Comparative Example 2 in which the content of Group 5a cubic carbide was 6 wt% higher than in Example 2, the side wear amount was 0.230 mm and the end-of-life time was 160 seconds, which was significantly lower than in Example 2. Therefore, in order to improve the wear resistance and toughness, it is required to maintain the content of the cubic carbide of group 5a at 3% by weight or less.

또한, 실시예 1에 비해 WC 평균입도는 비슷하고 4a족 입방탄화물을 사용한 비교예 3 ~ 4의 경우, 측면마모량이 0.240 ~ 0.243mm이고 수명종료시간이 190 ~ 195초로 수준으로 본 발명의 실시예들에 비해 크게 떨어진다. 다시 말해, 입방탄화물의 종류도 절삭성능(내마모성과인성)에 영향을 미침을 알 수 있다.In addition, compared to Example 1, the average particle size of WC is similar, and in the case of Comparative Examples 3 to 4 using a group 4a cubic carbide, the side wear amount is 0.240 to 0.243 mm and the end-of-life time is 190 to 195 seconds. Compared to the field, it falls significantly. In other words, it can be seen that the type of cubic carbide also affects the cutting performance (abrasion resistance and toughness).

또한, 실시예 1에 비해 WC 평균입도가 큰 비교예 5의 경우, 측면마모량이 0.230mm이고 수명종료시간이 183초로, WC의 평균입도도 내마모성과 인성(내치핑성)에 큰 영향을 미침을 알 수 있다.In addition, in the case of Comparative Example 5, which has a larger WC average particle size than Example 1, the side wear amount is 0.230 mm and the end-of-life time is 183 seconds, and the average particle size of WC also significantly affects wear resistance and toughness (chipping resistance). Able to know.

또한, 실시예 1과 달리 4a족 5a족이 혼합된 입방탄화물을 사용하고 WC 평균입도가 비슷한 비교예 6의 경우, 수명종료시간은 191초로 실시예 1에 비해 다소 저하되는 수준이나, 측면마모량은 0.235mm 현저하게 저하되었음을 알 수 있다.In addition, unlike Example 1, in the case of Comparative Example 6 using a cubic carbide mixed with Groups 4a and 5a and having a similar WC average particle size, the end-of-life time is 191 seconds, which is somewhat lower than in Example 1, but the amount of side wear is It can be seen that 0.235mm was significantly reduced.

또한, 입방탄화물을 전혀 함유하지 않는 비교예 7의 경우, 인성(내치핑성)은 어느 정도 확보되나, 내마모성은 실시예 1은 물론 다른 비교예 1 ~ 6과 대비하여도 상당히 떨어짐이 확인되었다.In addition, in the case of Comparative Example 7 containing no cubic carbide at all, the toughness (chipping resistance) was secured to some extent, but it was confirmed that the abrasion resistance was significantly reduced compared to Example 1 as well as other Comparative Examples 1 to 6.

이상과 같은 실시예 1 ~ 3 및 비교예 1 ~ 7에 따른 절삭성능의 평가결과로부터 본 발명의 실시예와 같이, WC 평균입도, 입방탄화물의 종류, 함량 및 입도의 제어를 통해 기존의 초경합금에 비해 내마모성과 함께 인성(내치핑성)이 상당히 향상된 초경합금을 얻을 수 있음이 확인되었으며, 이와 같은 초경합금은 특히 양호한 내치핑성이 요구되는 난삭재의 가공에 적합하게 사용될 수 있다.
From the evaluation results of cutting performance according to Examples 1 to 3 and Comparative Examples 1 to 7 as described above, to the existing cemented carbide through control of the average particle size, type, content and particle size of WC, cubic carbide Compared with the wear resistance, it has been confirmed that a cemented carbide with significantly improved toughness (chipping resistance) can be obtained, and such a cemented carbide can be suitably used for the processing of difficult-to-cut materials requiring good chipping resistance.

Claims (4)

WC : 84 ~ 94.8중량%, Co : 5 ~ 12중량%, 5a족 탄화물 : 0.1 ~ 3.0중량% 및 불가피한 불순물을 포함하는 초경합금으로서,
미세조직상 상기 5a족 입방탄화물의 입자크기는 1.5㎛ 이하이며, WC의 평균입자크기는 3.5㎛ 초과 ~ 5.0㎛이고,
상기 초경합금 단면에서 1.0 ~ 6.0㎛ 크기의 WC 입자의 면적비율이 단면 전체 WC 입자 면적의 80% 이상인 것을 특징으로 하는 초경합금.
WC: 84 ~ 94.8% by weight, Co: 5 ~ 12% by weight, Group 5a carbide: 0.1 ~ 3.0% by weight, and a cemented carbide containing inevitable impurities,
In the microstructure, the particle size of the 5a group cubic carbide is 1.5 µm or less, and the average particle size of WC is more than 3.5 µm to 5.0 µm,
Carbide alloy characterized in that the area ratio of WC particles of 1.0 ~ 6.0㎛ size in the cross-section of the cemented carbide is 80% or more of the total WC particle area of the cross-section.
제 1 항에 있어서,
상기 5a족 입방탄화물의 입자크기는 0.01 ~ 1.5㎛인 것을 특징으로 하는 초경합금.
According to claim 1,
Carbide alloy, characterized in that the particle size of the group 5a cubic carbide is 0.01 ~ 1.5㎛.
제 1 항에 있어서,
상기 초경합금은 바인더 부화 표면영역이 존재하지 않는 것을 특징으로 하는 초경합금.
According to claim 1,
The cemented carbide is a cemented carbide, characterized in that there is no binder hatching surface area.
삭제delete
KR1020100116489A 2010-11-22 2010-11-22 Cemented carbide having good wear resistance and chipping resistance KR101302374B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100116489A KR101302374B1 (en) 2010-11-22 2010-11-22 Cemented carbide having good wear resistance and chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100116489A KR101302374B1 (en) 2010-11-22 2010-11-22 Cemented carbide having good wear resistance and chipping resistance

Publications (2)

Publication Number Publication Date
KR20120055026A KR20120055026A (en) 2012-05-31
KR101302374B1 true KR101302374B1 (en) 2013-09-06

Family

ID=46270667

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100116489A KR101302374B1 (en) 2010-11-22 2010-11-22 Cemented carbide having good wear resistance and chipping resistance

Country Status (1)

Country Link
KR (1) KR101302374B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230037773A (en) 2021-09-10 2023-03-17 한국야금 주식회사 Cemented carbide for cutting tools and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640690B1 (en) * 2014-12-30 2016-07-18 한국야금 주식회사 Tungsten carbide having enhanced toughness
CN112760543A (en) * 2020-12-25 2021-05-07 四川川钨硬质合金有限公司 High-strength and high-toughness hard alloy and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220571A (en) * 1992-08-31 1994-08-09 Sumitomo Electric Ind Ltd Sintered hard alloy and coated sintered hard alloy for cutting tool
JPH076011B2 (en) * 1986-09-25 1995-01-25 株式会社神戸製鋼所 Method for producing high hardness and high toughness cemented carbide with excellent thermal conductivity
JP2000514722A (en) * 1996-07-19 2000-11-07 サンドビック アクティエボラーグ Cemented carbide inserts for turning, milling and drilling
JP7006011B2 (en) 2017-08-18 2022-01-24 東洋製罐グループホールディングス株式会社 Yeast detection oligonucleotide probes, yeast detection microarrays, and yeast detection kits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076011B2 (en) * 1986-09-25 1995-01-25 株式会社神戸製鋼所 Method for producing high hardness and high toughness cemented carbide with excellent thermal conductivity
JPH06220571A (en) * 1992-08-31 1994-08-09 Sumitomo Electric Ind Ltd Sintered hard alloy and coated sintered hard alloy for cutting tool
JP2000514722A (en) * 1996-07-19 2000-11-07 サンドビック アクティエボラーグ Cemented carbide inserts for turning, milling and drilling
JP7006011B2 (en) 2017-08-18 2022-01-24 東洋製罐グループホールディングス株式会社 Yeast detection oligonucleotide probes, yeast detection microarrays, and yeast detection kits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230037773A (en) 2021-09-10 2023-03-17 한국야금 주식회사 Cemented carbide for cutting tools and method for manufacturing the same

Also Published As

Publication number Publication date
KR20120055026A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP6677932B2 (en) Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting
KR101326325B1 (en) A cutting tool milling insert, method of making a cutting tool milling insert and method of using an insert
KR101635488B1 (en) Cutting tool
KR20180075502A (en) Sintered body and manufacturing method thereof
WO2010104094A1 (en) Cermet and coated cermet
KR101302374B1 (en) Cemented carbide having good wear resistance and chipping resistance
JP2017159409A (en) Surface-coated cutting tool exerting excellent wear resistance
EP2826578A1 (en) Cutting tool
JP5041222B2 (en) Surface coated cutting tool
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2005272877A (en) Ti BASED CERMET, ITS PRODUCTION METHOD AND CUTTING TOOL
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP4748361B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP7161677B2 (en) WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance
JP7216915B2 (en) Diamond-coated cemented carbide tools
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance
WO2024014412A1 (en) Cermet sintered body, cermet tool and cutting tool
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP4853188B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5099495B2 (en) Surface coated cutting tool
KR100497850B1 (en) sinterd alloy of tungsten carbide having tensile strength and wear resistance character &amp; cutting tools using the same
JP4857711B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161110

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171206

Year of fee payment: 6