JPH08253836A - Wear resistant tungsten carbide-base cemented carbide having excellent toughness - Google Patents
Wear resistant tungsten carbide-base cemented carbide having excellent toughnessInfo
- Publication number
- JPH08253836A JPH08253836A JP7081697A JP8169795A JPH08253836A JP H08253836 A JPH08253836 A JP H08253836A JP 7081697 A JP7081697 A JP 7081697A JP 8169795 A JP8169795 A JP 8169795A JP H08253836 A JPH08253836 A JP H08253836A
- Authority
- JP
- Japan
- Prior art keywords
- hard phase
- carbide
- cemented carbide
- sintered body
- excellent toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、すぐれた靭性を有
し、かつ耐摩耗性にもすぐれた炭化タングステン(以
下、WCで示す)基超硬合金に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tungsten carbide (hereinafter referred to as WC) based cemented carbide having excellent toughness and wear resistance.
【0002】[0002]
【従来の技術】従来、例えば特公昭62−56224号
公報に記載される通り、重量%で(以下、%は重量%を
示す)、いずれも結合相形成成分として、Coおよび/
またはNi:5〜20%、炭化バナジウム(以下、VC
で示す):0.1〜2%、炭化クロム(以下、Cr3 C
2 で示す):0.1〜2%、硬質相形成成分としての炭
化タングステン(以下、WCで示す):残り、からなる
配合組成の焼結体からなると共に、前記焼結体を構成す
る硬質相の平均粒径が0.7μm以下であるWC基超硬
合金が知られ、これらのWC基超硬合金が各種の切削工
具や圧延ロールなどの耐摩工具などとして適用されるこ
とも知られている。また、上記のWC基超硬合金は、V
CおよびCr3 C2 が素地に固溶して硬質相形成成分と
してのWCの成長を著しく抑制し、これの平均粒径を
0.7μm以下に微細化することによりすぐれた耐摩耗
性を具備せしめたものであることも知られている。2. Description of the Related Art Conventionally, as described in, for example, Japanese Patent Publication No. 62-56224, in terms of weight% (hereinafter,% means% by weight), Co and //
Or Ni: 5 to 20%, vanadium carbide (hereinafter referred to as VC
): 0.1 to 2%, chromium carbide (hereinafter, Cr 3 C
2 ): 0.1 to 2 %, tungsten carbide as a hard phase forming component (hereinafter referred to as WC): the remainder, and a hard material that constitutes the sintered body. WC-based cemented carbides having an average particle size of the phase of 0.7 μm or less are known, and it is also known that these WC-based cemented carbides are applied as various cutting tools and wear resistant tools such as rolling rolls. There is. The above WC-based cemented carbide is V
C and Cr 3 C 2 form a solid solution in the matrix to remarkably suppress the growth of WC as a hard phase forming component, and have an excellent wear resistance by refining the average grain size of the WC to 0.7 μm or less. It is also known that it is a brutal one.
【0003】[0003]
【発明が解決しようとする課題】一方、近年の切削加工
や塑性加工などの省力化および省エネ化に対する要求は
強く、これに伴ない、これらの加工に際しては、切削加
工であれば高速切削や高送りおよび高切込みなどの重切
削が行なわれ、また塑性加工であれば高速圧延や高圧下
圧延などが行なわれる傾向にあり、したがってこれらの
加工に用いられる切削工具や耐摩工具などは苛酷な条件
下で実用に供されることになるが、これを構成する上記
の従来WC基超硬合金はじめ、その他のWC基超硬合金
は靭性が不十分であるために、実用に際しては割れや欠
けなどが発生し易く、相対的に短かい使用寿命しか示さ
れないのが現状である。On the other hand, in recent years, there is a strong demand for labor saving and energy saving such as cutting work and plastic working, and in connection with this, high speed cutting and Heavy cutting such as feed and high depth of cut is performed, and high-speed rolling and high-pressure rolling are likely to be performed for plastic working.Therefore, cutting tools and wear-resistant tools used for these processing are subject to severe conditions. However, since the conventional WC-based cemented carbide and the other WC-based cemented carbides that compose the same have insufficient toughness, cracks and chips are not generated in practical use. At present, it is likely to occur and has a relatively short service life.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、WCを主体とする硬質相の平均
粒径が0.7μm以下であることによってすぐれた耐摩
耗性を有する上記の従来WC基超硬合金に着目し、これ
に高靭性を付与すべく研究を行なった結果、焼結に際し
て、焼結温度への昇温途中における1100〜1200
℃の液相出現温度以下の温度に所定時間保持(昇温時保
持処理)すると共に、従来焼結温度である1350〜1
400℃に比して相対的に低いが液相出現温度以上であ
る1250〜1300℃を焼結温度とし、さらに前記焼
結温度より高温の1450〜1500℃に加熱保持(高
温加熱処理)し、炉冷する焼結を行なうと、得られたW
C基超硬合金は、上記昇温時保持処理で、従来WC基超
硬合金では、図2に透過電子顕微鏡による10万倍の組
織模写図で例示されるように、1×1012cm-2以上の転
位密度を示していたものが、図1の同組織模写図で例示
されるように1×108 cm-2以下の転位密度となり、ま
た上記高温加熱処理によって、WCを主体とする硬質相
が、焼結温度を上記の通り低温としたことと相まって、
図2に示されるように表面が曲面の集合体形状を呈して
いたものが、自形発達して図1に示される通り表面が平
面の集合体形状をもつようになり、このように硬質相の
転位密度が低く、かつその表面形状が平面集合体のWC
基超硬合金は、すぐれた耐摩耗性と共に、きわめてすぐ
れた靭性を具備するようになるとい研究結果を得たので
ある。Therefore, the present inventors have
From the above viewpoint, the conventional WC-based cemented carbide, which has excellent wear resistance due to the average grain size of the hard phase mainly composed of WC being 0.7 μm or less, is noted, and it has high toughness. As a result of conducting a study to impart a value of 1100 to 1200 during sintering to the sintering temperature.
The temperature is maintained at a temperature equal to or lower than the liquidus appearance temperature of ℃ for a predetermined time (holding process at the time of temperature rise), and the conventional sintering temperature of 1350 to 1
The sintering temperature is 1250 to 1300 ° C., which is relatively lower than 400 ° C. but is higher than the liquid phase appearance temperature, and further heated and held at 1450 to 1500 ° C. higher than the sintering temperature (high temperature heat treatment), When the furnace-cooled sintering was performed, the W
C group cemented carbide, the above temperature-raising-period holding process, the conventional WC based cemented carbide, as exemplified by 100,000 times the tissue replication view by transmission electron microscopy in FIG. 2, 1 × 10 12 cm - A dislocation density of 2 or more was 1 × 10 8 cm −2 or less as illustrated in the same tissue copy diagram of FIG. 1, and WC was mainly formed by the high temperature heat treatment. The hard phase, combined with the sintering temperature being low as described above,
As shown in FIG. 2, the surface had a curved aggregate shape, but the surface became a flat aggregate shape as shown in FIG. 1 as a result of self-development. Has a low dislocation density and its surface shape is a plane aggregate WC.
It has been obtained that the base cemented carbide has excellent wear resistance as well as extremely excellent toughness.
【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、いずれも結合相形成成分とし
て、Coおよび/またはNi:5〜20%、VC:0.
1〜2%、Cr3 C2 :0.1〜2%、硬質相形成成分
としてのWC:残り、からなる配合組成の焼結体からな
ると共に、前記焼結体を構成する硬質相が、(a)
0.7μm以下の平均粒径、(b) 平面集合体表面、
(c) 1×108 cm-2以下の転位密度、 以上(a)〜(c)を有する、靭性のすぐれた耐摩耗性
WC基超硬合金に特徴を有するものである。The present invention has been made based on the above-mentioned research results, and in each case, Co and / or Ni: 5 to 20%, VC: 0.
1~2%, Cr 3 C 2: 0.1~2%, WC as hard phase forming component: rest, with a sintered body of blend composition consisting of a hard phase constituting the sintered body, (A)
An average particle size of 0.7 μm or less, (b) a plane aggregate surface,
(C) It is characterized by a wear-resistant WC-based cemented carbide with excellent toughness, which has a dislocation density of 1 × 10 8 cm −2 or less and the above (a) to (c).
【0006】つぎに、この発明のWC基超硬合金におい
て、組成、並びに硬質相の平均粒径および転位密度を上
記の通りに限定した理由を説明する。 (1) 組成 (a) CoおよびNi これらの成分には、焼結性を向上させ、もって合金強度
を向上させる作用があるが、その割合が5%未満では所
望の強度を確保することができず、一方その割合が20
%を越えると硬さが急激に低下し、耐摩耗性の低下が避
けられないことから、その割合を5〜20%、望ましく
は9〜13%と定めた。Next, in the WC-based cemented carbide of the present invention, the reason why the composition and the average grain size and dislocation density of the hard phase are limited as described above will be explained. (1) Composition (a) Co and Ni These components have the effect of improving the sinterability and thus the alloy strength, but if the proportion is less than 5%, the desired strength can be secured. No, on the other hand, the ratio is 20
%, The hardness sharply decreases and the wear resistance is unavoidably deteriorated. Therefore, the ratio is set to 5 to 20%, preferably 9 to 13%.
【0007】(b) VCおよびCr3 C2 これらの成分は、いずれも結合相形成成分であるCoお
よびNiに固溶し、共存した状態でWCを主体とする硬
質相の粒成長を著しく抑制し、その平均粒径を0.7μ
m以下に微細化し、もって耐摩耗性を向上させる作用を
もつが、その割合がそれぞれVC:0.1%未満および
Cr3 C2 :0.1%未満では前記作用に所望の効果が
得られず、一方その割合がそれぞれVC:2%およびC
r3 C2:2%を越えると結合相中への完全固溶が困難
になり、靭性が低下するようになることから、その割合
をVC:0.1〜2%、望ましくは0.4〜0.9%、
Cr3 C2 :0.1〜2%、望ましくは0.5〜1%と
定めた。(B) VC and Cr 3 C 2 These components all dissolve in Co and Ni, which are binder phase forming components, and in the coexisting state, significantly suppress the grain growth of the hard phase mainly composed of WC. The average particle size is 0.7μ
miniaturized below m, but has the effect of improving the wear resistance have, VC the ratio is respectively: less than 0.1% and Cr 3 C 2: the desired effect can be obtained in the working is less than 0.1% On the other hand, the proportions are VC: 2% and C, respectively.
If r 3 C 2 exceeds 2%, it becomes difficult to form a complete solid solution in the binder phase and the toughness deteriorates. Therefore, the ratio is VC: 0.1 to 2%, preferably 0.4. ~ 0.9%,
Cr 3 C 2: 0.1~2%, preferably defined 0.5 to 1%.
【0008】(2) 硬質相の平均粒径 すぐれた耐摩耗性を確保するためには、硬質相を平均粒
径で0.7μm以下に微細化する必要があることから定
めたものである。(2) Average particle size of hard phase This is determined because it is necessary to reduce the average particle size of the hard phase to 0.7 μm or less in order to ensure excellent wear resistance.
【0009】(3) 硬質相の転位密度 上記の通り、従来のWC基超硬合金では、硬質相に転位
密度で1×1012cm-2以上の多くの転位が存在すること
で所望の靭性を確保できないが、これを1×108 cm2
以下の転位密度にすると、硬質相表面の平面集合体形状
と相まってすぐれた靭性をもつようになるという理由に
もとづくものである。(3) Dislocation Density of Hard Phase As described above, in the conventional WC-based cemented carbide, since many dislocations having a dislocation density of 1 × 10 12 cm -2 or more exist in the hard phase, desired toughness is obtained. Can not be secured, but this is 1 × 10 8 cm 2
This is based on the reason that when the dislocation density is set to the following, it has excellent toughness in combination with the planar aggregate shape of the hard phase surface.
【0010】[0010]
【実施例】つぎに、この発明のWC基超硬合金を実施例
により具体的に説明する。原料粉末として、0.1〜
0.6μmの範囲内の所定の平均粒径を有する各種のW
C粉末、同1.5μmのVC粉末、同2.3μmのCr
3 C2 粉末、同1.3μmのCo粉末、および同1.5
μmのNi粉末を用意し、これら原料粉末をそれぞれ表
1に示される配合組成に配合し、湿式ボールミルで72
時間混合し、減圧乾燥した後、1ton /cm2 の圧力で圧
粉体にプレス成形し、この圧粉体を、真空中、表1に示
される条件で焼結(冷却は炉冷)することにより本発明
超硬合金1〜5を製造した。また、比較の目的で、表1
に示される通り昇温時保持処理および高温加熱処理を行
なわず、相対的に焼結温度を高くした条件で焼結を行な
う以外は同一の条件で従来超硬合金1〜5をそれぞれ製
造した。EXAMPLES Next, the WC-based cemented carbide of the present invention will be specifically described by way of examples. As raw material powder, 0.1-
Various W having a predetermined average particle size within the range of 0.6 μm
C powder, 1.5 μm VC powder, 2.3 μm Cr
3 C 2 powder, 1.3 μm Co powder, and 1.5 C
Ni powder of μm was prepared, and these raw material powders were blended to the blending composition shown in Table 1, respectively, and the powder was wet-ball milled to 72
After mixing for a period of time, drying under reduced pressure, press-molding into a green compact at a pressure of 1 ton / cm 2 , and sintering this green compact in a vacuum under the conditions shown in Table 1 (cooling is furnace cooling). According to the present invention, cemented carbides 1 to 5 of the present invention were manufactured. For comparison purposes, Table 1
The conventional cemented carbides 1 to 5 were manufactured under the same conditions, except that the holding treatment at elevated temperature and the high temperature heat treatment were not performed as shown in FIG.
【0011】この結果得られた各種の超硬合金につい
て、ビッカース硬さ、破壊靭性値、およびWCを主体と
する硬質相の平均粒径を測定した。また転位密度は、透
過電子顕微鏡によって倍率:10万倍で組織を撮影し、
この組織写真における12cm×12cmの枠内に存在する
硬質相の総面積を画像解析装置により求め、さらに硬質
相内に存在するすべての転位線の本数を数え、硬質相の
単位面積当りの転位線本数を算出することにより求め
た。また、この場合、硬質相の結合相との界面を観察
し、それがすべて直線状であれば、硬質相の表面が平面
集合体形状をもつと判断した。これらの結果を表2に示
した。With respect to the various cemented carbides obtained as a result, the Vickers hardness, the fracture toughness value, and the average grain size of the hard phase mainly composed of WC were measured. Further, the dislocation density is taken by a transmission electron microscope at a magnification of 100,000 times to photograph the tissue
The total area of the hard phase existing in the 12 cm x 12 cm frame in this micrograph is determined by an image analyzer, and the number of all dislocation lines existing in the hard phase is counted to determine the dislocation lines per unit area of the hard phase. The number was calculated by calculating the number. Further, in this case, the interface between the hard phase and the binder phase was observed, and if all of them were linear, it was determined that the surface of the hard phase had a planar aggregate shape. Table 2 shows the results.
【0012】[0012]
【表1】 [Table 1]
【0013】[0013]
【表2】 [Table 2]
【0014】[0014]
【発明の効果】表2に示される結果から、本発明超硬合
金1〜5は、硬質相の平均粒径が従来超硬合金1〜5と
ほぼ同等の0.7μm以下の値を示し、これは硬さにも
現われており、一方硬質相の表面形状と転位密度に関し
て、両者は著しく相異し、この相異が破壊靭性値の相異
として現われ、硬質相の表面形状がいずれも平面集合体
で、かつ1×108 cm-2以下の低い転位密度を有する本
発明超硬合金1〜5が、同表面形状が曲面集合体で、1
×1012cm-2以上の高い転位密度を有する従来超硬合金
1〜5に比して一段とすぐれた靭性をもつことが明らか
である。上述のように、この発明のWC基超硬合金はす
ぐれた靭性を有し、かつ耐摩耗性にもすぐれているの
で、スローアウェイチップやドリル、さらにエンドミル
などの各種切削工具や、圧延ロールやダイスなどの耐摩
工具として用いた場合に、苛酷な条件下での実用でも長
期に亘ってすぐれた性能を発揮するのである。From the results shown in Table 2, the cemented carbides 1 to 5 of the present invention have an average grain size of the hard phase of 0.7 μm or less, which is almost equal to that of the conventional cemented carbides 1 to 5, This also appears in the hardness.On the other hand, regarding the surface shape of the hard phase and the dislocation density, the two are significantly different, and this difference appears as the difference in fracture toughness value, and the surface shape of the hard phase is flat. The cemented carbides 1 to 5 of the present invention, which are aggregates and have a low dislocation density of 1 × 10 8 cm −2 or less, have the same surface shape as a curved aggregate, and 1
It is clear that the toughness is far superior to that of the conventional cemented carbides 1 to 5 having a high dislocation density of × 10 12 cm -2 or more. As described above, since the WC-based cemented carbide of the present invention has excellent toughness and excellent wear resistance, various cutting tools such as indexable inserts, drills, end mills, rolling rolls and When used as a wear resistant tool such as a die, it exhibits excellent performance over a long period of time even in practical use under severe conditions.
【図1】この発明のWC基超硬合金の透過電子顕微鏡に
よる組織模写図(倍率:10万倍)である。FIG. 1 is a structure copy diagram (magnification: 100,000 times) of a WC-based cemented carbide of the present invention by a transmission electron microscope.
【図2】従来WC基超硬合金の透過電子顕微鏡による組
織模写図(倍率:10万倍)である。FIG. 2 is a structure copy diagram (magnification: 100,000 times) of a conventional WC-based cemented carbide by a transmission electron microscope.
Claims (1)
て、 Coおよび/またはNi:5〜20%、 炭化バナジウム:0.1〜2%、 炭化クロム:0.1〜2%、 硬質相形成成分としての炭化タングステン:残り、から
なる配合組成の焼結体からなると共に、前記焼結体を構
成する硬質相が、 (a) 0.7μm以下の平均粒径、 (b) 平面集合体表面、 (c) 1×108 cm-2以下の転位密度、 以上(a)〜(c)を有することを特徴とする、すぐれ
た靭性を有する耐摩耗性炭化タングステン基超硬合金。1. By weight%, as a binder phase forming component, Co and / or Ni: 5 to 20%, vanadium carbide: 0.1 to 2%, chromium carbide: 0.1 to 2%, hard phase Tungsten carbide as a forming component: a sintered body having a compounding composition consisting of the remainder, and the hard phase constituting the sintered body has (a) an average particle diameter of 0.7 μm or less, (b) a plane aggregate A wear-resistant tungsten carbide-based cemented carbide having excellent toughness, characterized by having a surface, (c) a dislocation density of 1 × 10 8 cm -2 or less, and (a) to (c) above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7081697A JPH08253836A (en) | 1995-03-14 | 1995-03-14 | Wear resistant tungsten carbide-base cemented carbide having excellent toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7081697A JPH08253836A (en) | 1995-03-14 | 1995-03-14 | Wear resistant tungsten carbide-base cemented carbide having excellent toughness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08253836A true JPH08253836A (en) | 1996-10-01 |
Family
ID=13753574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7081697A Withdrawn JPH08253836A (en) | 1995-03-14 | 1995-03-14 | Wear resistant tungsten carbide-base cemented carbide having excellent toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08253836A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998027241A1 (en) * | 1996-12-16 | 1998-06-25 | Sumitomo Electric Industries, Ltd. | Cemented carbide, process for the production thereof, and cemented carbide tools |
US6413293B1 (en) | 1997-09-05 | 2002-07-02 | Sandvik Ab | Method of making ultrafine wc-co alloys |
US20130287625A1 (en) * | 2012-04-02 | 2013-10-31 | Fuji Die Co., Ltd. | ULTRA-FINE CEMENTED CARBIDE Ni BINDER PHASE AND TOOL USING THE SAME |
CN114574727A (en) * | 2022-03-09 | 2022-06-03 | 自贡中兴耐磨新材料有限公司 | Preparation method of chromium-vanadium-tungsten compound carbide strengthening and toughening WC-Ni hard alloy |
-
1995
- 1995-03-14 JP JP7081697A patent/JPH08253836A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998027241A1 (en) * | 1996-12-16 | 1998-06-25 | Sumitomo Electric Industries, Ltd. | Cemented carbide, process for the production thereof, and cemented carbide tools |
EP0913489A1 (en) * | 1996-12-16 | 1999-05-06 | Sumitomo Electric Industries, Limited | Cemented carbide, process for the production thereof, and cemented carbide tools |
US6299658B1 (en) | 1996-12-16 | 2001-10-09 | Sumitomo Electric Industries, Ltd. | Cemented carbide, manufacturing method thereof and cemented carbide tool |
EP0913489A4 (en) * | 1996-12-16 | 2006-05-17 | Sumitomo Electric Industries | Cemented carbide, process for the production thereof, and cemented carbide tools |
US6413293B1 (en) | 1997-09-05 | 2002-07-02 | Sandvik Ab | Method of making ultrafine wc-co alloys |
US20130287625A1 (en) * | 2012-04-02 | 2013-10-31 | Fuji Die Co., Ltd. | ULTRA-FINE CEMENTED CARBIDE Ni BINDER PHASE AND TOOL USING THE SAME |
CN114574727A (en) * | 2022-03-09 | 2022-06-03 | 自贡中兴耐磨新材料有限公司 | Preparation method of chromium-vanadium-tungsten compound carbide strengthening and toughening WC-Ni hard alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2622131B2 (en) | Alloys for cutting tools | |
JPH10219385A (en) | Cutting tool made of composite cermet, excellent in wear resistance | |
JPS589137B2 (en) | Cemented carbide for cutting | |
JPS6112847A (en) | Sintered hard alloy containing fine tungsten carbide particles | |
JP2004076049A (en) | Hard metal of ultra-fine particles | |
JPH10110234A (en) | Cutting tool mode of carbo-nitrided titanium cermet excellent in chipping resistance | |
JP4553380B2 (en) | Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation | |
JPH08253836A (en) | Wear resistant tungsten carbide-base cemented carbide having excellent toughness | |
JPS62292307A (en) | Drill made of cermet | |
JP4172754B2 (en) | TiCN-based cermet and method for producing the same | |
JPH0681072A (en) | Tungsten carbide base sintered hard alloy | |
JPH0598384A (en) | Tungsten carbide base sintered hard alloy having high strength and high hardness | |
JP2668962B2 (en) | End mill made of tungsten carbide based cemented carbide with excellent fracture resistance | |
JP3605740B2 (en) | Carbide alloy for end mill | |
JP3811938B2 (en) | A miniature drill made of a fine-grain pressure-sintered compact that exhibits excellent fracture resistance and wear resistance in high-speed drilling. | |
JP5031610B2 (en) | TiCN-based cermet | |
JPH10324943A (en) | Ultra-fine cemented carbide, and its manufacture | |
JP3227774B2 (en) | Cutting tool made of cermet based on Ti-based carbonitride with excellent wear resistance | |
JPH0681071A (en) | Titanium carbonitride base cermet excellent in toughness | |
JP2668977B2 (en) | Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance | |
JP4172752B2 (en) | TiCN-based cermet and method for producing the same | |
JP2023134938A (en) | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy | |
JPH05171337A (en) | Cutting tool made of ti type carbonitroborate-base cermet excellent in oxidation resistance | |
JPS6056781B2 (en) | Cermets for cutting tools and hot working tools | |
JP2023134937A (en) | Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020604 |