JP4244108B2 - CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance - Google Patents

CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance Download PDF

Info

Publication number
JP4244108B2
JP4244108B2 JP2001063468A JP2001063468A JP4244108B2 JP 4244108 B2 JP4244108 B2 JP 4244108B2 JP 2001063468 A JP2001063468 A JP 2001063468A JP 2001063468 A JP2001063468 A JP 2001063468A JP 4244108 B2 JP4244108 B2 JP 4244108B2
Authority
JP
Japan
Prior art keywords
powder
cubic boron
boron nitride
carbonitride
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001063468A
Other languages
Japanese (ja)
Other versions
JP2002263916A (en
Inventor
逸郎 田嶋
一男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001063468A priority Critical patent/JP4244108B2/en
Publication of JP2002263916A publication Critical patent/JP2002263916A/en
Application granted granted Critical
Publication of JP4244108B2 publication Critical patent/JP4244108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、特に高硬度焼入れ鋼や鋳鉄などの表面仕上加工を断続切削条件で行なった場合にも、すぐれた耐チッピング性を発揮する立方晶窒化ほう素(以下、c−BNで示す)基焼結材料製切削工具切刃片の製造方法に関するものである。
【0002】
【従来の技術】
従来、一般に切刃片としてc−BN基焼結材料を用いた切削工具としては、例えば特公平1−16894号公報の実施例に記載されるように、c−BN基焼結材料からなる切刃片、あるいはc−BN基焼結材料の切刃片とWC基超硬合金の支持片からなる複合体を通常の超高圧焼結装置を用いて製造し、これを、WC基超硬合金からなる工具本体の切刃部に、質量%で、例えばCu:30%、Zn:28%、Ni:2%を含有し、残りがAgと不可避不純物からなる組成を有するAg合金のろう材を用いてろう付けしてなる切削工具が広く知られており、これがスローアウエイチップ(以下、単にチップと云う)やドリル、さらにエンドミルやリーマなどの切削工具として、高硬度焼入れ鋼や鋳鉄などの表面仕上加工に連続切削条件で用いられることも良く知られるところである。
また、上記の切削工具切刃片として、例えば特開昭56−156338号公報に記載されるように、走査型電子顕微鏡による組織観察で、c−BNからなる硬質分散相と、炭化チタン、窒化チタン、および炭窒化チタン(以下、それぞれTiC、TiN、およびTiCNで示す)のうちの1種または2種以上(以下、これらを総称してTi炭・窒化物という)からなる連続結合相で構成された組織を示し、かつ、
上記硬質分散相:50〜70面積%、
上記連続結合相および不可避不純物:残り、
からなる組成を有するc−BN基焼結材料で構成した切削工具切刃片が知られている。
【0003】
【発明が解決しようとする課題】
一方、近年の切削加工は、切削加工装置の高性能化と相俟って多様化し、かつ切削加工の省力化および省エネ化、さらに低コスト化に対する要求も強く、これに伴なって、切削工具にもできるだけ切削加工条件に制約されない汎用性が求められる傾向にあるが、上記の従来c−BN基焼結材料製切削工具切刃片においては、表面仕上加工を連続切削条件で行なうのに用いた場合には問題はないが、これを断続切削条件での表面仕上加工に用いると、硬質分散相と連続結合相間の密着性が十分でないために前記硬質分散相に剥離現象が発生するようになり、これが原因で切刃部にチッピング(微小欠け)が発生し、比較的短時間で使用寿命に至るのが現状である。
【0004】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、上記の従来c−BN基焼結材料製切削工具切刃片に着目し、これの耐チッピング性向上を図るべく研究を行なった結果、
(a)まず、原料粉末として、c−BN粉末、Ti炭・窒化物粉末、Ti−Al合金粉末、望ましくはTi−Al金属間化合物粉末、および炭化タングステン(以下、WCで示す)粉末を用意し、これら原料粉末を所定の配合組成に配合し、混合した後、圧粉体にプレス成形し、ついでこの圧粉体に、真空雰囲気中、900〜1300℃の範囲内の所定温度に所定時間保持の条件で反応処理を施すと、前記圧粉体におけるc−BN粉末は熱的安定性にすぐれているので、前記焼結処理によって実質的に反応せず、そのままの状態で残るが、Ti−Al合金粉末とWC粉末は反応し、これらは前記c−BN粉末の表面部とも反応してTi−Al−W系炭窒ほう化物を形成することから、きわめて硬質のc−BNからなる硬質分散相がTi−Al−W系炭窒ほう化物で強固に結合された組織を有する反応焼結材料が形成されるようになること。
【0005】
(b)上記(a)の反応焼結材料を粉砕して、粉砕後の個々の粉末をきわめて硬質のc−BNの表面にTi−Al−W系炭窒ほう化物が強固に結合してなる複合粉末とし、この複合粉末を2次原料粉末とし、これに別途用意したTi炭・窒化物粉末を所定の割合に配合し、混合した後、所定の圧力で圧粉体にプレス成形し、この圧粉体を、真空雰囲気中、900〜1300℃の範囲内の所定温度に所定時間保持の条件で焼結して1次焼結材料とした状態で、通常の超高圧焼結装置に装入し、通常の条件で超高圧焼結すると、走査型電子顕微鏡による組織観察で、c−BNの硬質分散相とTi炭・窒化物の連続結合相の間にTi−Al−W系炭窒ほう化物の中間相が介在した組織を有するc−BN基焼結材料が形成されるようになること。
【0006】
(c)上記(b)のc−BN基焼結材料を、上記の原料粉末の配合割合を調整して、同じく走査型電子顕微鏡による組織観察で、
上記c−BNの硬質分散相:50〜70%、
上記Ti−Al−W系炭窒ほう化物の中間相:5〜15%、
上記Ti炭・窒化物の連続結合相および不可避不純物:残り、
からなる組成をもつものとした状態で、切削工具切刃片として用いると、前記c−BN基焼結材料の中間相を構成するTi−Al−W系炭窒ほう化物が上記の通りc−BNの硬質分散相は勿論のこと、Ti炭・窒化物の連続結合相とも強固に結合することから、これを高硬度焼入れ鋼や鋳鉄などの表面仕上加工を断続切削条件で行なうのに用いても、チッピング発生の原因となる前記硬質分散相の前記連続結合相からの剥離脱落が防止され、すぐれた切削性能を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果が得られたのである。
【0007】
この発明は、上記の研究結果にもとづいてなされたものであって、
a)原料粉末として、c−BN粉末と、Ti炭・窒化物粉末と、Ti−Al金属間化合物粉末と、WC粉末と、を用意し、これら原料粉末を所定の配合組成に配合し、混合し、プレス成形してなる圧粉体に、真空雰囲気中、900〜1300℃の範囲内の所定温度に所定時間保持の条件で反応処理を施して、硬質のc−BNからなる硬質分散相がTi−Al−W系炭窒ほう化物で強固に結合された組織を有する反応焼結材料を形成し、
(b)上記(a)の反応焼結材料を粉砕して、粉砕後の個々の粉末を硬質のc−BNの表面にTi−Al−W系炭窒ほう化物が強固に結合してなる複合粉末とし、この複合粉末を2次原料粉末とし、これに別途用意したTi炭・窒化物粉末を所定の割合に配合し、混合し、プレス成形してなる圧粉体を、真空雰囲気中、900〜1300℃の範囲内の所定温度に所定時間保持の条件で焼結して切刃片用予備焼結体とし、
(c)ついで、上記予備焼結体を、別途用意したWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件で超高圧焼結すること、
(d)以上(a)〜(c)の工程により、走査型電子顕微鏡による組織観察で、c−BNからなる硬質分散相と、Ti炭・窒化物からなる連続結合相の間に、Ti−Al−W系炭窒ほう化物からなる中間相が介在した組織を示し、かつ面積%で、
上記硬質分散相:50〜70%、
上記中間相:5〜15%、
上記連続結合相および不可避不純物:残り、
からなる組成を有するc−BN基焼結材料で構成してなる、すぐれた耐チッピング性を有するc−BN基焼結材料製切削工具切刃片の製造方法に特徴を有するものである。
【0008】
なお、この発明の方法で製造された切削工具切刃片を構成するc−BN基焼結材料において、硬質分散相の割合を50〜70面積%としたのは、その割合が50面積%未満では所望のすぐれた耐摩耗性を確保することができず、一方その割合が70面積%を超えると、相対的に焼結性および強度向上に寄与するTi炭・窒化物(連続結合相)の割合が少なくなりすぎて切刃部に欠けが発生し易くなるという理由によるものであり、また、中間相の割合を5〜15面積%と定めたのは、その割合が5面積%未満では硬質分散相および連続結合相との間に所望のすぐれた結合性を確保することができず、この結果切刃部にチッピングの発生が避けられず、一方その割合が15面積%を超えると、c−BN基焼結材料自体の強度が低下し、切刃部に欠けが発生し易くなるという理由からである。
【0009】
【発明の実施の形態】
つぎに、この発明の切削工具切刃片の製造方法を実施例により具体的に説明する。
まず、原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するc−BN粉末、Ti炭・窒化物粉末であるTiC粉末、TiN粉末、およびTiCN粉末、Ti−Al金属間化合物粉末であるTi3Al粉末、TiAl粉末、およびTiAl3粉末、さらにWC粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で30mm×30mm×10mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体に、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に30分間保持の条件で反応処理を施して、硬質のc−BNからなる硬質分散相がTi−Al−W系炭窒ほう化物で強固に結合された組織を有する反応焼結材料A〜Jを製造した。
【0010】
ついで、上記反応焼結材料A〜Jを粉砕して、粉砕後の個々の粉末を硬質のc−BNの表面にTi−Al−W系炭窒ほう化物が強固に結合してなる複合粉末とした状態で、これに別途用意した同じく0.5〜4μmの範囲内の平均粒径を有するTi炭・窒化物粉末であるTiC粉末、TiN粉末、およびTiCN粉末を表2に示される割合で配合し、ボールミルで48時間湿式混合し、乾燥した後、100MPaの圧力で直径:40mm×厚さ:2mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体に、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に30分間保持の条件で焼結を施して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:40mm×厚さ:2.5mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度、保持時間:0.5時間の条件で超高圧焼結し、焼結後上下面を研摩し、ワイヤー放電加工装置にて十字切断して4分割し、さらにこれに仕上げ研摩を施すことにより本発明法を実施し、本発明切削工具切刃片1〜10をそれぞれ製造した。
【0011】
また、比較の目的で、原料粉末として、上記の本発明切削工具切刃片1〜10の製造に用いたと同じc−BN粉末、TiC粉末、TiN粉末、およびTiCN粉末を用い、これら原料粉末を表3に示される配合組成に配合する以外は同一の条件で従来法を実施し、従来切削工具切刃片1〜6をそれぞれ製造した。
【0012】
上記の本発明切削工具切刃片1〜10および従来切削工具切刃片1〜6について、走査型電子顕微鏡およびオージェ分析装置を用いて組織観察したところ、それぞれ表2、3に示される組成を示し、かつ前者では、いずれもc−BNの硬質分散相とTi炭・窒化物の連続結合相の間にTi−Al−W系炭窒ほう化物の中間相が介在した組織を示し、また後者では、いずれもc−BNの硬質分散相とTi炭・窒化物の連続結合相からなる組織を示した。
【0013】
ついで、これらの本発明切削工具切刃片1〜10および従来切削工具切刃片1〜6について、それぞれCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格TNGA332の形状(厚さ:3.18mm×一辺長さ:16mmの正三角形)をもったWC基超硬合金製チップ本体のろう付け部(コーナー部)に、質量%で、Cu:30%、Zn:28%、Ni:2%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けした状態で、
被削材:SCM415の浸炭焼き入れ材(硬さHR C:60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
送り:0.2mm/rev.、
切り込み:0.5mm、
切削時間:40分、
の条件での浸炭焼き入れ鋼の乾式断続表面仕上加工を行ない、切刃片の逃げ面摩耗幅を測定した。これらの測定結果を表2,3に示した。
【0014】
【表1】

Figure 0004244108
【0015】
【表2】
Figure 0004244108
【0016】
【表3】
Figure 0004244108
【0017】
【発明の効果】
表2,3に示される結果から、本発明法で製造された本発明切削工具切刃片1〜10は、いずれもこれを構成するc−BN基焼結材料がc−BNの硬質分散相とTi炭・窒化物の連続結合相の間にTi−Al−W系炭窒ほう化物の中間相が介在した組織をもつことから、高硬度焼入れ鋼や鋳鉄などの表面仕上加工を断続切削条件で行なった場合にも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、従来法で製造された、前記Ti−Al−W系炭窒ほう化物からなる中間相の介在がないc−BN基焼結材料で構成された従来切削工具切刃片1〜6は、いずれもチッピングの発生によって、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の方法で製造された切削工具切刃片は、高硬度焼入れ鋼や鋳鉄などの表面仕上加工を連続切削条件で行なった場合は勿論のこと、断続切削条件で行なった場合にも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものであるから、切削加工の多様化、省力化、および省エネ化、さらに低コスト化に十分満足に対応できるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a cubic boron nitride (hereinafter referred to as c-BN) base that exhibits excellent chipping resistance even when surface finishing of hardened hardened steel or cast iron is performed under intermittent cutting conditions. The present invention relates to a method for manufacturing a cutting tool cutting piece made of a sintered material.
[0002]
[Prior art]
Conventionally, as a cutting tool generally using a c-BN-based sintered material as a cutting edge piece, for example, as described in an example of Japanese Patent Publication No. 1-16884, a cutting tool made of a c-BN-based sintered material is used. A composite composed of a blade piece or a cutting piece of a c-BN-based sintered material and a support piece of a WC-based cemented carbide is manufactured using a normal ultra-high pressure sintering apparatus. A brazing material of an Ag alloy having a composition containing, for example, Cu: 30%, Zn: 28%, Ni: 2%, and the balance of Ag and inevitable impurities in the cutting edge portion of the tool body made of Cutting tools made by brazing are widely known. These are throwaway inserts (hereinafter simply referred to as inserts) and drills, as well as cutting tools for end mills and reamers, such as hard-hardened steel and cast iron surfaces. Used in continuous cutting conditions for finishing Rukoto is where, which is also well known.
Further, as described above, as described in, for example, JP-A-56-156338, as a cutting tool cutting piece, a hard dispersed phase composed of c-BN, titanium carbide, nitride Consists of a continuous bonded phase composed of one or more of titanium and titanium carbonitride (hereinafter referred to as TiC, TiN, and TiCN, respectively) (hereinafter collectively referred to as Ti charcoal / nitride). The identified organization, and
The hard dispersed phase: 50 to 70 area%,
Above continuous bonded phase and inevitable impurities: remaining,
A cutting tool cutting edge piece made of a c-BN-based sintered material having a composition consisting of:
[0003]
[Problems to be solved by the invention]
On the other hand, cutting in recent years has been diversified in conjunction with higher performance of cutting devices, and there has been a strong demand for labor saving and energy saving of cutting processing, and further cost reduction. However, the above-mentioned conventional c-BN-based sintered material cutting tool cutting edge piece is used to perform surface finishing under continuous cutting conditions. However, if this is used for surface finishing under intermittent cutting conditions, the adhesion between the hard dispersed phase and the continuous bonded phase is not sufficient so that a peeling phenomenon occurs in the hard dispersed phase. As a result, chipping (small chipping) occurs at the cutting edge due to this, and the service life is reached in a relatively short time.
[0004]
[Means for Solving the Problems]
Therefore, the present inventors have focused on the above-mentioned conventional c-BN-based sintered material cutting tool cutting piece from the above viewpoint, and as a result of conducting research to improve its chipping resistance,
(A) First, c-BN powder, Ti charcoal / nitride powder, Ti-Al alloy powder, desirably Ti-Al intermetallic compound powder, and tungsten carbide (hereinafter referred to as WC) powder are prepared as raw material powder. These raw material powders are mixed in a predetermined composition and mixed, then pressed into a green compact, and then the green compact is subjected to a predetermined temperature within a range of 900 to 1300 ° C. in a vacuum atmosphere for a predetermined time. When the reaction treatment is performed under the holding conditions, the c-BN powder in the green compact is excellent in thermal stability, so that it does not substantially react by the sintering treatment and remains as it is. -Al alloy powder and WC powder react, and these also react with the surface portion of the c-BN powder to form a Ti-Al-W carbonitride, thus a hard material composed of extremely hard c-BN. Dispersed phase is Ti-Al To become possible as reaction sintering a material having a W-based carbonitride boride in tightly bound tissue is formed.
[0005]
(B) The reaction-sintered material of (a) is pulverized, and the individual powders after pulverization are firmly bonded to the surface of extremely hard c-BN with Ti-Al-W carbonitride. This composite powder is used as a secondary raw material powder, and Ti charcoal / nitride powder separately prepared is mixed in a predetermined ratio, mixed, and then pressed into a green compact at a predetermined pressure. The green compact is sintered in a vacuum atmosphere at a predetermined temperature in the range of 900 to 1300 ° C. for a predetermined time and is used as a primary sintered material. However, when ultra-high pressure sintering is performed under normal conditions, a Ti—Al—W-based carbonitride is observed between the hard dispersed phase of c-BN and the continuous bonded phase of Ti charcoal / nitride by microstructure observation with a scanning electron microscope. C-BN-based sintered material having a structure in which an intermediate phase of a chemical compound is interposed.
[0006]
(C) The above-mentioned c-BN-based sintered material (b) is adjusted by adjusting the blending ratio of the raw material powder, and the structure is similarly observed with a scanning electron microscope.
C-BN hard dispersed phase: 50-70%,
Intermediate phase of the Ti-Al-W carbonitride: 5-15%,
Ti Ti charcoal / nitride continuous binder phase and inevitable impurities: remaining,
Ti-Al-W-based carbonitrides that constitute the intermediate phase of the c-BN-based sintered material are c- BN is firmly bonded to the continuous bonded phase of Ti charcoal / nitride as well as the hard dispersed phase of BN, so it is used for surface finishing of hardened steel and cast iron under intermittent cutting conditions. However, peeling off of the hard dispersed phase from the continuous bonded phase, which causes chipping, is prevented, and excellent cutting performance is exhibited over a long period of time.
The research results shown in (a) to (c) above were obtained.
[0007]
This invention was made based on the above research results,
(A ) As a raw material powder, c-BN powder, Ti charcoal / nitride powder, Ti-Al intermetallic compound powder, and WC powder are prepared, and these raw material powders are blended in a predetermined blending composition, The green compact obtained by mixing and press-molding is subjected to a reaction treatment in a vacuum atmosphere at a predetermined temperature in the range of 900 to 1300 ° C. for a predetermined time, and a hard dispersed phase comprising hard c-BN. Forming a reaction sintered material having a structure tightly bonded with Ti-Al-W carbonitride,
(B) A composite in which the reaction sintered material of (a) is pulverized, and the individual powders after pulverization are firmly bonded to the surface of hard c-BN with Ti-Al-W carbonitride. The composite powder is used as a secondary raw material powder, and Ti charcoal / nitride powder separately prepared in the powder is mixed in a predetermined ratio, mixed, and press-molded into a green compact in a vacuum atmosphere. Sintered at a predetermined temperature within a range of ˜1300 ° C. for a predetermined time to obtain a pre-sintered body for a cutting blade piece,
(C) Next, the above pre-sintered body is placed in an ordinary ultra-high pressure sintering apparatus in a state of being superposed on a separately prepared WC-based cemented carbide support piece, and ultra-high pressure sintering is performed under normal conditions. To do,
(D) Through the steps (a) to (c) described above, between the hard dispersed phase composed of c-BN and the continuous bonded phase composed of Ti charcoal / nitride in the structure observation with a scanning electron microscope, Ti— An intermediate phase composed of an Al—W-based carbonitride is shown, and in area%,
The hard dispersed phase: 50 to 70%,
Intermediate phase: 5-15%
Above continuous bonded phase and inevitable impurities: remaining,
It becomes constituted by c-BN based sintered material having a composition consisting of, those characterized by a method for producing a c-BN based sintered material cutting tool made cutting piece having excellent chipping resistance.
[0008]
In the c-BN-based sintered material constituting the cutting tool cutting piece produced by the method of the present invention, the ratio of the hard dispersed phase is set to 50 to 70 area%, and the ratio is less than 50 area%. In this case, the desired excellent wear resistance cannot be ensured. On the other hand, when the proportion exceeds 70 area%, Ti charcoal / nitride (continuous binder phase) contributes relatively to improvement of sinterability and strength. This is because the ratio becomes too small and the cutting edge portion is likely to be chipped. The reason why the ratio of the intermediate phase is set to 5 to 15% by area is hard if the ratio is less than 5% by area. If the desired excellent bondability between the dispersed phase and the continuous bonded phase cannot be ensured, and as a result, the occurrence of chipping in the cutting edge cannot be avoided, while if the ratio exceeds 15 area%, c -The strength of the BN-based sintered material itself decreases, and the cutting edge It is the reason that the injury occur easily.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the manufacturing method of the cutting tool cutting edge piece of the present invention will be specifically described with reference to examples.
First, as raw material powders, all are c-BN powders having an average particle diameter in the range of 0.5 to 4 μm, Ti carbon powders that are Ti charcoal / nitride powders, TiN powders, and TiCN powders, between Ti-Al metals After preparing compound powder Ti 3 Al powder, TiAl powder, TiAl 3 powder, and WC powder, these raw material powders are blended in the blending composition shown in Table 1, wet-mixed by a ball mill for 72 hours, and dried. , Pressed into a green compact having a size of 30 mm × 30 mm × 10 mm at a pressure of 100 MPa, and then pressed to a predetermined temperature within a range of 900 to 1300 ° C. in a vacuum atmosphere at a pressure of 1 Pa. Reactive sintered materials A to A having a structure in which a hard dispersion phase composed of hard c-BN is firmly bonded with a Ti-Al-W carbonitride for the reaction treatment under the condition of holding for a minute. It was prepared.
[0010]
Next, the above-mentioned reaction sintered materials A to J are pulverized, and the individual powders after pulverization are combined with a composite powder in which Ti-Al-W carbonitride is firmly bonded to the surface of hard c-BN. In this state, separately prepared TiC powder, TiN powder, and TiCN powder, which are Ti charcoal / nitride powders having an average particle size in the range of 0.5 to 4 μm, prepared separately, in the proportions shown in Table 2. The mixture was wet-mixed for 48 hours in a ball mill, dried, and then pressed into a green compact having a diameter of 40 mm × thickness: 2 mm at a pressure of 100 MPa. In a vacuum atmosphere, sintering was performed at a predetermined temperature within a range of 900 to 1300 ° C. for 30 minutes to obtain a pre-sintered body for a cutting edge piece, and this pre-sintered body was prepared separately, Co: 8 % By mass, WC: remaining composition and diameter: 40 m m × thickness: WC based cemented carbide support piece having dimensions of 2.5 mm, and placed in a normal ultra-high pressure sintering apparatus, under normal conditions of pressure: 5 GPa, temperature : Sintered under high pressure at a predetermined temperature in the range of 1200 to 1400 ° C and holding time: 0.5 hour. After sintering, the upper and lower surfaces are polished, cross-cut with a wire electric discharge machine, and divided into four. Further, the method of the present invention was carried out by applying final polishing to this, and the cutting tool pieces 1 to 10 of the present invention were produced.
[0011]
For the purpose of comparison, the same c-BN powder, TiC powder, TiN powder, and TiCN powder as those used in the production of the cutting tool cutting pieces 1 to 10 of the present invention are used as the raw material powder. The conventional method was implemented on the same conditions except mix | blending with the compounding composition shown by Table 3, and the conventional cutting tool cutting-blade pieces 1-6 were each manufactured.
[0012]
When the structure of the cutting tool pieces 1 to 10 of the present invention and the conventional cutting tool pieces 1 to 6 was observed with a scanning electron microscope and an Auger analyzer, the compositions shown in Tables 2 and 3 were obtained. The former shows a structure in which an intermediate phase of Ti-Al-W carbonitride is interposed between a hard dispersed phase of c-BN and a continuous bonded phase of Ti charcoal / nitride, and the latter. In either case, a structure composed of a hard dispersed phase of c-BN and a continuous bonded phase of Ti charcoal / nitride is shown.
[0013]
Then, for these cutting tool pieces 1 to 10 of the present invention and the cutting pieces 1 to 6 of the conventional cutting tool, Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and shape of CIS standard TNGA332, respectively. In a brazed portion (corner portion) of a WC-based cemented carbide chip body having a thickness of 3.18 mm × one side length of 16 mm, Cu: 30%, Zn: 28 %, Ni: 2%, Ag: In a state of brazing using a brazing material of an Ag alloy having a composition consisting of:
Work material: SCM415 carburizing and quenching material (hardness H R C: 60) in the longitudinal direction at equal intervals, 4 vertical grooved round bars,
Cutting speed: 300 m / min. ,
Feed: 0.2 mm / rev. ,
Cutting depth: 0.5mm,
Cutting time: 40 minutes
Carburized and hardened steel was subjected to dry interrupted surface finishing under the conditions described above, and the flank wear width of the cutting edge piece was measured. The measurement results are shown in Tables 2 and 3.
[0014]
[Table 1]
Figure 0004244108
[0015]
[Table 2]
Figure 0004244108
[0016]
[Table 3]
Figure 0004244108
[0017]
【The invention's effect】
From the results shown in Tables 2 and 3, the cutting tool pieces 1 to 10 of the present invention produced by the method of the present invention are all hard dispersed phases in which the c-BN-based sintered material constituting this is c-BN. Intermittent cutting conditions for surface finishing of hardened steel, cast iron, etc. due to a structure in which an intermediate phase of Ti-Al-W carbonitride is intervened between the continuous bonded phase of Ti and Ti charcoal / nitride The Ti-Al-W-based carbonitrides produced by the conventional method, while exhibiting excellent chipping resistance and excellent wear resistance over a long period of time, also when performed in It is clear that all of the conventional cutting tool cutting pieces 1 to 6 made of a c-BN-based sintered material having no intermediate phase consisting of the above reach the service life in a relatively short time due to the occurrence of chipping. is there.
As described above, the cutting tool cutting piece manufactured by the method of the present invention was subjected to interrupted cutting conditions as well as surface finishing of hardened steel and cast iron under continuous cutting conditions. Even in this case, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time, so it is fully satisfactory for diversification of cutting, labor saving, energy saving, and cost reduction. It can respond.

Claims (1)

a)原料粉末として、炭化チタン粉末、窒化チタン粉末、および炭窒化チタン粉末のうちの1種または2種以上と、立方晶窒化ほう素粉末と、Ti−Al金属間化合物粉末と、炭化タングステン粉末と、を用意し、これら原料粉末を所定の配合組成に配合し、混合し、プレス成形してなる圧粉体に、真空雰囲気中、900〜1300℃の範囲内の所定温度に所定時間保持の条件で反応処理を施して、硬質の立方晶窒化ほう素からなる硬質分散相がTi−Al−W系炭窒ほう化物で強固に結合された組織を有する反応焼結材料を形成し、
(b)上記(a)の反応焼結材料を粉砕して、粉砕後の個々の粉末を硬質の立方晶窒化ほう素の表面にTi−Al−W系炭窒ほう化物が強固に結合してなる複合粉末とし、この複合粉末を2次原料粉末とし、これに別途用意した炭化チタン粉末、窒化チタン粉末、および炭窒化チタン粉末のうちの1種または2種以上を所定の割合に配合し、混合し、プレス成形してなる圧粉体を、真空雰囲気中、900〜1300℃の範囲内の所定温度に所定時間保持の条件で焼結して切刃片用予備焼結体とし、
(c)ついで、上記予備焼結体を、別途用意した炭化タングステン基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件で超高圧焼結すること、
(d)以上(a)〜(c)の工程により、走査型電子顕微鏡による組織観察で、立方晶窒化ほう素からなる硬質分散相と、炭化チタン、窒化チタン、および炭窒化チタンのうちの1種または2種以上からなる連続結合相の間に、Ti−Al−W系炭窒ほう化物からなる中間相が介在した組織を示し、かつ面積%で、
上記硬質分散相:50〜70%、
上記中間相:5〜15%、
上記連続結合相および不可避不純物:残り、
からなる組成を有する立方晶窒化ほう素基焼結材料で構成してなる、すぐれた耐チッピング性を有する立方晶窒化ほう素基焼結材料製切削工具切刃片の製造方法
(A ) As raw material powder, one or more of titanium carbide powder, titanium nitride powder, and titanium carbonitride powder, cubic boron nitride powder, Ti—Al intermetallic compound powder, and tungsten carbide Powder, and these raw material powders are mixed in a predetermined composition, mixed, and press-molded into a green compact, which is kept in a vacuum atmosphere at a predetermined temperature within a range of 900 to 1300 ° C. for a predetermined time. To form a reaction sintered material having a structure in which a hard dispersed phase composed of hard cubic boron nitride is firmly bonded with a Ti-Al-W carbonitride,
(B) The reaction sintered material of (a) above is pulverized, and the individual powders after pulverization are firmly bonded to the surface of hard cubic boron nitride with Ti—Al—W-based carbonitride. The composite powder is used as a secondary raw material powder, and one or more of titanium carbide powder, titanium nitride powder, and titanium carbonitride powder prepared separately are blended in a predetermined ratio. The green compact obtained by mixing and press-molding is sintered in a vacuum atmosphere at a predetermined temperature within a range of 900 to 1300 ° C. for a predetermined time to obtain a presintered body for a cutting edge piece.
(C) Next, the pre-sintered body is placed in a super-high pressure sintering apparatus in a state of being superposed on a separately prepared tungsten carbide base cemented carbide support piece, and ultra-high pressure sintering is performed under normal conditions. Conclude,
(D) Through the steps (a) to (c) described above, a hard dispersed phase composed of cubic boron nitride and one of titanium carbide, titanium nitride, and titanium carbonitride can be obtained by structural observation with a scanning electron microscope. A structure in which an intermediate phase composed of a Ti—Al—W carbonitride is interposed between continuous seed phases or two or more types of continuous bonded phases, and in area%,
The hard dispersed phase: 50 to 70%,
Intermediate phase: 5-15%
Above continuous bonded phase and inevitable impurities: remaining,
A method of manufacturing a cutting tool cutting piece made of a cubic boron nitride-based sintered material having excellent chipping resistance, comprising a cubic boron nitride-based sintered material having a composition of
JP2001063468A 2001-03-07 2001-03-07 CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance Expired - Fee Related JP4244108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001063468A JP4244108B2 (en) 2001-03-07 2001-03-07 CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001063468A JP4244108B2 (en) 2001-03-07 2001-03-07 CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance

Publications (2)

Publication Number Publication Date
JP2002263916A JP2002263916A (en) 2002-09-17
JP4244108B2 true JP4244108B2 (en) 2009-03-25

Family

ID=18922459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001063468A Expired - Fee Related JP4244108B2 (en) 2001-03-07 2001-03-07 CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance

Country Status (1)

Country Link
JP (1) JP4244108B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201011574D0 (en) * 2010-07-09 2010-08-25 Element Six Ltd PCBN material

Also Published As

Publication number Publication date
JP2002263916A (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP5100927B2 (en) Method for producing cubic boron nitride sintered body
JP5447844B2 (en) High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool
JP2020514235A (en) Sintered polycrystalline cubic boron nitride material
JPH06287067A (en) Cutting tool with excellent resistance to wear and chipping made from cubic boron nitride-based ultra-high-pressure sintering material
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
JP5559575B2 (en) Cermet and coated cermet
JPH08126903A (en) Cutting tool made of cubic boron nitride super high pressure sintered material excellent in wear resistance
US20030054940A1 (en) Sintered body
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPS644988B2 (en)
JP3257255B2 (en) Cutting tools made of cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JP2003236710A (en) Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping
JPS644989B2 (en)
JP4553382B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JPH0911006A (en) Cutting tool made of cubic nitride boron group sintered material which provides excellent wear resistance in high-speed cutting
JP2003081677A (en) Dispersion-enhanced cbn-based sintered compact and method of producing the same
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP2668977B2 (en) Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance
JP3358477B2 (en) Cutting tool with excellent brazing joint strength with cutting edge piece
JP2003236707A (en) Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping
JPS6330983B2 (en)
JP2000202705A (en) Throwaway cutting tip making its cutting edge piece display excellent cutting edge chipping resistance
JP2003175407A (en) Cutting tip made of cubic boron nitride-group extra-high sintered material having excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees