JPS644988B2 - - Google Patents

Info

Publication number
JPS644988B2
JPS644988B2 JP59263992A JP26399284A JPS644988B2 JP S644988 B2 JPS644988 B2 JP S644988B2 JP 59263992 A JP59263992 A JP 59263992A JP 26399284 A JP26399284 A JP 26399284A JP S644988 B2 JPS644988 B2 JP S644988B2
Authority
JP
Japan
Prior art keywords
cbn
sintered body
cutting
hardness
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59263992A
Other languages
Japanese (ja)
Other versions
JPS61141672A (en
Inventor
Itsuro Tajima
Fumihiro Ueda
Kaoru Kawada
Kisho Miwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59263992A priority Critical patent/JPS61141672A/en
Publication of JPS61141672A publication Critical patent/JPS61141672A/en
Publication of JPS644988B2 publication Critical patent/JPS644988B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、きわめて優れた靭性と耐摩耗性の
両特性を有し、高硬度鋳鉄や、ダイス鋼、高速度
鋼等の高硬度鋼の切削工具(なかでも、高硬度鋳
鉄の高負荷切削等の特に靭性を要求される分野の
切削工具)に使用するのに適した立方晶窒化硼素
(以下、CBNで示す)基焼結体の製造方法に関す
るものである。 〔従来の技術〕 最近、金属加工の分野において、鋳鉄切削の高
速化、ダイス鋼や高速度鋼などの高硬度鋼の研削
加工から切削加工への切り換えが急速に進み、そ
れに伴なつて、CBNが鉄との反応を起こさず、
ダイヤモンドに次ぐ高硬度を有し、かつ熱伝導度
も高いことから、CBN基焼結体がこれらの材料
の切削工具として注目されるようになつてきた。
そして、チタンの炭化物(以下、TiCで示す)、
炭窒化物(以下、TiCNで示す)及び窒化物(以
下、TiNで示す)は硬度も高く、耐溶着性もあ
ることから、CBNと、結合成分と言えるTiC、
TiCN及びTiNのうちの1種以上とからなる配合
組成物の圧粉体を単独で、又は他の圧粉体若しく
は焼結体と重ね合わせた状態で、超高圧焼結した
CBN基焼結体が鋳鉄や高硬度鋼の切削工具とし
て提案されている。 〔発明が解決しようとする問題点〕 しかしながら、一般に、ダイス鋼や高速度鋼な
どの高硬度鋼は、熱処理状態において、多くの場
合ロツクウエルC硬さが50以上の高硬度を有し、
高硬度鋳鉄のチルド鋳鉄においてはシヨア硬さが
70〜80程度の高硬度を持つのであつて、一方、前
記の従来のCBN基焼結体は充分な靭性と耐摩耗
性の両特性を有したものではないので、前記の高
硬度材料を前記の従来のCBN基焼結体製の切削
工具で切削する場合、切削速度の高速化、切り込
み量の増大、送り速度の高速化に従つて、旋盤加
工時に刃先に対して加わる負荷が極めて大きくな
り、刃先の欠損や摩耗が顕著になり、使用不可能
となつてしまう。例えば、チルド鋳鉄の旋削にお
いては、切り込み、送り速度が高くなると、前記
の従来CBN基焼結体は靭性が不足するため、欠
けを生じ易く、具体的には、シヨア硬さが70のチ
ルド鋳鉄を被削材とし、切削速度:80m/分、切
り込み:1.0mmの高切り込み条件の切削では、送
りが0.1mm未満と小さいものであつても、刃先に
欠損が生じてしまうのである。したがつて、前記
の従来のCBN基焼結体製に切削工具は切り込み
や送りの微少な切削にしか使用されていないのが
現状である。 よつて、この発明の目的は、きわめて優れた靭
性と耐摩耗性の両特性を有し、高硬度鋳鉄やダイ
ス鋼、高速度鋼等の高硬度鋼の切削工具(なかで
も、高硬度鋳鉄の高切り込み高送り条件の高負荷
切削等の特に靭性を要求される分野の切削工具)
に使用するのに適した切削工具用CBN基焼結体
の製造方法を提供することである。 〔問題点を解決するための手段〕 本発明者らは、種々研究や検討を重ねた結果、
以下に述べる知見を得たのである。 (イ) CBNとTiN単独とを超高圧下で焼結した場
合、CBNに比較してTiNは柔らかいために塑
性変形してCBN界面に廻り込むものの両者の
間に反応を生じないので、界面強度ひいては靭
性が充分に向上せず、しかも切削工具としての
使用時にCBN粒子の脱落により耐摩耗性も劣
つたものとなること、 (ロ) CBNとTiC単独あるいはTiCN単独とを超高
圧下で焼結した場合も(イ)とほぼ同様であるこ
と、 (ハ) 液相を形成させ、ひいては反応を生じさせる
ために、CBNの焼結助剤として従来公知のAl
化合物であるAlの金属間化合物、例えばTiAl3
やTiAlを用いると、超高圧焼結時に反応を生
じるものの、TiB2の他に多量のAlNをも生じ、
そのために充分な焼結促進効果が得られないと
同時に、焼結体特性(靭性及び耐摩耗性等)に
対しても悪影響を及ぼすこと、 (ハ) Al化合物の1種である二チタンアルミニウ
ム炭化物(以下、Ti2AlCで示す)あるいは二
チタンアルミニウム炭窒化物(以下、
Ti2AlCNで示す)は単独では1300℃以上の温
度で徐々に分解反応を生じ、それぞれTiCある
いはTiCNを生成する。このような特徴を有す
るTi2AlCあるいはTi2AlCを焼結助剤として、
CBNと共に超高圧下で焼結すると、CBN界面
への廻り込みも起こるし、CBNと分解生成
TiCあるいはTiCNとの界面に層状の反応領域
が形成し(第1図参照)、これらの焼結助剤も
Al化合物の1種であるのにもかかわらず、こ
の反応領域内にはAl分が存在せず、Al分は反
応領域外のTiCあるいはTiCN内に均一に分布
し、AlNの形成は認められないために、充分
な焼結促進効果が得られ、しかも焼結体持性
(具体的には靭性)も向上すること、 (ニ) 上記のTi2AlCあるいはTi2AlCNは、それぞ
れTiC、TiCNあるいはTiNの焼結助剤として
も有効で、上記各材料を焼結する際にTi2AlC
あるいはTi2AlCNを添加すると、著しく焼結
性が向上し、又、焼結体中で分解生成TiCある
いはTiCNが均一な微細分散構造を呈するこ
と、 (ホ) CBNと、TiC、TiCN及びTiN(以下、これ
らを総称してチタンの炭・窒化物とも言う)の
うちの1種以上と共に、焼結助剤として上記の
Ti2AlCあるいはTi2AlCNを用いると、Ti2AlC
あるいはTi2AlCNが分解して生成したTiCあ
るいはTiCNはCBN粒子および配合されたチ
タンの炭・窒化物のうちの1種以上の粒子間に
廻り込んで、CBN粒子と配合されたチタンの
炭・窒化物粒子との直接の接触を妨げ、分解生
成TiCあるいはTiCNとCBN粒子との界面にAl
分の存在しない反応領域を形成させ、かつ、配
合されたチタンの炭・窒化物の焼結性をも向上
させ、もつてCBN粒子と結合相及びチタンの
炭・窒化物粒子と結合相の結合を強固なものと
し、得られる焼結体の靭性を向上させること。 この発明は上記知見に基いて発明されたもので
あり、 TiC、TiN及びTiCNからなる群より選ばれた
1種以上の粉末:5〜31%、 Ti2AlC及びTi2AlCNからなる群より選ばれた
1種又は2種の粉末:1〜23%、 CBN粉末:残り(但し、63〜93%)からなる
配合組成(以上、重量%)を有する組成物を混合
し、プレス成形して圧粉体とし、次いでこの圧粉
体を単独で、又は他の圧粉体若しくは焼結体と重
ね合わせた状態で、高超圧下において焼結するこ
とを特徴とする切削工具用CBN基焼結体の製造
法である。 以下、この発明の構成を説明する。 () 原料 チタン炭・窒化物粉末、Ti2AlC粉末、
Ti2AlCN粉末及びCBN粉末ともに、その平均
粒径は10μm以下が好ましい。 そして、原料粉末であるTi2AlCNのC/N
(原子比)はどのような数値のものでもよいが、
得られる焼結体の硬度を高くするためには、3/
7よりも大きいことが好ましい。 () 配合組成 (i) チタンの炭・窒化物 これら各成分は、得られる焼結体に耐熱
性、耐溶着性を附与する作用を有するが、そ
の配合量が5重量%未満では、所望の耐溶着
性が得られず、得られる焼結体を切削工具と
して用いたときの切削加工時に刃先に溶着
(切削工具の被削材との高温における化学反
応に起因する)が生じ易く、その結果として
刃先のチツピングや摩耗が生じ易くなつてし
まう。一方、31重量%を超えると、CBN基
焼結体の特徴の一つである高硬度が得られな
いか、あるいは焼結助剤の相対的割合の減少
により充分な界面強度が得られず、結果的に
耐摩耗性あるいは靭性が不足してしまうこと
から、その配合割合を5〜31重量%と定め
た。 (ii) Ti2AlC、Ti2AlCN 知見事項(ホ)の所でも述べたように、これら
の成分は焼結助剤であつて、超高圧焼結時に
分解反応を生じ、TiC又はTiCNを生成する
という特徴があり、(CBNと共に用いると一
部TiB2をも形成する)、これらの成分を
CBN、チタンの炭・窒化物と共に用いると、
分解生成されたTiCあるいはTiCNがCBN粒
子および配合されたチタンの炭・窒化物粒子
間に廻り込み、CBN粒子と配合されたチタ
ンの炭・窒化物粒子の直接の防ぎ、分解生成
TiCあるいはTiCNとCBN粒子との界面にAl
分の存在しない反応領域を形成させ、かつ配
合されたチタンの炭・窒化物の焼結性をも向
上させ、もつてCBN粒子と結合相と配合さ
れたチタンの炭・窒化物粒子の間の結合を強
固なものとし、得られる焼結体の靭性を向上
させる作用を有する。しかし、その配合割合
が1重量%未満では、前記の靭性向上効果は
認められず、一方、23重量%を超えると、耐
摩耗性が著しく低下することから、その配合
割合を1〜23重量%と定めた。 (iii) CBN CBNは極めて優れた耐摩耗性及び耐欠損
性を得るために不可欠の成分と言える。しか
しながら、その配合割合が63重量%未満で
は、理由は不明であるが、高負荷切削では靭
性が不充分となり、特に靭性が必要とされる
この分野の切削加工には好ましくない。一
方、93重量%を超えて配合されると、その焼
結性は著しく劣化し、CBN粒子が脱落し易
くなり、結果的に得られる焼結体の耐摩耗性
を低下させることから、その配合割合を63〜
93重量%と定めた。 因に得られる焼結体中のCBN含量は約70
超〜95容量%位である。 () 混合・成形・焼結工程 次いで、前記の配合組成を有する組成物を、
例えばボールミルにより混合し、混合粉末とし
た後、この混合粉末を0.5〜5.0t/cm2の圧力でプ
レス成形して圧粉体とし、この圧粉体をそのま
ま、あるいは超高圧焼結の前処理として0-2
10-4torrの真空中又は不活性ガス中で800〜
1200℃の温度で仮焼結し、その強度を高めた後
に、前記圧粉体若しくはは仮焼結体を単独で、
又は他の圧粉体若しくは焼結体(例えば、超硬
合金、サーメツト、アルミナ基セラミツクス、
窒化珪素基セラミツク等の焼結前の圧粉体若し
くは焼結体)と重ね合わせた状態で、圧力:4
〜7GPa、温度:1400〜1800℃、保持時間:5
〜120分の条件で焼結することにより、この発
明のCBN基焼結体を製造する。 超高圧焼結時の圧力および温度は、CBNの安
定領域内の圧力および温度である必要は必ずしも
なく、必ずしもそれ程の超高圧、高温は必要でな
い。なぜならば、Ti2AlC又はTi2AlCNをCBNと
共に用いた場合、前記したように、CBN粒との
界面でAl分の存在しない反応領域を形成すると
いう特徴がある。この現象は他のAl化合物では
見られない現象であり、このことがCBNから六
方晶窒化硼素への逆変能を生じにくくするため、
比較的低い圧力下においても六方晶窒化硼素を殆
んど含まずに満足できる特性を有するCBN基焼
結体が得られるのである。 〔実施例〕 実施例 原理粉末として平均粒径2μmのCBN粉末、同
1μmのTiC0.5N0.5粉末とTiN粉末と、Ti2AlC0.6
N0.4粉末、同0.1μmのTiC粉末、同3μmのTi2AlC
粉末を用意し、第1表に示す配合組成に配合後、
ボールミルにて2時間混合し、次いで2t/cm2の圧
力でプレス成形して圧粉体とし、この圧粉体を
10-3torrの真空中800℃で30分保持後、ベルト型
超高圧装置にて第1表記載の焼結条件で10分間保
持後、冷却・除圧することにより、本発明焼結体
1〜17を製造した。 比較のため、Ti2AlCやTi2AlC0.6N0.4を用いな
いで、CBNとTiCのみの配合組成物、CBNと
TiC0.5N0.5のみの配合組成物あるいはCBNとTiN
のみの配合組成物を用いて従来焼結体1〜3を、
Ti2AlCやTi2AlC0.6N0.4の代りに焼結助剤として
従来公知のTiAl3あるいはAlを用いて従来焼結体
4〜5を、及び配合組成がこの発明の配合組成範
囲から外れる比較焼結体1〜12を同様に製造し
た。 これらの本発明焼結体、比較焼結体及び従来焼
結体をそれぞれ研摩後、それぞれについて焼結体
中のCBN含量、破壊靭性値及びビツカース硬さ
を測定し、その結果を第1表に示した。 次いで、これらの焼結体を研削・研摩仕上げに
より切削工具用の刃先とした。この刃先を用いて
シヨア硬さが70のチルド鋳鉄を被削材とし、切削
速度:80m/分、切り込み:1.0mmの高切り込み
条件において、送り量を0.05mm/rev.で、それか
ら0.1〜0.7mm/rev.の範囲内で小さい方から0.1mm
ずつ増加させてそれぞれの送り量で5分間切削し
て欠けが始めて発生する送り量を調べた。その結
果を第1表に示す。 〔発明の効果〕 第1表に示されるように、本発明焼結体は従来
焼結体に比較して破壊靭性値、硬さ及び切削工具
の刃先として欠けを生ぜずに採用可能な送り量の
全てにおいて優れており、特に、破壊靭性値と採
用可能な送り量においてはきわめて優れている。
そして、本発明焼結体は、比較焼結体に比べても
切削工具の刃先として欠けを生ぜずに採用可能な
送り量の点で優れている。つけ加えるならば、こ
れに対して、比較焼結体は本発明焼結体に比べ
て、破壊靭性値が硬さのいずれかにおいて劣つて
おり、両特性同時に満足させないものである。 因にCBN基焼結体製の切削工具の場合は、0.3
mm/rev.以上を高送り条件と見てよい。
[Industrial Application Field] This invention has both extremely excellent toughness and wear resistance, and is suitable for cutting tools made of high-hardness steel such as high-hardness cast iron, die steel, and high-speed steel (especially high-hardness steel). The present invention relates to a method for manufacturing a cubic boron nitride (hereinafter referred to as CBN)-based sintered body suitable for use in cutting tools in fields that require particularly high toughness, such as high-load cutting of hard cast iron. [Prior art] Recently, in the field of metal processing, there has been a rapid increase in the speed of cutting cast iron, and a rapid switch from grinding to cutting of high-hardness steels such as die steel and high-speed steel. does not react with iron,
CBN-based sintered bodies are attracting attention as cutting tools for these materials because they have a hardness second only to diamond and high thermal conductivity.
And titanium carbide (hereinafter referred to as TiC),
Carbonitrides (hereinafter referred to as TiCN) and nitrides (hereinafter referred to as TiN) have high hardness and welding resistance, so CBN and TiC, which can be said to be a bonding component,
Ultra-high-pressure sintering of a green compact of a blended composition consisting of one or more of TiCN and TiN, either alone or in a stacked state with other green compacts or sintered bodies.
CBN-based sintered bodies have been proposed as cutting tools for cast iron and high-hardness steel. [Problems to be solved by the invention] However, in general, high-hardness steels such as die steel and high-speed steel often have a high hardness with a Rockwell C hardness of 50 or more in a heat-treated state.
In chilled cast iron, which is a high-hardness cast iron, the shore hardness is
It has a high hardness of about 70 to 80. On the other hand, the conventional CBN-based sintered body does not have sufficient toughness and wear resistance. When cutting with conventional CBN-based sintered cutting tools, as the cutting speed increases, the depth of cut increases, and the feed rate increases, the load applied to the cutting edge during lathe machining becomes extremely large. , the cutting edge becomes noticeably damaged and worn out, making it unusable. For example, when turning chilled cast iron, when the depth of cut and feed rate become high, the conventional CBN-based sintered body described above lacks toughness and is prone to chipping. Specifically, chilled cast iron with a shore hardness of 70 When cutting with a workpiece material at a high cutting speed of 80 m/min and a depth of cut of 1.0 mm, even if the feed is as small as less than 0.1 mm, chips will occur at the cutting edge. Therefore, at present, the above-mentioned conventional cutting tools made of CBN-based sintered bodies are used only for cutting with small depths of cut and small feed. Therefore, an object of the present invention is to provide a cutting tool made of high-hardness steel such as high-hardness cast iron, die steel, and high-speed steel (particularly, high-hardness cast iron) that has both extremely excellent toughness and wear resistance properties. (Cutting tools for fields that require particularly toughness, such as high-load cutting with high cutting depth and high feed conditions)
It is an object of the present invention to provide a method for manufacturing a CBN-based sintered body for cutting tools suitable for use in. [Means for solving the problem] As a result of various studies and considerations, the present inventors have found that
We obtained the knowledge described below. (b) When CBN and TiN alone are sintered under ultra-high pressure, TiN is softer than CBN, so it deforms plastically and wraps around the CBN interface, but no reaction occurs between the two, so the interface is strong. As a result, the toughness will not be sufficiently improved, and the wear resistance will be poor due to the CBN particles falling off when used as a cutting tool. (2) Sintering CBN and TiC alone or TiCN alone under ultra-high pressure (c) In order to form a liquid phase and cause a reaction, Al, which is conventionally known as a sintering aid for CBN, is used.
Intermetallic compounds of Al, such as TiAl 3
If TiB or TiAl is used, a reaction occurs during ultra-high pressure sintering, but a large amount of AlN is also produced in addition to TiB 2 .
Therefore, a sufficient sintering promotion effect cannot be obtained, and at the same time, it has a negative effect on the properties of the sintered body (toughness, wear resistance, etc.); (c) dititanium aluminum carbide, which is a type of Al compound; (hereinafter referred to as Ti 2 AlC) or dititanium aluminum carbonitride (hereinafter referred to as Ti 2 AlC)
When used alone, Ti 2 AlCN) gradually decomposes at temperatures above 1300°C, producing TiC or TiCN, respectively. Using Ti 2 AlC or Ti 2 AlC with these characteristics as a sintering aid,
When sintered with CBN under ultra-high pressure, CBN may wrap around the CBN interface and decompose with CBN.
A layered reaction region is formed at the interface with TiC or TiCN (see Figure 1), and these sintering aids are also
Despite being a type of Al compound, there is no Al content within this reaction region, and the Al content is uniformly distributed within TiC or TiCN outside the reaction area, and no formation of AlN is observed. (d) The Ti 2 AlC or Ti 2 AlCN mentioned above should be TiC, TiCN or TiCN, respectively. It is also effective as a sintering aid for TiN, and when sintering each of the above materials, Ti 2 AlC
Alternatively, when Ti 2 AlCN is added, the sinterability is significantly improved, and TiC or TiCN produced by decomposition exhibits a uniform finely dispersed structure in the sintered body. (e) CBN, TiC, TiCN and TiN ( Hereinafter, these are also collectively referred to as titanium carbon/nitride), and the above-mentioned sintering aids are used as sintering aids.
When Ti 2 AlC or Ti 2 AlCN is used, Ti 2 AlC
Alternatively, TiC or TiCN produced by the decomposition of Ti 2 AlCN gets around between the CBN particles and one or more particles of the titanium carbon/nitride blended with the CBN particles, and the titanium carbon/nitride blended with the CBN particles. This prevents direct contact with the nitride particles and prevents Al from forming at the interface between the decomposed TiC or TiCN and CBN particles.
It forms a reaction region where no particles exist, and also improves the sinterability of the blended titanium carbon/nitride, thereby creating a bond between the CBN particles and the binder phase and between the titanium carbon/nitride particles and the binder phase. To strengthen the sintered body and improve the toughness of the obtained sintered body. This invention was invented based on the above knowledge, and includes one or more powders selected from the group consisting of TiC, TiN and TiCN: 5 to 31%, selected from the group consisting of Ti 2 AlC and Ti 2 AlCN. A composition (by weight) consisting of one or two types of powder: 1 to 23%, and CBN powder: the remainder (63 to 93%) is mixed, press-molded, and compressed. A CBN-based sintered body for a cutting tool, which is made into a powder and then sintered under high ultra-pressure, either alone or in a state where it is stacked with other green bodies or sintered bodies. It is a manufacturing method. The configuration of this invention will be explained below. () Raw materials Titanium carbon/nitride powder, Ti 2 AlC powder,
The average particle size of both the Ti 2 AlCN powder and the CBN powder is preferably 10 μm or less. And the C/N of Ti 2 AlCN which is the raw material powder
(atomic ratio) can be any numerical value, but
In order to increase the hardness of the obtained sintered body, 3/
It is preferably greater than 7. () Blend composition (i) Titanium carbon/nitride Each of these components has the effect of imparting heat resistance and welding resistance to the resulting sintered body, but if the blending amount is less than 5% by weight, the desired When the resulting sintered body is used as a cutting tool, welding tends to occur on the cutting edge (due to chemical reaction at high temperatures with the work material of the cutting tool). As a result, chipping and wear of the cutting edge are likely to occur. On the other hand, if it exceeds 31% by weight, the high hardness that is one of the characteristics of CBN-based sintered bodies cannot be obtained, or sufficient interfacial strength cannot be obtained due to a decrease in the relative proportion of the sintering aid. As a result, the wear resistance or toughness would be insufficient, so the blending ratio was set at 5 to 31% by weight. (ii) Ti 2 AlC, Ti 2 AlCN As mentioned in Findings (e), these components are sintering aids and cause a decomposition reaction during ultra-high pressure sintering to produce TiC or TiCN. (When used with CBN, some TiB 2 is also formed).
When used with CBN and titanium carbon/nitride,
The decomposed TiC or TiCN gets around between the CBN particles and the blended titanium carbon/nitride particles, and directly prevents and decomposes the titanium carbon/nitride particles blended with the CBN particles.
Al at the interface between TiC or TiCN and CBN particles
It also improves the sinterability of the blended titanium carbon/nitride, thereby creating a bond between the CBN particles, the binder phase, and the blended titanium carbon/nitride particles. It has the effect of strengthening the bond and improving the toughness of the obtained sintered body. However, if the blending ratio is less than 1% by weight, the above-mentioned toughness improvement effect will not be observed, while if it exceeds 23% by weight, the wear resistance will be significantly reduced. It was determined that (iii) CBN CBN can be said to be an essential component for obtaining extremely excellent wear resistance and chipping resistance. However, if the blending ratio is less than 63% by weight, the toughness will be insufficient in high-load cutting for reasons that are unclear, and this is particularly unfavorable for cutting in this field where toughness is required. On the other hand, if the amount exceeds 93% by weight, the sinterability will be significantly deteriorated, and the CBN particles will easily fall off, reducing the wear resistance of the resulting sintered body. Ratio 63~
It was set at 93% by weight. The CBN content in the obtained sintered body is approximately 70.
The capacity is about 95%. () Mixing/molding/sintering process Next, the composition having the above-mentioned composition is
For example, after mixing in a ball mill to form a mixed powder, this mixed powder is press-molded at a pressure of 0.5 to 5.0 t/cm 2 to form a compact, and this compact can be used as it is or pre-treated for ultra-high pressure sintering. as 0 -2 ~
800 to 10 -4 torr in vacuum or inert gas
After pre-sintering at a temperature of 1200°C to increase its strength, the green compact or pre-sintered body is
or other compacts or sintered bodies (e.g. cemented carbide, cermet, alumina-based ceramics,
Pressure: 4 when stacked on a green compact or sintered body (pre-sintered powder body or sintered body such as silicon nitride-based ceramic)
~7GPa, temperature: 1400~1800℃, holding time: 5
The CBN-based sintered body of the present invention is produced by sintering under conditions of ~120 minutes. The pressure and temperature during ultra-high pressure sintering do not necessarily have to be within the stable range of CBN, and such ultra-high pressure and high temperature are not necessarily required. This is because, as described above, when Ti 2 AlC or Ti 2 AlCN is used together with CBN, a reaction region where no Al content is present is formed at the interface with the CBN grains. This phenomenon is not observed in other Al compounds, and this makes it difficult for CBN to undergo reverse transformation into hexagonal boron nitride.
Even under relatively low pressure, a CBN-based sintered body containing almost no hexagonal boron nitride and having satisfactory properties can be obtained. [Example] Example As the principle powder, CBN powder with an average particle size of 2 μm,
1 μm TiC 0.5 N 0.5 powder, TiN powder, and Ti 2 AlC 0.6
N 0.4 powder, 0.1 μm TiC powder, 3 μm Ti 2 AlC
After preparing the powder and blending it into the composition shown in Table 1,
Mixed in a ball mill for 2 hours, then press-molded at a pressure of 2t/cm 2 to form a green compact.
After holding at 800°C for 30 minutes in a vacuum of 10 -3 torr, holding for 10 minutes under the sintering conditions listed in Table 1 using a belt-type ultra-high pressure device, the sintered bodies 1 to 1 of the present invention were prepared by cooling and removing the pressure. 17 were manufactured. For comparison, a blended composition of only CBN and TiC , a blended composition of CBN and
Blend composition of TiC 0.5 N 0.5 only or CBN and TiN
Conventional sintered bodies 1 to 3 using a blended composition of
Comparison of conventional sintered bodies 4 to 5 using conventionally known TiAl 3 or Al as a sintering aid instead of Ti 2 AlC or Ti 2 AlC 0.6 N 0.4 , and whose blending composition is outside the blending composition range of the present invention. Sintered bodies 1 to 12 were produced in the same manner. After polishing these sintered bodies of the present invention, comparative sintered bodies, and conventional sintered bodies, the CBN content, fracture toughness value, and Vickers hardness of each sintered body were measured, and the results are shown in Table 1. Indicated. Next, these sintered bodies were ground and polished to obtain a cutting edge for a cutting tool. Using this cutting edge, the work material is chilled cast iron with shore hardness of 70, cutting speed: 80 m/min, depth of cut: 1.0 mm, feed rate is 0.05 mm/rev., then 0.1 to 0.7 0.1mm from the smallest within the range of mm/rev.
Cutting was performed for 5 minutes at each feed rate, and the feed rate at which chipping first occurred was investigated. The results are shown in Table 1. [Effects of the Invention] As shown in Table 1, the sintered body of the present invention has better fracture toughness, hardness, and feed rate that can be used as the cutting edge of a cutting tool without causing chipping, compared to the conventional sintered body. It is excellent in all aspects, especially in terms of fracture toughness and usable feed rate.
Moreover, the sintered body of the present invention is superior to the comparative sintered body in terms of the feed rate that can be used as the cutting edge of a cutting tool without causing chipping. In addition, the comparative sintered body, on the other hand, is inferior to the sintered body of the present invention in either fracture toughness or hardness, and cannot satisfy both properties at the same time. Incidentally, in the case of cutting tools made of CBN-based sintered bodies, it is 0.3
mm/rev. or more can be considered a high feed condition.

【表】【table】

【表】【table】

【表】 したがつて、この発明の製造方法で得られた
CBN基焼結体は、高硬度鋳鉄等に対する高切り
込み高送りの高負荷切削等の特に靭性を要求され
る分野の切削工具として、特に有用である。
[Table] Therefore, the production method obtained by the production method of this invention
CBN-based sintered bodies are particularly useful as cutting tools in fields where toughness is particularly required, such as high-cut, high-feed, high-load cutting of high-hardness cast iron.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の製造方法で用いられる焼
結助剤のTi2AlCNの作用を示すための焼結体
(CBNとTi2AlCNとを4GPaの圧力及び1400℃の
温度で10分間保持して得られた焼結体)組織の一
部(Ti2AlCNの分解により得られた結合相と
CBNとの界面近傍)を表わす顕微鏡写真である。
Figure 1 shows a sintered body (CBN and Ti 2 AlCN held at a pressure of 4 GPa and a temperature of 1400°C for 10 minutes) to demonstrate the effect of Ti 2 AlCN, a sintering aid used in the manufacturing method of this invention. A part of the structure (the binder phase obtained by decomposing Ti 2 AlCN)
This is a micrograph showing the area near the interface with CBN.

Claims (1)

【特許請求の範囲】 1 チタンの炭化物、窒化物及び炭窒化物からな
る群より選ばれた1種以上の粉末:5〜31%、 二チタンアルミニウム炭化物及び二チタンアル
ミニウム炭窒化物からなる群より選ばれた1種又
は2種の粉末:1〜23%、 立方晶窒化硼素粉末:残り(但し、63〜93%)
からなる配合組成(以上、重量%)を有する組成
物を混合し、プレス成形して圧粉体とし、次いで
この圧粉体を単独で、又は他の圧粉体若しくは焼
結体と重ね合わせた状態で、超高圧下において焼
結することを特徴とする切削工具用立方晶窒化硼
素基焼結体の製造法。
[Scope of Claims] 1. One or more powders selected from the group consisting of titanium carbides, nitrides and carbonitrides: 5 to 31%, from the group consisting of dititanium aluminum carbides and dititanium aluminum carbonitrides. One or two selected powders: 1 to 23%, cubic boron nitride powder: remaining (63 to 93%)
A composition having a compounding composition (the above, weight %) is mixed, press-molded to form a green compact, and then this green compact is stacked alone or with other green compacts or sintered bodies. 1. A method for producing a cubic boron nitride-based sintered body for a cutting tool, the method comprising sintering the cubic boron nitride-based sintered body under ultra-high pressure.
JP59263992A 1984-12-14 1984-12-14 Manufacture of cubic boron nitride base sintered body for cutting tool Granted JPS61141672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263992A JPS61141672A (en) 1984-12-14 1984-12-14 Manufacture of cubic boron nitride base sintered body for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263992A JPS61141672A (en) 1984-12-14 1984-12-14 Manufacture of cubic boron nitride base sintered body for cutting tool

Publications (2)

Publication Number Publication Date
JPS61141672A JPS61141672A (en) 1986-06-28
JPS644988B2 true JPS644988B2 (en) 1989-01-27

Family

ID=17397037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263992A Granted JPS61141672A (en) 1984-12-14 1984-12-14 Manufacture of cubic boron nitride base sintered body for cutting tool

Country Status (1)

Country Link
JP (1) JPS61141672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220349731A1 (en) * 2017-07-14 2022-11-03 Nikon Corporation Encoder and drive device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519862C2 (en) * 1999-04-07 2003-04-15 Sandvik Ab Methods of manufacturing a cutting insert consisting of a PcBN body and a cemented carbide or cermet body
JP2013537116A (en) * 2010-09-08 2013-09-30 エレメント シックス リミテッド Solid PCBN compact with high CBN content enabling EDM cutting
KR20220035111A (en) * 2019-07-18 2022-03-21 스미토모덴키고교가부시키가이샤 Cubic boron nitride sintered compact and cutting tool
US20220289633A1 (en) * 2019-07-18 2022-09-15 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material and cutting tool
EP4000778A4 (en) * 2019-07-18 2022-09-21 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered compact and method for manufacturing same
US11591266B2 (en) 2019-07-18 2023-02-28 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material
WO2022176569A1 (en) * 2021-02-20 2022-08-25 三菱マテリアル株式会社 Cbn sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220349731A1 (en) * 2017-07-14 2022-11-03 Nikon Corporation Encoder and drive device

Also Published As

Publication number Publication date
JPS61141672A (en) 1986-06-28

Similar Documents

Publication Publication Date Title
JP2020514235A (en) Sintered polycrystalline cubic boron nitride material
JPH06287067A (en) Cutting tool with excellent resistance to wear and chipping made from cubic boron nitride-based ultra-high-pressure sintering material
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JPS601390B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JPS644988B2 (en)
EP0816304B1 (en) Ceramic bonded cubic boron nitride compact
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JPS644989B2 (en)
JPH0881270A (en) Ceramic sintered compact containing cubic boron nitride and cutting tool
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPH0569205A (en) Ceramic cutting tool
JPS6335591B2 (en)
JP2808907B2 (en) Cutting insert made of cubic boron nitride based ultra-high pressure sintered material with high strength
JPS6251911B2 (en)
JP2005212048A (en) Ceramics and cutting tool using the same
JPH01122971A (en) Cubic boron nitride sintered product
JPH08732B2 (en) Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool
JPH0215515B2 (en)
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPS6330983B2 (en)
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JP2735919B2 (en) Sintered body for tool and manufacturing method thereof