JPS61197469A - Manufacture of cubic boron nitride base sintering material for cutting tool - Google Patents

Manufacture of cubic boron nitride base sintering material for cutting tool

Info

Publication number
JPS61197469A
JPS61197469A JP60037242A JP3724285A JPS61197469A JP S61197469 A JPS61197469 A JP S61197469A JP 60037242 A JP60037242 A JP 60037242A JP 3724285 A JP3724285 A JP 3724285A JP S61197469 A JPS61197469 A JP S61197469A
Authority
JP
Japan
Prior art keywords
powder
cbn
cubic boron
boron nitride
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60037242A
Other languages
Japanese (ja)
Other versions
JPH0225871B2 (en
Inventor
逸郎 田嶋
植田 文洋
川田 薫
三輪 紀章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP60037242A priority Critical patent/JPS61197469A/en
Publication of JPS61197469A publication Critical patent/JPS61197469A/en
Publication of JPH0225871B2 publication Critical patent/JPH0225871B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、すぐれた靭性と耐摩耗性を有し。[Detailed description of the invention] [Industrial application field] This invention has excellent toughness and wear resistance.

高硬度鋳鉄や、ダイス鋼および高速度鋼などの高硬度鋼
の切削、特にダイス鋼の7ライス切削などに切削工具と
して使用するのに適した立方晶窒化硼素(以下CBNで
示す)基焼結材料の製造方法に関するものである。
Cubic boron nitride (hereinafter referred to as CBN)-based sintered material suitable for use as a cutting tool for cutting high-hardness cast iron, high-hardness steel such as die steel and high-speed steel, especially 7-rice cutting of die steel. This invention relates to a method for manufacturing materials.

〔従来の技術〕[Conventional technology]

従来、高硬度鋳鉄や上記高硬度鋼の切削、さらに切り込
みおよび送りの小さな切削に、鉄との反応がなく、ダイ
ヤモンドに次ぐ高硬度を有し、さらに高い熱伝導性を有
するcBNを主成分として含有し、かつ、重量%で(以
下チは重量%を示す)、Tiの炭化物、窒化物、および
炭窒化物(以下、それぞれTiC,TiN、およびTi
CNで示し、これらを総称してTiの炭・窒化物という
)のうちの1種または2種以上:3〜30%、 酸化アルミニウム(以下Al2O3で示す)および窒化
硅素(以下Si3N、で示す)のうちの1種または2種
:4〜25%。
Conventionally, cBN, which does not react with iron, has a hardness second only to diamond, and has high thermal conductivity, has been used as a main ingredient for cutting high-hardness cast iron and the above-mentioned high-hardness steels, as well as for cutting with small depths of cut and feed. Ti carbides, nitrides, and carbonitrides (hereinafter TiC, TiN, and Ti
One or more of the following: 3 to 30% of aluminum oxide (hereinafter referred to as Al2O3) and silicon nitride (hereinafter referred to as Si3N); One or two of the following: 4-25%.

を含有し、残りが実質的に60〜93チのCBNと不可
避不純物からなる組成を有するCBN基焼結材料が用い
られている。
A CBN-based sintered material is used which has a composition containing CBN of 60-93% and the remainder substantially consisting of 60-93% CBN and unavoidable impurities.

このCBN基焼結材料は、原料粉末として、TiC粉末
、 TiN粉末、 TiCN粉末、Al2O,粉末、 
Si3N。
This CBN-based sintered material contains TiC powder, TiN powder, TiCN powder, Al2O powder,
Si3N.

粉末、およびCBN粉末を用い、これら原料粉末を上記
の最終成分組成をもつように配合し1例えばボールミル
にて混合した後、0.5〜50ton/cnlの圧力で
圧粉体にプレス成形し、ついで、この圧粉体をそのまま
、あるいは超高圧焼結の前処理として、10〜10  
torrの真空中または不活性ガス雰囲気中において8
00〜1200℃の範囲内の所定温度で仮焼結して強度
を高めた状態で、かつ前記圧粉体または仮焼結体を単独
で、または炭化タングステン(WCで示す)基超硬合金
やサーメット、さらにはAl2O3基またはSi、N、
基セラミックスの圧粉体または焼結体と重ね合わせて、
圧カニ1〜70Pa、温度=1000〜1800℃、保
持時間二5〜120分の条件で製造されている。
Using powder and CBN powder, these raw material powders are blended to have the above-mentioned final component composition, mixed in a ball mill, for example, and then press-molded into a green compact at a pressure of 0.5 to 50 ton/cnl. Next, this green compact is heated as it is or as a pretreatment for ultra-high pressure sintering for 10 to 10 minutes.
8 in a vacuum of torr or in an inert gas atmosphere.
In a state where the strength is increased by pre-sintering at a predetermined temperature within the range of 00 to 1200°C, the green compact or the pre-sintered compact is used alone or with tungsten carbide (indicated by WC) based cemented carbide or Cermet, further Al2O3 group or Si, N,
Layered with a compacted powder or sintered body of base ceramics,
It is manufactured under the following conditions: pressure crab: 1-70 Pa, temperature: 1000-1800° C., holding time: 25-120 minutes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年、切削加工の分野においては、鋳鉄切削の高速化や
、ダイス鋼や高速度鋼などの高硬度鋼の研削加工から切
削加工への切り換えがさけばれるようになシ、これに伴
い、上記のCBN基焼結材料を、これらの切削に用いる
試みもなされたが、このCBN基焼結材料は、靭性に劣
るものであるのに加えて、被剛材たる高硬度鋳鉄のチル
ド鋳鉄はショア硬さで約80.また上記の高硬度鋼は熱
処理状態でロックウェル硬さくCスケール)で50以上
の高硬度を有する一方、切削速度の高速化、切シ込みの
増大、さらに送り速度の高速化にしたがって旋盤加工時
に刃先に対して加わる負荷がきわめて大きくなることか
ら、刃先の欠損や摩耗が著しく、実用に供し得ないのが
現状である。
In recent years, in the field of cutting, the speed of cutting cast iron has increased, and the switch from grinding to cutting of high-hardness steels such as die steel and high-speed steel has been avoided. Attempts have been made to use CBN-based sintered materials for these types of cutting, but in addition to this CBN-based sintered material having inferior toughness, the high hardness chilled cast iron used as the material to be stiffened has shore hardness. Approximately 80. In addition, while the above-mentioned high-hardness steel has a high hardness of 50 or more on the Rockwell hardness scale (C scale) in the heat-treated state, it is difficult to use it during lathe processing due to faster cutting speeds, larger depths of cut, and faster feed rates. Since the load applied to the cutting edge becomes extremely large, the cutting edge is severely damaged and worn out, making it currently unusable.

〔問題点を解決するための手段〕[Means for solving problems]

そこで1本発明者等は、上述のような観点から。 Therefore, the inventors of the present invention, etc., from the above-mentioned viewpoint.

上記の従来切削工具用CBN基焼結材料に着目し。Focusing on the above-mentioned conventional CBN-based sintered material for cutting tools.

これに靭性を付与して、鋳鉄の高速切削や、高硬度鋼の
切削加工に切削工具として使用することのできるCBN
基焼結材料を製造すべく研究を行なった結果。
CBN can be used as a cutting tool for high-speed cutting of cast iron and cutting of high-hardness steel by adding toughness to it.
The result of research to produce base sintered materials.

(a)  従来方法におけるように、原料粉末として。(a) As a raw powder, as in conventional methods.

CBN粉末、Tiの炭・窒化物粉末、並びにA+!20
3粉末および/またはSi3N、粉末を用い、これらの
混合粉末よシ成形した圧粉体を超高圧下で焼結した場合
、 Tiの炭・窒化物粉末、AX203粉末、およびS
i3N。
CBN powder, Ti carbon/nitride powder, and A+! 20
3 powder and/or Si3N powder, and when a green compact formed from these mixed powders is sintered under ultra-high pressure, Ti carbon/nitride powder, AX203 powder, and S
i3N.

粉末は、 CBN粉末に比して軟質なために塑性変形し
てCBN粒子の界面に廻シ込むものの1両者間に反応が
生じないので、界面強度ひいては靭性の向上は得られな
いこと。
Since the powder is softer than CBN powder, it deforms plastically and penetrates into the interface of CBN particles, but since no reaction occurs between the two, no improvement in interface strength or toughness can be obtained.

(b)  これに対して、従来方法で用いられている原
料粉末に加えて、チタン・アルミニウム炭化物(以下T
i□AgCで示す)粉末および/またはチタン・アルミ
ニウム炭窒化物(以下Ti□A1CNで示す)粉末を用
いると、これらの粉末は超高圧焼結時の1300℃以上
の温度で徐々に分解再反応を起してTiCあるいはTi
CNを生成し、この分解生成したTiCあるいはTiC
NはCBN粒との界面に層状の反応領域を形成し、しか
もこの反応領域中にはMの存在は認められず、Allは
反応領域外のTiCあるいはTiCN内に均一に分布し
、かつAINの形成も認められないことから、充分な焼
結促進効果が得られるようになると共に、焼結材料特性
、特に靭性が著しく向上するようになること。
(b) On the other hand, in addition to the raw material powder used in the conventional method, titanium aluminum carbide (hereinafter T
When using i□AgC) powder and/or titanium aluminum carbonitride (hereinafter referred to as Ti□A1CN) powder, these powders gradually decompose and re-react at temperatures of 1300°C or higher during ultra-high pressure sintering. TiC or Ti
CN is generated, and TiC or TiC produced by this decomposition
N forms a layered reaction region at the interface with the CBN grains, and the presence of M is not recognized in this reaction region, and All is uniformly distributed in TiC or TiCN outside the reaction region, and Since no formation is observed, a sufficient sintering promotion effect can be obtained, and the properties of the sintered material, especially toughness, can be significantly improved.

(C)  上記のTi□AlCあるいはTi□AgCN
粉末の分解によって生成した反応領域外のTiC、りる
いはTiCNは焼結材料中で均一な微細分散構造をとる
こと。
(C) The above Ti□AlC or Ti□AgCN
TiC, lubrication, or TiCN generated by decomposition of the powder outside the reaction area should have a uniform finely dispersed structure in the sintered material.

(d)  一方、上記ノTi2AlIC粉末あるいはT
i□AgCN粉末に代えて、原料粉末として1例えばT
lA13などのTi−Aε金属間化合物粉末を用いると
、超高圧焼結時にTi8gやJANを生成してしまい、
これが原因で充分な焼結促進効果が得られず、靭性のす
ぐれた焼結材料を得ることはできないこと。
(d) On the other hand, the above Ti2AlIC powder or T
i□In place of AgCN powder, 1, for example T, is used as raw material powder.
If Ti-Aε intermetallic compound powder such as lA13 is used, Ti8g and JAN will be generated during ultra-high pressure sintering.
Due to this, a sufficient sintering promotion effect cannot be obtained and a sintered material with excellent toughness cannot be obtained.

以上(a)〜(d)に示される知見を得たのである。The findings shown in (a) to (d) above were obtained.

この発明は、上記知見にもとづいてなされたものであっ
て、原料粉末として、 CBN粉末、 M2O3粉末、
  Si3N、粉末、およびTiの炭・窒化物粉末、さ
らにTi2AjIC粉末およびTi2AltC’N粉末
を用い、これら原料粉末を、 Tiの炭・窒化物のうちの1種または2種以上:2〜1
5%。
This invention was made based on the above knowledge, and raw material powders include CBN powder, M2O3 powder,
Using Si3N, powder, and Ti carbon/nitride powder, as well as Ti2AjIC powder and Ti2AltC'N powder, these raw material powders are mixed with one or more of Ti carbon/nitride: 2 to 1
5%.

T i 2 M、 CおよびTi□MCNのうちの1種
または2種:1〜20%、 fiJl 203および513N4のうちの1種または
2種二4〜25%。
One or two of Ti2M, C and Ti□MCN: 1-20%, one or two of fiJl 203 and 513N4 24-25%.

CBN  二  60〜93%。CBN 2 60-93%.

からなる配合組成に配合し、上記のように5通常の条件
にて混合した後、圧粉体にプレス成形し。
After mixing under normal conditions as described above, the mixture was press-molded into a green compact.

さらに通常の条件にて超高圧焼結することによって、従
来切削工具用CBN基焼結材料と実質的に同じ成分組成
、すなわち。
Further, by performing ultra-high pressure sintering under normal conditions, the composition is substantially the same as that of conventional CBN-based sintered materials for cutting tools.

Tiの炭・窒化物のうちの1種または2種以上=3〜3
0%。
One or more of Ti carbon/nitride = 3 to 3
0%.

Al2O3およびSi3N、のうちの1種または2種:
4〜25%。
One or two of Al2O3 and Si3N:
4-25%.

を含有し、残りが実質的に60〜93%のCBNと不可
避不純物からなる組成をもった靭性および耐摩耗性にす
ぐれた切削工具用CBN基焼結材料を製造する方法に特
徴を有するものである。
The method is characterized by a method for producing a CBN-based sintered material for cutting tools with excellent toughness and wear resistance, with the remainder consisting essentially of 60 to 93% CBN and unavoidable impurities. be.

つぎに、この発明の方法における配合組成を上記の通り
に限定した理由を説明する。
Next, the reason why the composition in the method of this invention is limited as described above will be explained.

(a)  Tiの炭・窒化物 これらの成分には、焼結材料に耐溶着性を付与する作用
があるが、その配合量が2チ未満では実質的にTi2A
gC4るいはTi2AgCNの分解によって生成するT
iCあるいはTiCNと合わせても焼結材料中の含有量
が3%未満となってしまい、所望のすぐれた耐溶着性を
確保することができず、この結果切削加工時に刃先に溶
着が生じ易くなって刃先のチッピングや摩耗が促進され
るようになり、一方15%を越えて配合すると、 Ti
2AECあるいはTi□AACNとの配合割合との関係
で焼結材料中の含有量が30%を越えて高くなる場合が
生じ、このような場合には硬さの低下が著しく、所望の
耐摩耗性を確保することができなくなることから、その
配合量を2〜15%と定めた。
(a) Ti carbon/nitride These components have the effect of imparting adhesion resistance to the sintered material, but if the amount is less than 2 Ti, it will essentially become Ti2A.
T produced by decomposition of gC4 or Ti2AgCN
Even when combined with iC or TiCN, the content in the sintered material is less than 3%, making it impossible to secure the desired excellent welding resistance, and as a result, welding tends to occur on the cutting edge during cutting. On the other hand, if the Ti content exceeds 15%
Depending on the blending ratio of 2AEC or Ti□AACN, the content in the sintered material may exceed 30%, and in such cases, the hardness decreases significantly and the desired wear resistance cannot be achieved. Since it becomes impossible to ensure the above, the blending amount was determined to be 2 to 15%.

(b)  Ti□A1.CおよびTi□AlCNこれら
の成分には、上記したように超高圧焼結時に分解反応を
起してTiCあるいはTiCNを生成し、このTICあ
るいはTiCNはCBN粒子と他の配合粒子との間に廻
り込んで直接の接触を阻止すると共に、 CBN粒子と
の界面に反応領域層を形成して焼結材料の靭性を著しく
向上させる作用があるが、その配合量が1%未満では所
望の靭性向上効果が得られず、一方20%を越えて配合
すると。
(b) Ti□A1. C and Ti□AlCN As mentioned above, these components undergo a decomposition reaction during ultra-high pressure sintering to produce TiC or TiCN, and this TIC or TiCN is distributed between CBN particles and other blended particles. It has the effect of blocking direct contact with the CBN particles and significantly improving the toughness of the sintered material by forming a reaction zone layer at the interface with the CBN particles, but if the amount is less than 1%, the desired toughness improvement effect is not achieved. On the other hand, if it is blended in excess of 20%.

焼結材料中のTiの炭・窒化物の含有量が30チを越え
て高くなる場合が生じ、耐摩耗性の著しい劣化を招くよ
うになることから、その配合量を1〜20%と定めた。
The content of Ti carbon/nitride in the sintered material may exceed 30 Ti, which causes a significant deterioration of wear resistance, so the content is set at 1 to 20%. Ta.

(C)A1203およびSi3N。(C) A1203 and Si3N.

これらの成分には、焼結材料の耐摩耗性および耐溶着性
を向上させる作用があるが、その配合量が41未満では
実質的に焼結材料中の含有量も4チ未満となってしまい
所望の耐摩耗性および耐溶着性を確保することができず
、一方25%を越えて配合すると、焼結材料中の含有量
も25%を越えて高くなってしまい、靭性低下をきたし
て刃先にチッピングが生じ易くなることから、その配合
量を4〜25%と定めた。
These components have the effect of improving the wear resistance and welding resistance of the sintered material, but if the amount of these components is less than 41, the content in the sintered material will essentially be less than 4. It is not possible to secure the desired wear resistance and welding resistance, and on the other hand, if the content exceeds 25%, the content in the sintered material will also be high, exceeding 25%, resulting in a decrease in toughness and damage to the cutting edge. Since chipping is likely to occur in this case, the blending amount was set at 4 to 25%.

(d)CBN 焼結材料のすぐれた耐摩耗性および耐欠損性はCBN成
分によってもたらされるが、その配合量が60チ未満で
は、実質的に焼結材料中の含有量も60%未満となって
しまい、特に所望の耐摩耗性を確保することが困難にな
り、一方93チを越えて配合すると、同様に焼結材料中
の含有量も93チを越えて高くなシ、特に耐欠損性に著
しい劣化現象が現われるようになることから、その配合
量を60〜93%と定めた。
(d) CBN The excellent wear resistance and chipping resistance of the sintered material is brought about by the CBN component, but if the amount is less than 60%, the content in the sintered material will essentially be less than 60%. On the other hand, if more than 93 g is mixed, the content in the sintered material will also be high, especially if it exceeds 93 g. Since a significant deterioration phenomenon appears in the above, the blending amount was determined to be 60 to 93%.

なお、この発明の方法を実施するにあたって採用される
圧力および温度は、CBNの安定領域内の条件としても
よいが、必ずしもそれほどの超高圧、高温は必要でない
。その理由は、原料粉末としてTi□UC粉末あるいは
Ti2AlICN粉末を用いると、前記のようにCBN
粒の界面にMの存在(−ない反応領域が生成し、この反
応領域層には立方晶から六方晶への逆変態を抑制する作
用があり、この結果比較的低い圧力条件下でも所望の焼
結材料を製造することが可能となるからである。この現
象は原料粉末としてTiAl3などの金属間化合物を用
いた場合には見られない現象である。
Note that the pressure and temperature employed in implementing the method of the present invention may be within the stable region of CBN, but extremely high pressures and high temperatures are not necessarily required. The reason is that when Ti□UC powder or Ti2AlICN powder is used as the raw material powder, CBN
The presence of M (-) forms a reaction region at the grain interface, and this reaction region layer has the effect of suppressing the reverse transformation from cubic to hexagonal. As a result, the desired sintering can be achieved even under relatively low pressure conditions. This is because it becomes possible to produce a bonding material.This phenomenon is not observed when an intermetallic compound such as TiAl3 is used as the raw material powder.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例によシ具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

原料粉末として、平均粒径:2μmを有するCBN粉末
、いずれも同1μmを有するTiC粉末。
The raw material powders were CBN powder with an average particle size of 2 μm and TiC powder with an average particle size of 1 μm.

TiN粉末、およびTiCN (TiC/TiN−50
150)粉末、同3μmのTi□/V、C粉末、同1μ
mのTi2AZCN(C/N = 6 /4 )粉末、
同0.5μmのAl2O3粉末、同4μmのSi3N、
粉末、並びに同1μmのTiAl3粉末を用意し、これ
ら原料粉末をそれぞれ第1表に示される配合組成に配合
し、ボールミルにて16時間混合した後、  1 to
n/criの圧力にて圧粉体にプレス成形し、ついでこ
の圧粉体を温度:900℃に1時間保持して仮焼結した
後、ベルト型超高圧装置に装入し、4〜’7 GPaの
範囲内の所定の圧力を付加した状態で、1300〜16
00℃の範囲内の所定温度に10分間保持して超高圧焼
結し、冷却・除圧することによって本発明焼結材料1〜
12および比較焼結材料1〜3をそれぞれ製造した。
TiN powder, and TiCN (TiC/TiN-50
150) Powder, 3 μm Ti□/V, C powder, 1 μm
m of Ti2AZCN (C/N = 6/4) powder,
0.5 μm Al2O3 powder, 4 μm Si3N,
Powder and TiAl3 powder of the same 1 μm were prepared, and these raw material powders were blended into the composition shown in Table 1, and after mixing in a ball mill for 16 hours, 1 to
The compact was press-formed at a pressure of n/cri, then the compact was held at a temperature of 900°C for 1 hour for temporary sintering, and then charged into a belt-type ultra-high pressure device for 4~' 1300 to 16 with a predetermined pressure within the range of 7 GPa applied.
The sintered materials 1 to 1 of the present invention are prepared by holding at a predetermined temperature within the range of 00°C for 10 minutes, performing ultra-high pressure sintering, cooling and depressurizing.
No. 12 and Comparative Sintered Materials 1-3 were produced, respectively.

なお、比較焼結材料l、2は従来方法にもとづいて製造
されたものでちゃ、比較焼結材料3は原料粉末としてT
i2AZCあるいはTi2ALCN粉末に代って従来公
知の金属間化合物であるTlA13粉末を用いて製造し
たものである。
In addition, comparative sintered materials 1 and 2 were manufactured based on the conventional method, and comparative sintered material 3 was manufactured using T as a raw material powder.
It was manufactured using TlA13 powder, which is a conventionally known intermetallic compound, instead of i2AZC or Ti2ALCN powder.

ついで、この結果得られた本発明焼結材料1〜12およ
び比較焼結材料1〜3について、靭性を評価する目的で
破壊靭性値を測定し、また耐摩耗性を評価する目的でビ
ッカース硬さを測定し、さらにこれより研削・研摩仕上
げにより切削工具用切刃を作製し、 被削材:高速度鋼(SKD 61.HRC:60)。
Next, for the resulting sintered materials 1 to 12 of the present invention and comparative sintered materials 1 to 3, fracture toughness values were measured for the purpose of evaluating toughness, and Vickers hardness was measured for the purpose of evaluating wear resistance. was measured, and a cutting edge for a cutting tool was made by grinding and polishing. Workpiece material: High speed steel (SKD 61.HRC: 60).

切削速度: 200 m 1mh。Cutting speed: 200m 1mh.

゛切込み:0.5mm。゛Depth of cut: 0.5mm.

l刃自りの送シ:0.1馴/刃。lBlade own feed: 0.1 familiarity/blade.

測定した。これらの測定結果を第1表に合せて示した。It was measured. These measurement results are also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示されるように1本発明焼結材料1〜12は、
いずれもすぐれた靭性と耐摩耗性を有するので、著しく
長期に亘ってすぐれた切削性能を発揮するのに対して、
従来方法によって製造された比較焼結材料1.2および
原料粉末としてTiAA3粉末を用いて製造された比較
焼結材料3は、いずれも靭性不足が原因で切削開始後、
短時間で切刃に欠けが発生し、使用寿命に至るものであ
った。
As shown in Table 1, the sintered materials 1 to 12 of the present invention are:
Both have excellent toughness and wear resistance, so they exhibit excellent cutting performance over an extremely long period of time.
Comparative sintered material 1.2 manufactured by the conventional method and comparative sintered material 3 manufactured using TiAA3 powder as the raw material powder both had poor toughness after starting cutting due to insufficient toughness.
The cutting edge would chip in a short period of time, reaching the end of its service life.

上述のように、この発明の方法によれば、靭性および耐
摩耗性にすぐれ、鋳鉄の高速切削や、高硬度鋼の切削に
切削工具として用いることのできるCBN基焼結材料を
製造することができるのである。
As described above, according to the method of the present invention, it is possible to produce a CBN-based sintered material that has excellent toughness and wear resistance and can be used as a cutting tool for high-speed cutting of cast iron and cutting of high-hardness steel. It can be done.

Claims (1)

【特許請求の範囲】 Tiの炭化物、窒化物、および炭窒化物のうちの1種ま
たは2種以上:3〜30%、 酸化アルミニウムおよび窒化硅素のうちの1種または2
種:4〜25%、 を含有し、残りが実質的に60〜93%の立方晶窒化硼
素と不可避不純物からなる組成を有する立方晶窒化硼素
基焼結材料を製造するに際して、原料粉末として、 Tiの炭化物粉末、窒化物粉末、および炭窒化物粉末の
うちの1種または2種以上:2〜15%、チタン・アル
ミニウム炭化物粉末およびチタン・アルミニウム炭窒化
物粉末のうちの1種または2種:1〜20%、 酸化アルミニウム粉末および窒化硅素粉末のうちの1種
または2種:4〜25%、 立方晶窒化硼素粉末:60〜93%、 からなる配合組成(以上重量%)を有する混合粉末を用
いることを特徴とする靭性および耐摩耗性のすぐれた切
削工具用立方晶窒化硼素基焼結材料の製造方法。
[Claims] One or more of Ti carbides, nitrides, and carbonitrides: 3 to 30%, one or two of aluminum oxide and silicon nitride
When producing a cubic boron nitride-based sintered material having a composition containing 4 to 25% of seeds, with the remainder substantially consisting of 60 to 93% of cubic boron nitride and unavoidable impurities, as a raw material powder, One or more of Ti carbide powder, nitride powder, and carbonitride powder: 2 to 15%, one or two of titanium/aluminum carbide powder and titanium/aluminum carbonitride powder : 1 to 20%; one or two of aluminum oxide powder and silicon nitride powder: 4 to 25%; cubic boron nitride powder: 60 to 93%; A method for producing a cubic boron nitride-based sintered material for cutting tools having excellent toughness and wear resistance, characterized by using powder.
JP60037242A 1985-02-26 1985-02-26 Manufacture of cubic boron nitride base sintering material for cutting tool Granted JPS61197469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60037242A JPS61197469A (en) 1985-02-26 1985-02-26 Manufacture of cubic boron nitride base sintering material for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60037242A JPS61197469A (en) 1985-02-26 1985-02-26 Manufacture of cubic boron nitride base sintering material for cutting tool

Publications (2)

Publication Number Publication Date
JPS61197469A true JPS61197469A (en) 1986-09-01
JPH0225871B2 JPH0225871B2 (en) 1990-06-06

Family

ID=12492147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60037242A Granted JPS61197469A (en) 1985-02-26 1985-02-26 Manufacture of cubic boron nitride base sintering material for cutting tool

Country Status (1)

Country Link
JP (1) JPS61197469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206773A (en) * 2000-01-25 2001-07-31 Natl Inst Of Advanced Industrial Science & Technology Meti Cubic boron nitride-based sintered material and method of producing the same
WO2010119962A1 (en) * 2009-04-17 2010-10-21 株式会社タンガロイ Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
CN103820691A (en) * 2014-02-27 2014-05-28 西安石油大学 Preparation method for sintering FeAl/TiC composite material under normal pressure
JPWO2021010472A1 (en) * 2019-07-18 2021-09-13 住友電気工業株式会社 Cubic boron nitride sintered body and cutting tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206773A (en) * 2000-01-25 2001-07-31 Natl Inst Of Advanced Industrial Science & Technology Meti Cubic boron nitride-based sintered material and method of producing the same
US6562746B2 (en) 2000-01-25 2003-05-13 Aisin Seiki Kabushiki Kaisha Cubic boron nitride-based sintered material and manufacture thereof
JP4560604B2 (en) * 2000-01-25 2010-10-13 独立行政法人産業技術総合研究所 Cubic boron nitride based sintered material and method for producing the same
WO2010119962A1 (en) * 2009-04-17 2010-10-21 株式会社タンガロイ Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
JP5660034B2 (en) * 2009-04-17 2015-01-28 株式会社タンガロイ Cubic boron nitride sintered body and coated cubic boron nitride sintered body
CN103820691A (en) * 2014-02-27 2014-05-28 西安石油大学 Preparation method for sintering FeAl/TiC composite material under normal pressure
CN103820691B (en) * 2014-02-27 2015-11-11 西安石油大学 A kind of normal pressure-sintered preparation method of FeAl/TiC matrix material
JPWO2021010472A1 (en) * 2019-07-18 2021-09-13 住友電気工業株式会社 Cubic boron nitride sintered body and cutting tool

Also Published As

Publication number Publication date
JPH0225871B2 (en) 1990-06-06

Similar Documents

Publication Publication Date Title
EP1824798B1 (en) Cubic boron nitride compact
JP2879475B2 (en) Group IVB boride based articles, cutting tools, manufacturing methods, and methods of processing Group IVB based materials
JP2020514235A (en) Sintered polycrystalline cubic boron nitride material
JPH0621312B2 (en) Sintered body for high hardness tool and manufacturing method thereof
JPH06287067A (en) Cutting tool with excellent resistance to wear and chipping made from cubic boron nitride-based ultra-high-pressure sintering material
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP2861486B2 (en) High hardness sintered cutting tool
JPS644988B2 (en)
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP5499717B2 (en) Sintered body and cutting tool using the sintered body
JP2861487B2 (en) High hardness sintered cutting tool
JPS644989B2 (en)
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPS60176973A (en) Manufacture of cubic boron nitride base super high pressure sintering material for cutting tool
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JPS6389471A (en) Ceramic material for cutting tool
JPH0742170B2 (en) Cubic boron nitride based sintered body
JP2977308B2 (en) Ceramic sintered body for machining
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JP2003081677A (en) Dispersion-enhanced cbn-based sintered compact and method of producing the same
JPS6330983B2 (en)
JPS58213678A (en) Sialon base sintering material for cutting tool and abrasion-resistant tool
JP3284655B2 (en) High hardness sintered body for tools
JPS644987B2 (en)