JP2004026555A - Cubic boron nitride-containing sintered compact and method for producing the same - Google Patents

Cubic boron nitride-containing sintered compact and method for producing the same Download PDF

Info

Publication number
JP2004026555A
JP2004026555A JP2002184154A JP2002184154A JP2004026555A JP 2004026555 A JP2004026555 A JP 2004026555A JP 2002184154 A JP2002184154 A JP 2002184154A JP 2002184154 A JP2002184154 A JP 2002184154A JP 2004026555 A JP2004026555 A JP 2004026555A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
sintered body
containing sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002184154A
Other languages
Japanese (ja)
Inventor
Masaki Kobayashi
小林 正樹
Naohiro Kagawa
香川 直宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP2002184154A priority Critical patent/JP2004026555A/en
Publication of JP2004026555A publication Critical patent/JP2004026555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cubic boron nitride-containing sintered compact which has improved resistance to breakage and chipping resistance and exhibits excellent cutting performance even under a severe cutting condition. <P>SOLUTION: In the cubic boron nitride containing sintered compact comprising a bonding phase containing aluminum element and cubic boron nitride, the fracture toughness of the sintered compact is markedly improved and the resistance to defect and chipping resistance are enhanced by preventing the formation of aluminum oxide in the sintered compact. It is preferable to add an active metal element so as to reduce the amount of the aluminum oxide in the sintered compact. A preferable method for producing the cubic boron nitride-containing sintered compact comprises subjecting a powder for forming the bonding phase, containing the active metal element added, to heat treatment, again pulverizing the obtained heat treated powder, mixing the pulverized powder with the cubic boron nitride powder, and then sintering under an ultrahigh pressure and at a high temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具または耐摩耗工具として最適な立方晶窒化ホウ素含有焼結体に関する。具体的には、酸化アルミニウム含有量を低減することにより、耐欠損性,耐チッピング性を大幅に向上させた立方晶窒化ホウ素含有焼結体およびその製造方法に関する。
【0002】
【従来の技術】
立方晶窒化ホウ素は、ダイヤモンドに次ぐ高い硬度と優れた熱伝導性を持ち、しかもダイヤモンドに比べて鉄との親和性が低いという工具材料としての優れた長所を有している。そして、立方晶窒化ホウ素とセラミックスや金属などの結合剤を超高圧下で焼結した立方晶窒化ホウ素含有焼結体が、高硬度鋼や難削材の高速切削に多用されている。その組成は、▲1▼立方晶窒化ホウ素−Co系と▲2▼立方晶窒化ホウ素−(Ti,Al)(N,B,C)系に大別されるが、いずれも金属アルミニウムを焼結助剤として使用するために、反応生成物であるAlN,Alを含有していることが特徴である。
【0003】
最近の加工現場では高能率化と難削材対応が求められており、立方晶窒化ホウ素含有焼結体においても基本的な要求性能である耐摩耗性と耐欠損性の改善が必要となっている。そして、これらの性能向上に関する検討が多数行われており、その内、焼結体の組成,成分から提案されている代表的なものに、特開平5−186272号公報,特開平5−301776号公報,特開平8−81270号公報,特開2000−44348号公報及び特開2000−247746号公報などに記載のもの挙げられる。
【0004】
【発明が解決しようとする課題】
特開平5−301776号公報には、立方晶窒化ホウ素を30〜85体積%含有し、残部が窒化珪素と窒化アルミニウムと酸化アルミニウム又は希土類金属酸化物との混合物もしくはそれらの化合物からなる立方晶窒化硼素質焼結体が記載されている。
【0005】
特開平5−186272号公報には、立方晶窒化ホウ素あるいはウルツ型窒化ホウ素からなる硬質相表面にTi,Zr,Hf,Al,Siの窒化物,ホウ化物などからなる第1層と、周期律表の4a,5a,6a族金属の炭化物,窒化物,炭酸化物,窒酸化物,ホウ化物及び酸化アルミニウム,酸窒化アルミニウムなどからなる第2層とでなる被膜で囲繞された複合硬質相を10体積以上含有した焼結体であって、該第1層及び第2層の平均層厚みが5Å以上でなる複合高密度相窒化ホウ素焼結体が記載されている。また、本公報には結合相中に希土類金属の酸化物,窒化物を含有してなることも記載されている。
【0006】
また、特開平8−81270号公報には、Tiの炭化物、窒化物、炭窒化物のうちの1種または2種以上をマトリックスとし、このマトリックス中に、平均粒径:4〜20μmの立方晶窒化ホウ素:10〜50容量%未満、平均粒径:0.2μm以下のWC:0.1〜1.0容量%、平均粒径:0.2μm以下のAl:3〜10容量%、平均粒径:0.5μm以下のAlN:3〜7容量%、平均粒径:0.5μm以下のTiB:1〜5容量%が均一分散している立方晶窒化ホウ素含有セラミックス焼結体および切削工具が記載されている。
【0007】
さらに、特開2000−44348号公報には、高圧相窒化ホウ素50〜80体積%とチタン化合物(TiC,TiN,TiCN)およびアルミニウムからなる結合相50〜20体積%からなる高硬度焼結体において、高圧相窒化ホウ素が1〜8μmの粗粒子60〜80体積%と0.02〜1μmの微粒子20〜40体積である鋳鉄切削加工用高硬度焼結体が、同様に、特開2000−247746号公報には、平均粒径1μm以下の微粒立方晶窒化ホウ素30〜90体積%と平均粒径2〜10μmの粗粒立方晶窒化ホウ素を含有するとともに、結合材中にAlNとAlを含み、X線回折測定による周期律表第4a,5a,6a族元素の硼化物,これら元素の非ホウ化化合物,立方晶窒化ホウ素のピーク強度比を限定した立方晶窒化ホウ素質焼結体切削工具が記載されている。
【0008】
上記公報は、結合相組成の変更,被覆立方晶窒化ホウ素の使用による組織変更,微粒立方晶窒化ホウ素の添加による組織制御などによって、立方晶窒化ホウ素含有焼結体の耐摩耗性と耐欠損性の両立を狙ったものではあるが、いずれも酸化アルミニウムを含有しているために焼結体の強度,靱性が劣化し、特に耐欠損性,耐チッピング性の改善が不十分であると言う問題がある。ここで、酸化アルミニウムを添加しない場合でも、原料粉末、特に微粒立方晶窒化ホウ素粉末、あるいは製造工程から酸素が持ち込まれ、焼結時に最も安定な酸化アルミニウムが優先的に生成する。
【0009】
一方、特開平5−186272号公報及び特開平5−301776号公報に記載されている希土類金属酸化物は、結合相の特性を改善するものの、酸化アルミニウムを低減する効果はない。
【0010】
本発明は、上述のような問題点を解決したもので、具体的には、原料粉末及び製造工程から混入する酸素を除去あるいは固定化し、アルミニウムを含む結合相中に酸化アルミニウムを形成させないことによって、結合相の強度,靱性を改善して耐欠損性,耐チッピング性などを大幅に向上させた立方晶窒化ホウ素含有焼結体の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、立方晶窒化ホウ素と結合相とでなる立方晶窒化ホウ素含有焼結体の耐欠損性の向上について検討していたところ、焼結体中の酸化アルミニウム含有量を低減するほど耐欠損性が向上すること、酸化アルミニウム含有量を減少させるには、原料粉末及び製造工程から酸素除去あるいはアルミニウムより活性な金属の添加による酸化アルミニウムの還元が有効であると言う知見を得て、本発明を完成するに至ったものである。
【0012】
本発明品は、セラミックスおよび/または金属からなる結合相:5〜90重量%と、残りが立方晶窒化ホウ素からなる立方晶窒化ホウ素含有焼結体(以降焼結体と表示)において、上記焼結体は、上記焼結体全体に対して2〜20重量%アルミニウム元素を含有し、上記焼結体は酸化アルミニウムを含まない、もしくは、上記焼結体に含まれる酸化アルミニウムが2重量%以下であることを特徴とする焼結体である。
【0013】
立方晶窒化ホウ素含有量が5重量%未満では、立方晶窒化ホウ素含有による耐摩耗性の改善効果が少なく、逆に90重量%を超えて大きくなると焼結が困難であり、結合相による耐欠損性の改善効果が少ない。そこで結合相量を5〜90重量%とした。
【0014】
焼結体中のアルミニウム元素の含有量が焼結体全体に対して2重量%未満では、結合相が立方晶窒化ホウ素との反応性,焼結性に劣るために焼結体の硬さ,強度が低くなる。逆にアルミニウム元素の含有量が20重量%を超えて大きくなると相対的に立方晶窒化ホウ素量が少なくなって硬さに劣る。そのため焼結体に含まれるアルミニウム元素の含有量を焼結体全体に対して2〜20重量%とした。
【0015】
焼結体中のアルミニウム元素は、アルミニウム単体および/またはアルミニウム化合物として結合相に含有される。アルミニウム化合物は、周期律表4a,5a,6a族元素、シリコン、鉄、コバルト、ニッケル、炭素、窒素、ホウ素、酸素の中から選ばれた1種以上の元素とアルミニウムとからなる化合物である。
【0016】
焼結体に含まれるアルミニウム元素が酸化アルミニウムを形成する場合、酸化アルミニウムの含有量が焼結体全体に対して2.0重量%を超えて多くなると、結合相の靱性が急激に劣化するために耐欠損性が低下する。酸化アルミニウムの含有量が焼結体全体に対して1.0重量%以下であると、強断続切削や湿式切削などでのチッピング発生を防止できるので好ましい。現状の生産設備では酸化アルミニウムが焼結体全体に対して0.001重量%程度含有されるが、酸化アルミニウムの含有量は少ないほど結合相の靱性が高くなるため、焼結体は酸化アルミニウムを含まないことが最も好ましい。
【0017】
焼結体中の酸化アルミニウムは、α型酸化アルミニウム、κ型酸化アルミニウム、γ型酸化アルミニウム、θ型酸化アルミニウム、δ型酸化アルミニウム、χ型酸化アルミニウムなどの結晶型を持つ酸化アルミニウム、アモルファスの酸化アルミニウムとして存在するが、通常、α型酸化アルミニウムとして存在する場合が多い。
【0018】
焼結体の結合相は、周期律表4a,5a,6a族元素、アルミニウム、シリコン、鉄、コバルト、ニッケル、炭素、窒素、ホウ素、酸素の中から選ばれた1種以上の元素からなる、セラミックスおよび/または金属である。具体的には、▲1▼金属アルミニウム,▲2▼AlN,AlB,AlB12などのアルミニウムの窒化物,ホウ化物、▲3▼AlCTi,TiAlN,(TiAl)N,(TiAl1−X)B,AlBMoなどのアルミニウム含有複合化合物、▲4▼Al−Co,Al−Ni−Wなどのアルミニウム含有合金、▲5▼ ▲1▼の金属アルミニウムおよび/または▲2▼〜▲4▼のアルミニウム含有化合物と、TiC,TiN,Ti(CN),ZrN,HfC,NbN,TaC,WC,TiB,WB,MoSiなどの周期律表第4a,5a,6a族元素の炭化物,窒化物,ホウ化物,ケイ化物、SiC,Siなどのシリコンの炭化物,窒化物,ホウ化物との混合物を挙げることができる。
【0019】
その中でも周期律表4a,5a,6a族元素の炭化物,窒化物,ホウ化物,シリコンの炭化物,窒化物、アルミニウムの窒化物,ホウ化物、およびこれらの複合化合物,相互固溶体、鉄族金属の中の少なくとも2種以上であると焼結体の焼結性が向上することから好ましい。なお、鉄族金属はFe,Co,Niを示す。
【0020】
また、原料粉末に含まれる酸素や製造工程から混入する酸素をアルミニウムに優先して固定させるため活性金属元素を焼結体に添加することは好ましい。活性金属元素は周期律表2a族金属元素および希土類元素の中から選ばれた1種以上である。なお、希土類元素は、Sc、Y、原子番号57〜71の元素を示す。
【0021】
活性金属元素は、その添加量に応じて結合相中の酸化アルミニウム含有量を減少させる作用がある。添加された活性金属元素のほとんどは活性金属酸化物を形成するが、その含有量が焼結体全体に対して1〜10重量%であると、結合相中に酸化アルミニウムを生成させず、かつ活性金属酸化物以外の化合物を形成しないので好ましい。活性金属酸化物は、いずれも酸化アルミニウムよりも安定であるため、結合相中に均一かつ微細に分布して結合相の靱性を高める。
【0022】
活性金属元素として、具体的には、Be,Mg,Y,La,Ce,Sm.Ndなどを挙げることができる。これらの元素は、酸素との親和性がより高く,活性金属酸化物の構造がより安定であり、入手が容易なので好ましい。
【0023】
立方晶窒化ホウ素の平均粒子径は0.1〜10μmが好ましいが、2.0μm以下である場合には、結果的に酸化アルミニウムの除去効果が大きくなるので、さらに好ましい。すなわち、微粒の立方晶窒化ホウ素粉末ほど多量の酸素を含有するために、従来技術では酸化アルミニウム含有量が多くて耐欠損性に劣る立方晶窒化ホウ素含有焼結体しか得られないが、本発明においては焼結体に含まれるは酸化アルミニウム量を低減できるので耐欠損性が向上する。
【0024】
本発明の焼結体は、原料粉末である立方晶窒化ホウ素粉末と金属アルミニウムを含む結合相形成粉末の酸素含有量を低減すること、焼結までの工程において原料粉末の酸化を防止することなど、焼結時での酸素含有量を低減することによって酸化アルミニウムの生成量を抑制して製造される。具体的には、立方晶窒化ホウ素粉末でのNH雰囲気中加熱(B+2NH→BN+3HO↑),SiC粉末添加と真空加熱(B+SiC→SiO↑+CO↑),結合相形成粉末での炭素粉末添加と真空加熱(TiO+C→TiC+CO↑),これら粉末の不活性ガス雰囲気での取り扱いなどが挙げられる。
【0025】
しかし、加熱による脱酸には立方晶窒化ホウ素の熱分解を生じるため、温度限界があり、酸化アルミニウムの生成量抑制は不十分となる。そこで、以下の製造工程,方法による本発明品の製造が最適と言える。
【0026】
すなわち、本発明の立方晶窒化ホウ素含有焼結体の製造方法は、金属アルミニウム粉末と、周期律表第2a族元素および希土類元素の中の少なくとも1種の活性金属粉末と、周期律表第4a,5a,6a族元素の金属,炭化物,窒化物,ホウ化物及び鉄族金属の中の少なくとも一種の結合相形成粉末と、場合によっては微粒立方晶窒化ホウ素の一部とを混合粉砕する第1工程、該第1工程で得られた第1混合粉末を真空中,700℃〜1000℃で熱処理する第2工程、該第2工程で得られた熱処理粉末を再粉砕する第3工程、該第3工程で得られた再粉砕粉末と立方晶窒化ホウ素粉末とを混合する第4工程、該第4工程で得られた第2混合粉末を圧力4〜6GPa,温度1400〜1600℃の超高圧高温下で焼結する第5工程からなることを特徴とするものである。
【0027】
本発明の製造方法における結合相形成粉末は、金属アルミニウムと活性金属元素とTiN,Ti(CN)(x=0.6〜0.9),TiB,AlN,AlTiなどを主成分とする混合粉末、もしくは金属アルミニウム、金属コバルトを主成分とする混合粉末が好ましい。また、活性金属元素の粉末は、微粒ほど酸化する危険性が高いので、合金粉末を用いるか、第2工程で合金化して粉砕することが好ましい。
【0028】
ここで結合相形成粉末が例えばTiNとAlとMgとでなる場合、第2工程は、原料粉末の吸着酸素を除去し、結合酸素をMgOとして固定化すると共に、脆性なTiAlNなどが生成するので、第3工程での微粉砕を容易にして結合相の均一分散を助長できるものである。
【0029】
本発明の製造方法の第1工程から第5工程において、原料粉末中あるいは結合相形成粉末中の酸素量増加を避けるため、具体的には、非酸化性の保護雰囲気中での取り扱い、パラフィンなどによる粉体への酸化防止被覆などを実施することが好ましい。
【0030】
【作用】
本発明の焼結体は、原料粉末及び製造工程での酸素除去が結合相中に酸化アルミニウムを生じさせない作用をする。活性金属元素の添加がアルミニウムに優先して酸素を固定化して酸化アルミニウムを生じさせない作用をする。製造方法において、活性金属元素を添加した結合相形成粉末の熱処理と再粉砕が、酸素の除去および固定させる作用と結合相を均一分散させる作用をする。結合相中に酸化アルミニウムを含有させないことによって、結合相の強度,靱性を向上させ、焼結体の耐欠損性,耐チッピング性を改善する効果を発揮するものである。
【0031】
【実施例1】
異なる粒径の立方晶窒化ホウ素(以降CBNと表示)粉末を含む表1に示す原料粉末の中から、まず表2に示す組成に秤量し、これをウレタン内張りしたステンレスポットに超硬合金製ボールとヘキサン溶媒と共に挿入し、ポット内を窒素置換したのち、ボールミルによる24Hrの混合粉砕を行った。得られたスラリーに1重量%のパラフィンワックスを添加,溶解し、窒素雰囲気中で乾燥させた後、0.1Paの真空中で表2に併記した温度で2Hrの加熱処理を行った。十分に冷却して取出し、直ちに同様のボールミル条件による再粉砕と乾燥を行って結合相形成用粉末A〜Fを得た。
【0032】
【表1】

Figure 2004026555
【0033】
【表2】
Figure 2004026555
【0034】
次に、結合相形成用粉末A〜Fおよび表1中の原料粉末を用いて表3に示す組成に配合し、上記と同様の条件でボールミル,パラフィン添加,窒素中乾燥を行って各種の混合粉末を作製した。これらのプレス成形体を超硬合金製の円盤台金上に置いてジルコニウムカプセル中にセットした後、超高圧高温発生装置を用いて5.5GPaの圧力、1500℃の温度、30分の保持時間の条件でもって焼結し、本発明品1〜9および比較品1〜9を得た。
【0035】
【表3】
Figure 2004026555
【0036】
こうして得た本発明品1〜9および比較品1〜9の各CBN含有焼結体を放電加工による切断とダイヤモンドによる研削、ラップ加工して測定用試料を作製した。まず、ヌープ硬さおよびビッカース圧痕法による破壊靱性値の測定結果を表3に併記した。次に、X線回折法により焼結体中の化合物成分を同定した。酸化アルミニウムとして、α−Alのみが観察されたので、焼結体中の酸化アルミニウム含有量としてα−Al含有量を測定した。これらの結果と配合組成から算出したAl量を表4に示す。ここで、α−Al量の定量は、比較品3の混合粉末にα−Al粉末を0.5重量%刻みで添加して得られた焼結体を検量線に用いて測定した。さらに、走査型電顕で撮影した組織写真の画像解析から、CBN粒子の平均粒子径と0.5μm以下である微粒子の体積割合を求めた。これらの結果を表4に併記した。なお、X線回折によるα−Alの測定条件は、以下の通りである。
X線回折装置:リガク製高出力X線回折装置(RINT−1500)
X線発生条件:Cu管球、50kV電圧、250mA電流、Niフィルター
測定条件:α−Alの(012)ピーク
【0037】
【表4】
Figure 2004026555
【0038】
【実施例2】
実施例1で得られた本発明品1〜9および比較品1〜9の各焼結体を放電加工による切断、超硬合金製チップ台金へのロー付け、ダイヤモンド砥石による研削加工を経て、切削試験用チップ形状:TNMA160408を作製した。そして、下記条件による切削試験を行い、その結果を表5に示した。
(A)外周断続湿式切削 被削材:SCM415(2本溝入り、HRC=61)、切削速度:150m/min、切込み量:0.5mm、送り量:0.1mm/rev、評価基準:平均逃げ面摩耗量VB=0.2mmとなる又は欠損,チッピングまでの切削時間。
(B)端面断続乾式切削 被削材:FC30(HB210〜230)、切削速度:300m/min、切込み量:0.5mm、送り量:0.20mm/rev、評価基準:平均逃げ面摩耗量VB=0.2mmになる又は欠損,チッピングまでの切削時間。
(C)外周連続湿式切削 被削材:インコネル718、切削速度:120m/min、切込み量:0.3mm、送り量:0.15mm/rev、評価基準:境界摩耗量VN=0.3mmになるまで又は欠損までの切削時間。
【0039】
【表5】
Figure 2004026555
注) 表中の − は未実施
【0040】
【発明の効果】
表5における各種の切削試験結果から、ほぼ同一組成で対応している本発明品1〜9と比較品1〜9を比較すると、本発明品の酸化アルミニウム含有量が2重量%以下である焼結体は、靱性の要求される鋼及び鋳物の断続旋削や耐熱合金の連続旋削において、欠損,チッピング及び微少チッピングによる摩耗に優れるため、工具寿命が約2倍にも達する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cubic boron nitride-containing sintered body that is optimal as a cutting tool or a wear-resistant tool. More specifically, the present invention relates to a cubic boron nitride-containing sintered body having significantly improved fracture resistance and chipping resistance by reducing the content of aluminum oxide, and a method for producing the same.
[0002]
[Prior art]
Cubic boron nitride has the following high hardness and excellent thermal conductivity next to diamond, and also has excellent advantages as a tool material in that it has a lower affinity for iron than diamond. A cubic boron nitride-containing sintered body obtained by sintering cubic boron nitride and a binder such as ceramics and metal under ultra-high pressure is frequently used for high-speed cutting of hardened steel and difficult-to-cut materials. The composition is roughly classified into (1) cubic boron nitride-Co type and (2) cubic boron nitride- (Ti, Al) (N, B, C) type. It is characterized by containing a reaction product of AlN and Al 2 O 3 for use as an auxiliary.
[0003]
In recent machining sites, high efficiency and the use of difficult-to-cut materials have been demanded, and even for cubic boron nitride-containing sintered bodies, it has become necessary to improve the basic requirements of wear resistance and fracture resistance. I have. Many studies have been made on the improvement of these performances. Among them, typical ones proposed from the composition and components of the sintered body are disclosed in JP-A-5-186272 and JP-A-5-301776. JP-A-8-81270, JP-A-2000-44348, JP-A-2000-247746, and the like.
[0004]
[Problems to be solved by the invention]
Japanese Patent Application Laid-Open No. 5-301776 discloses a cubic nitride containing 30 to 85% by volume of cubic boron nitride, the balance being a mixture of silicon nitride, aluminum nitride and aluminum oxide or a rare earth metal oxide or a compound thereof. A boron sintered body is described.
[0005]
JP-A-5-186272 discloses that a hard layer made of cubic boron nitride or wurtz-type boron nitride has a first layer made of nitride, boride, or the like of Ti, Zr, Hf, Al, or Si, and a periodic rule. A composite hard phase surrounded by a coating consisting of carbides, nitrides, carbonates, nitrides, borides and a second layer of aluminum oxide, aluminum oxynitride, etc. of the metals of groups 4a, 5a and 6a in the table A composite high-density phase boron nitride sintered body containing at least a volume and having an average layer thickness of the first layer and the second layer of 5 mm or more is described. This publication also discloses that the binder phase contains an oxide or nitride of a rare earth metal.
[0006]
Japanese Patent Application Laid-Open No. 8-81270 discloses that one or two or more of Ti carbides, nitrides, and carbonitrides are used as a matrix, and a cubic crystal having an average particle size of 4 to 20 μm is contained in the matrix. Boron nitride: less than 10 to 50% by volume, average particle size: WC having a particle size of 0.2 μm or less: 0.1 to 1.0% by volume, Al 2 O 3 having an average particle size of 0.2 μm or less: 3 to 10% by volume. Cubic boron nitride-containing ceramic sintered body in which AlN having an average particle size of 0.5 μm or less: 3 to 7% by volume and TiB 2 having an average particle size of 0.5 μm or less: 1 to 5% by volume are uniformly dispersed. And cutting tools are described.
[0007]
Japanese Patent Application Laid-Open No. 2000-44348 discloses a high-hardness sintered body composed of 50 to 80% by volume of a high-pressure phase boron nitride and 50 to 20% by volume of a binder phase composed of a titanium compound (TiC, TiN, TiCN) and aluminum. A high-hardness sintered body for cutting cast iron, in which high-pressure phase boron nitride contains 60 to 80% by volume of coarse particles of 1 to 8 μm and 20 to 40 volumes of fine particles of 0.02 to 1 μm, is also disclosed in JP-A-2000-247746. The publication contains 30 to 90% by volume of fine cubic boron nitride having an average particle size of 1 μm or less and coarse cubic boron nitride having an average particle size of 2 to 10 μm, and has AlN and Al 2 O 3 in a binder. And cubic boron nitride having a limited peak intensity ratio of borides of elements of groups 4a, 5a and 6a of the periodic table, non-boride compounds of these elements, and cubic boron nitride by X-ray diffraction measurement. Predisposition sintered cutting tool is described.
[0008]
The above publication discloses that the wear resistance and fracture resistance of a cubic boron nitride-containing sintered body are improved by changing the composition of a binder phase, changing the structure by using a coated cubic boron nitride, and controlling the structure by adding fine cubic boron nitride. However, since both contain aluminum oxide, the strength and toughness of the sintered body are degraded, and in particular, the improvement in fracture resistance and chipping resistance is insufficient. There is. Here, even if aluminum oxide is not added, oxygen is brought in from the raw material powder, particularly the fine cubic boron nitride powder, or the manufacturing process, and the most stable aluminum oxide is preferentially generated during sintering.
[0009]
On the other hand, the rare earth metal oxides described in JP-A-5-186272 and JP-A-5-301776 improve the properties of the binder phase but do not have the effect of reducing aluminum oxide.
[0010]
The present invention has solved the above-mentioned problems, specifically, by removing or fixing oxygen mixed in from the raw material powder and the production process, and by preventing aluminum oxide from being formed in the binder phase containing aluminum. It is another object of the present invention to provide a cubic boron nitride-containing sintered body in which the strength and toughness of a binder phase are improved and the fracture resistance, chipping resistance and the like are greatly improved.
[0011]
[Means for Solving the Problems]
The present inventors have been studying the improvement of the fracture resistance of the cubic boron nitride-containing sintered body consisting of cubic boron nitride and a binder phase, the more the aluminum oxide content in the sintered body is reduced The fact that the fracture resistance is improved and the knowledge that reduction of aluminum oxide by addition of a metal more active than aluminum is effective in removing oxygen from the raw material powder and the manufacturing process to reduce the aluminum oxide content is obtained. The present invention has been completed.
[0012]
The present invention relates to a cubic boron nitride-containing sintered body (hereinafter, referred to as a sintered body) comprising a binder phase composed of ceramics and / or metal: 5 to 90% by weight and the remainder composed of cubic boron nitride. The sintered body contains 2 to 20% by weight of aluminum element based on the whole sintered body, and the sintered body does not contain aluminum oxide, or the aluminum oxide contained in the sintered body is 2% by weight or less. A sintered body characterized by the following.
[0013]
When the content of cubic boron nitride is less than 5% by weight, the effect of improving the wear resistance by containing cubic boron nitride is small. Conversely, when the content exceeds 90% by weight, sintering is difficult, and the fracture resistance due to the binder phase is high. The effect of improving sex is small. Therefore, the amount of the binder phase is set to 5 to 90% by weight.
[0014]
If the content of the aluminum element in the sintered body is less than 2% by weight with respect to the whole sintered body, the hardness of the sintered body is reduced because the binder phase is inferior in reactivity with cubic boron nitride and sinterability. Strength is reduced. Conversely, when the content of the aluminum element exceeds 20% by weight, the amount of cubic boron nitride relatively decreases and the hardness is inferior. Therefore, the content of the aluminum element contained in the sintered body was set to 2 to 20% by weight based on the whole sintered body.
[0015]
The aluminum element in the sintered body is contained in the binder phase as aluminum alone and / or an aluminum compound. The aluminum compound is a compound composed of aluminum and one or more elements selected from the group 4a, 5a, and 6a elements of the periodic table, silicon, iron, cobalt, nickel, carbon, nitrogen, boron, and oxygen.
[0016]
When the aluminum element contained in the sintered body forms aluminum oxide, if the content of aluminum oxide exceeds 2.0% by weight with respect to the whole sintered body, the toughness of the binder phase rapidly deteriorates. The fracture resistance decreases. It is preferable that the content of aluminum oxide be 1.0% by weight or less based on the entire sintered body, since chipping can be prevented from occurring in heavy interrupted cutting, wet cutting, or the like. In the current production equipment, aluminum oxide is contained in an amount of about 0.001% by weight based on the entire sintered body. However, the lower the content of aluminum oxide, the higher the toughness of the binder phase. Most preferably, it does not.
[0017]
Aluminum oxide in the sintered body is crystalline aluminum oxide such as α-type aluminum oxide, κ-type aluminum oxide, γ-type aluminum oxide, θ-type aluminum oxide, δ-type aluminum oxide, χ-type aluminum oxide, and amorphous oxide. Although it exists as aluminum, it often exists as α-type aluminum oxide.
[0018]
The binder phase of the sintered body is made of at least one element selected from the group consisting of elements of the periodic table 4a, 5a and 6a, aluminum, silicon, iron, cobalt, nickel, carbon, nitrogen, boron and oxygen. Ceramics and / or metals. Specifically, ▲ 1 ▼ metallic aluminum, ▲ 2 ▼ AlN, AlB 2 , AlB 12 nitride of aluminum such as, borides, ▲ 3 ▼ AlCTi 2, Ti 2 AlN, (TiAl) N, (Ti X Al 1-X ) Aluminum-containing composite compounds such as BY and AlBMo, (4) aluminum-containing alloys such as Al-Co and Al-Ni-W, (5) metallic aluminum of (1) and / or (2) to (1) 4 ▼ an aluminum containing compound, TiC, TiN, Ti (CN ), ZrN, HfC, NbN, TaC, WC, TiB 2, WB, periodic table 4a such as MoSi 2, 5a, the 6a group element carbides, Examples thereof include nitrides, borides, silicides, and carbides of silicon, such as SiC and Si 3 N 4 , and mixtures with nitrides and borides.
[0019]
Among them, carbides, nitrides, borides, silicon carbides, nitrides, aluminum nitrides, borides, and their composite compounds, mutual solid solutions, and iron group metals of Group 4a, 5a, and 6a elements It is preferable to use at least two kinds of the above since the sinterability of the sintered body is improved. In addition, iron group metal shows Fe, Co, and Ni.
[0020]
Further, it is preferable to add an active metal element to the sintered body in order to fix oxygen contained in the raw material powder or oxygen mixed in from the manufacturing process preferentially to aluminum. The active metal element is at least one selected from the group 2a metal elements of the periodic table and rare earth elements. Note that the rare earth elements are Sc, Y, and elements having atomic numbers of 57 to 71.
[0021]
The active metal element has an effect of reducing the content of aluminum oxide in the binder phase according to the amount of the active metal element added. Most of the added active metal elements form active metal oxides, but if the content is 1 to 10% by weight based on the whole sintered body, aluminum oxide is not generated in the binder phase, and It is preferable because compounds other than the active metal oxide are not formed. Since all active metal oxides are more stable than aluminum oxide, they are uniformly and finely distributed in the binder phase to increase the toughness of the binder phase.
[0022]
Specific examples of the active metal element include Be, Mg, Y, La, Ce, and Sm. Nd and the like can be mentioned. These elements are preferable because they have higher affinity for oxygen, have a more stable structure of the active metal oxide, and are easily available.
[0023]
The average particle size of the cubic boron nitride is preferably from 0.1 to 10 μm, but if it is 2.0 μm or less, the effect of removing aluminum oxide is increased, which is more preferable. That is, since the finer cubic boron nitride powder contains a larger amount of oxygen, the conventional technique can provide only a cubic boron nitride-containing sintered body having a high aluminum oxide content and inferior fracture resistance. In the above, since the amount of aluminum oxide contained in the sintered body can be reduced, the fracture resistance is improved.
[0024]
The sintered body of the present invention reduces the oxygen content of the cubic boron nitride powder, which is the raw material powder, and the binder phase forming powder containing metallic aluminum, and prevents the raw material powder from being oxidized in the process up to sintering. It is manufactured by reducing the amount of aluminum oxide produced by reducing the oxygen content during sintering. Specifically, heating in cubic boron nitride powder in an NH 3 atmosphere (B 2 O 3 + 2NH 3 → BN + 3H 2 O ↑), addition of SiC powder and vacuum heating (B 2 O 3 + SiC → SiO ↑ + CO ↑), Examples include adding carbon powder in the binder phase forming powder, heating in vacuum (TiO 2 + C → TiC + CO ↑), and handling these powders in an inert gas atmosphere.
[0025]
However, deoxidation by heating causes thermal decomposition of cubic boron nitride, which has a temperature limit, and the suppression of the amount of aluminum oxide produced is insufficient. Therefore, it can be said that production of the product of the present invention by the following production steps and methods is optimal.
[0026]
That is, the method for producing a cubic boron nitride-containing sintered body of the present invention comprises the steps of: preparing a metal aluminum powder, at least one active metal powder selected from Group 2a elements and rare earth elements of the periodic table; A first powder of at least one kind of binder phase forming powder among metals, carbides, nitrides, borides and iron group metals of Group 5,5a, 6a elements and, in some cases, a part of fine cubic boron nitride. A second step of heat-treating the first mixed powder obtained in the first step at 700 ° C. to 1000 ° C. in vacuum, a third step of re-crushing the heat-treated powder obtained in the second step, A fourth step of mixing the reground powder obtained in the three steps with the cubic boron nitride powder, and applying the second mixed powder obtained in the fourth step to an ultra-high pressure of 4 to 6 GPa and a temperature of 1400 to 1600 ° C. The fifth step of sintering below The one in which the features.
[0027]
Binder phase-forming powder in the production process of the present invention, metal aluminum and an active metal element and TiN X, Ti (CN) X (x = 0.6~0.9), TiB 2, AlN, Al 3 Ti , etc. mainly A mixed powder as a component or a mixed powder containing metal aluminum or metal cobalt as a main component is preferable. Further, since the finer the active metal element powder, the higher the risk of oxidation, it is preferable to use an alloy powder or alloy and pulverize in the second step.
[0028]
Here, when the bonding phase forming powder is made of, for example, TiN X , Al and Mg, the second step is to remove the adsorbed oxygen of the raw material powder, fix the bonded oxygen as MgO, and remove brittle Ti 2 AlN or the like. Since it is produced, the fine pulverization in the third step can be facilitated and uniform dispersion of the binder phase can be promoted.
[0029]
In the first to fifth steps of the production method of the present invention, in order to avoid an increase in the amount of oxygen in the raw material powder or the binder phase forming powder, specifically, handling in a non-oxidizing protective atmosphere, paraffin, etc. It is preferable to carry out, for example, an antioxidant coating on the powder by the method.
[0030]
[Action]
The sintered body of the present invention acts so that the removal of oxygen in the raw material powder and the production process does not cause aluminum oxide in the binder phase. The addition of the active metal element functions to fix oxygen in preference to aluminum and not to generate aluminum oxide. In the production method, the heat treatment and re-grinding of the binder phase-forming powder to which the active metal element has been added serve to remove and fix oxygen and to uniformly disperse the binder phase. By not including aluminum oxide in the binder phase, the effect of improving the strength and toughness of the binder phase and improving the fracture resistance and chipping resistance of the sintered body is exhibited.
[0031]
Embodiment 1
From the raw material powders shown in Table 1 containing cubic boron nitride (hereinafter referred to as CBN) powders having different particle diameters, the compositions shown in Table 2 were first weighed, and then the cemented carbide balls were placed in a urethane-lined stainless steel pot. And a hexane solvent, and the inside of the pot was replaced with nitrogen, and then mixed and pulverized for 24 hours using a ball mill. 1% by weight of paraffin wax was added to and dissolved in the obtained slurry, dried in a nitrogen atmosphere, and then subjected to a heat treatment of 2 hr in a vacuum of 0.1 Pa at a temperature shown in Table 2. It was taken out after cooling sufficiently, and immediately re-crushed and dried under the same ball mill conditions to obtain powders A to F for forming a binder phase.
[0032]
[Table 1]
Figure 2004026555
[0033]
[Table 2]
Figure 2004026555
[0034]
Next, the powders A to F for forming the bonding phase and the raw material powders shown in Table 1 were blended into the composition shown in Table 3, and subjected to ball milling, addition of paraffin, drying in nitrogen under the same conditions as above, and various mixing. A powder was made. After placing these press-formed bodies on a hard metal disk base and setting them in a zirconium capsule, a pressure of 5.5 GPa, a temperature of 1500 ° C., and a holding time of 30 minutes using an ultra-high pressure and high temperature generator. To obtain inventive products 1 to 9 and comparative products 1 to 9.
[0035]
[Table 3]
Figure 2004026555
[0036]
Each of the CBN-containing sintered bodies of the present invention products 1 to 9 and comparative products 1 to 9 thus obtained was cut by electric discharge machining, ground with diamond, and lapped to prepare measurement samples. First, the measurement results of the Knoop hardness and the fracture toughness measured by the Vickers indentation method are shown in Table 3. Next, the compound component in the sintered body was identified by the X-ray diffraction method. Since only α-Al 2 O 3 was observed as aluminum oxide, the α-Al 2 O 3 content was measured as the aluminum oxide content in the sintered body. Table 4 shows the Al amount calculated from these results and the composition. Here, the amount of α-Al 2 O 3 was determined by using a sintered body obtained by adding α-Al 2 O 3 powder to the mixed powder of Comparative Product 3 in 0.5 wt% increments as a calibration curve. Measured. Further, the average particle diameter of the CBN particles and the volume ratio of the fine particles having a particle size of 0.5 μm or less were determined from image analysis of a tissue photograph taken by a scanning electron microscope. These results are also shown in Table 4. The measurement conditions of α-Al 2 O 3 by X-ray diffraction are as follows.
X-ray diffractometer: Rigaku high-power X-ray diffractometer (RINT-1500)
X-ray generation conditions: Cu tube, 50 kV voltage, 250 mA current, Ni filter measurement conditions: α-Al 2 O 3 (012) peak
[Table 4]
Figure 2004026555
[0038]
Embodiment 2
After cutting each sintered body of the invention products 1 to 9 and comparative products 1 to 9 obtained in Example 1 by electric discharge machining, brazing to a cemented carbide chip base metal, and grinding by a diamond grindstone, Cutting test chip shape: TNMA160408 was produced. Then, a cutting test was performed under the following conditions, and the results are shown in Table 5.
(A) Intermittent wet cutting on outer periphery Work material: SCM415 (with two grooves, HRC = 61), Cutting speed: 150 m / min, Cutting depth: 0.5 mm, Feeding amount: 0.1 mm / rev, Evaluation standard: Average Cutting time until flank wear VB = 0.2 mm or chipping or chipping.
(B) End face intermittent dry cutting Work material: FC30 (HB210 to 230), cutting speed: 300 m / min, depth of cut: 0.5 mm, feed amount: 0.20 mm / rev, evaluation standard: average flank wear VB = Cutting time until 0.2 mm or chipping or chipping.
(C) Peripheral continuous wet cutting Work material: Inconel 718, cutting speed: 120 m / min, depth of cut: 0.3 mm, feed amount: 0.15 mm / rev, evaluation standard: boundary wear amount VN = 0.3 mm Cutting time up to or chipping.
[0039]
[Table 5]
Figure 2004026555
Note)-in the table is not implemented.
【The invention's effect】
From the results of various cutting tests shown in Table 5, when the present invention products 1 to 9 and the comparative products 1 to 9 corresponding to each other with almost the same composition are compared, it is found that the aluminum oxide content of the invention product is 2% by weight or less. Since the sintered body is excellent in wear due to chipping, chipping, and micro chipping in intermittent turning of steel and castings and continuous turning of heat-resistant alloys requiring toughness, the tool life reaches about twice.

Claims (9)

セラミックスおよび/または金属からなる結合相:5〜90重量%と、残りが立方晶窒化ホウ素とで構成された立方晶窒化ホウ素含有焼結体において、該立方晶窒化ホウ素含有焼結体に含まれるアルミニウム元素の含有量は該立方晶窒化ホウ素含有焼結体全体に対して2〜20重量%であり、かつ該立方晶窒化ホウ素含有焼結体は酸化アルミニウムを含有しないことを特徴とする立方晶窒化ホウ素含有焼結体。In a cubic boron nitride-containing sintered body composed of a binder phase composed of ceramics and / or metal: 5 to 90% by weight and the remainder being cubic boron nitride, the binder phase is contained in the cubic boron nitride-containing sintered body. A cubic boron nitride-containing sintered body, wherein the content of the aluminum element is 2 to 20% by weight based on the entire cubic boron nitride-containing sintered body, and the cubic boron nitride-containing sintered body does not contain aluminum oxide. A sintered body containing boron nitride. セラミックスおよび/または金属からなる結合相:5〜90重量%と、残りが立方晶窒化ホウ素とで構成された立方晶窒化ホウ素含有焼結体において、該立方晶窒化ホウ素含有焼結体に含まれるアルミニウム元素の含有量は該立方晶窒化ホウ素含有焼結体全体に対して2〜20重量%であり、かつ該アルミニウム元素の一部は酸化アルミニウムとして存在し、かつ該立方晶窒化ホウ素含有焼結体に含まれる該酸化アルミニウムの含有量が該立方晶窒化ホウ素含有焼結体全体に対して2重量%以下であることを特徴とする立方晶窒化ホウ素含有焼結体。In a cubic boron nitride-containing sintered body composed of a binder phase composed of ceramics and / or metal: 5 to 90% by weight and the remainder being cubic boron nitride, the binder phase is contained in the cubic boron nitride-containing sintered body. The content of the aluminum element is 2 to 20% by weight based on the whole of the cubic boron nitride-containing sintered body, and a part of the aluminum element is present as aluminum oxide, and the cubic boron nitride-containing sintered body is A cubic boron nitride-containing sintered body, wherein the content of the aluminum oxide contained in the body is 2% by weight or less based on the entire cubic boron nitride-containing sintered body. 周期律表第2a族元素および希土類元素の中の少なくとも1種である活性金属元素を含有することを特徴とする請求項1または2に記載の立方晶窒化ホウ素含有焼結体。The cubic boron nitride-containing sintered body according to claim 1, further comprising an active metal element that is at least one of a Group 2a element of the periodic table and a rare earth element. 上記酸化アルミニウムの含有量が上記立方晶窒化ホウ素含有焼結体全体に対して1重量%以下であることを特徴とする請求項3に記載の立方晶窒化ホウ素含有焼結体。The cubic boron nitride-containing sintered body according to claim 3, wherein the content of the aluminum oxide is 1% by weight or less based on the entire cubic boron nitride-containing sintered body. 上記活性金属元素の酸化物の含有量が、上記立方晶窒化ホウ素含有焼結体全体に対して1〜10重量%であることを特徴とする請求項3または4に記載の立方晶窒化ホウ素含有焼結体。The cubic boron nitride-containing oxide according to claim 3 or 4, wherein the content of the oxide of the active metal element is 1 to 10% by weight based on the entire cubic boron nitride-containing sintered body. Sintered body. 上記活性金属元素は、ベリリウム,マグネシウム,イットリウム,ランタン,セリウム,サマリウム,ネオジウムの中の少なくとも1種であることを特徴とする請求項3〜5のいずれか1項に記載の立方晶窒化ホウ素含有焼結体。The cubic boron nitride according to any one of claims 3 to 5, wherein the active metal element is at least one of beryllium, magnesium, yttrium, lanthanum, cerium, samarium, and neodymium. Sintered body. 上記結合相は、周期律表4a,5a,6a族元素の炭化物,窒化物,ホウ化物,シリコンの炭化物,窒化物、アルミニウムの窒化物,ホウ化物、およびこれらの複合化合物,相互固溶体、鉄族金属の中の少なくとも2種以上であることを特徴とする請求項1〜6のいずれか1項に記載の立方晶窒化ホウ素含有焼結体。The binder phase includes carbides, nitrides, borides, silicon carbides, nitrides, aluminum nitrides, borides of the elements of the periodic table 4a, 5a, and 6a, and composite compounds thereof, mutual solid solutions, and iron group. The cubic boron nitride-containing sintered body according to claim 1, wherein the sintered body is at least two kinds of metals. 上記立方晶窒化ホウ素は、平均粒子径が2.0μm以下であることを特徴とする請求項1〜7のいずれか1項に記載の立方晶窒化ホウ素含有焼結体。The cubic boron nitride-containing sintered body according to any one of claims 1 to 7, wherein the cubic boron nitride has an average particle diameter of 2.0 µm or less. 金属アルミニウム粉末と、周期律表第2a族元素および希土類元素の中の少なくとも1種の活性金属粉末と、周期律表第4a,5a,6a族元素の金属,炭化物,窒化物,ホウ化物及び鉄族金属の中の少なくとも一種の結合相形成粉末と、場合によっては微粒立方晶窒化ホウ素粉末の一部とを混合粉砕する第1工程、該第1工程で得られた第1混合粉末を真空中,700℃〜1000℃で熱処理する第2工程、該第2工程で得られた熱処理粉末を再粉砕する第3工程、該第3工程で得られた再粉砕粉末と立方晶窒化ホウ素粉末とを混合する第4工程、該第4工程で得られた第2混合粉末を圧力4〜6GPa,温度1400〜1600℃の超高圧高温下で焼結する第5工程を含むことを特徴とする立方晶窒化ホウ素含有焼結体の製造方法。Metal aluminum powder, at least one active metal powder of group 2a element and rare earth element of the periodic table, and metal, carbide, nitride, boride and iron of the elements of the group 4a, 5a and 6a of the periodic table A first step of mixing and pulverizing at least one kind of binder phase forming powder in the group metal and, in some cases, a part of the fine cubic boron nitride powder, and subjecting the first mixed powder obtained in the first step to vacuum A second step of heat-treating at 700 ° C. to 1000 ° C., a third step of re-pulverizing the heat-treated powder obtained in the second step, and the re-pulverized powder obtained in the third step and the cubic boron nitride powder. A cubic crystal comprising: a fourth step of mixing, and a fifth step of sintering the second mixed powder obtained in the fourth step under an ultra-high pressure and a high temperature of 4 to 6 GPa and a temperature of 1400 to 1600 ° C. A method for producing a boron nitride-containing sintered body.
JP2002184154A 2002-06-25 2002-06-25 Cubic boron nitride-containing sintered compact and method for producing the same Pending JP2004026555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184154A JP2004026555A (en) 2002-06-25 2002-06-25 Cubic boron nitride-containing sintered compact and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184154A JP2004026555A (en) 2002-06-25 2002-06-25 Cubic boron nitride-containing sintered compact and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004026555A true JP2004026555A (en) 2004-01-29

Family

ID=31180133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184154A Pending JP2004026555A (en) 2002-06-25 2002-06-25 Cubic boron nitride-containing sintered compact and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004026555A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169107A (en) * 2005-12-22 2007-07-05 Tungaloy Corp Cubic bn ultra-high pressure sintered compact and its producing method
JP2008222485A (en) * 2007-03-12 2008-09-25 Sumitomo Electric Hardmetal Corp Coated compound sintered compact, cutting tool and cutting method
JP5298372B2 (en) * 2006-06-12 2013-09-25 住友電工ハードメタル株式会社 Composite sintered body
WO2016084929A1 (en) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 Sintered object based on cubic boron nitride, and cutting tool constituted of sintered object based on cubic boron nitride
JP2016108232A (en) * 2014-11-27 2016-06-20 三菱マテリアル株式会社 Cubic boron nitride-based sintered body, and cutting tool made of cubic boron nitride-based sintered body
WO2016148223A1 (en) * 2015-03-19 2016-09-22 三菱マテリアル株式会社 Drill tip and drill bit
JP2016176322A (en) * 2015-03-19 2016-10-06 三菱マテリアル株式会社 Drilling chip and drilling bit
WO2017094628A1 (en) * 2015-12-04 2017-06-08 株式会社タンガロイ Tool and coated tool
WO2017183659A1 (en) * 2016-04-20 2017-10-26 三菱マテリアル株式会社 Excavation chip, excavation tool, and method for manufacturing excavation chip
CN114867700A (en) * 2019-12-16 2022-08-05 住友电工硬质合金株式会社 Cubic boron nitride sintered body

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169107A (en) * 2005-12-22 2007-07-05 Tungaloy Corp Cubic bn ultra-high pressure sintered compact and its producing method
US10307829B2 (en) 2006-06-12 2019-06-04 Sumitomo Electric Hardmetal Corp. Composite sintered body
JP5298372B2 (en) * 2006-06-12 2013-09-25 住友電工ハードメタル株式会社 Composite sintered body
US8999023B2 (en) 2006-06-12 2015-04-07 Sumitomo Electric Hardmetal Corp. Composite sintered body
JP2008222485A (en) * 2007-03-12 2008-09-25 Sumitomo Electric Hardmetal Corp Coated compound sintered compact, cutting tool and cutting method
WO2016084929A1 (en) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 Sintered object based on cubic boron nitride, and cutting tool constituted of sintered object based on cubic boron nitride
JP2016108232A (en) * 2014-11-27 2016-06-20 三菱マテリアル株式会社 Cubic boron nitride-based sintered body, and cutting tool made of cubic boron nitride-based sintered body
US10391561B2 (en) 2014-11-27 2019-08-27 Mitsubishi Materials Corporation Cubic boron nitride-based sintered material and cutting tool made of cubic boron nitride-based sintered material
US10538971B2 (en) 2015-03-19 2020-01-21 Mitsubishi Materials Corporation Drill bit insert and drill bit
WO2016148223A1 (en) * 2015-03-19 2016-09-22 三菱マテリアル株式会社 Drill tip and drill bit
KR102589417B1 (en) * 2015-03-19 2023-10-13 미쓰비시 마테리알 가부시키가이샤 Drill tip and drill bit
KR20170128313A (en) * 2015-03-19 2017-11-22 미쓰비시 마테리알 가부시키가이샤 Drill tip and drill bit
CN107429548A (en) * 2015-03-19 2017-12-01 三菱综合材料株式会社 Excavation blade and excavating bur
EP3272993B1 (en) * 2015-03-19 2020-04-22 Mitsubishi Materials Corporation Drill tip and drill bit
JP2016176322A (en) * 2015-03-19 2016-10-06 三菱マテリアル株式会社 Drilling chip and drilling bit
JP6206695B1 (en) * 2015-12-04 2017-10-04 株式会社タンガロイ tool
WO2017094628A1 (en) * 2015-12-04 2017-06-08 株式会社タンガロイ Tool and coated tool
US10780506B2 (en) 2015-12-04 2020-09-22 Tungaloy Corporation Tool and coated tool
US10900293B2 (en) 2016-04-20 2021-01-26 Mitsubishi Materials Corporation Drilling tip, drilling tool, and method of manufacturing drilling tip
WO2017183659A1 (en) * 2016-04-20 2017-10-26 三菱マテリアル株式会社 Excavation chip, excavation tool, and method for manufacturing excavation chip
CN114867700A (en) * 2019-12-16 2022-08-05 住友电工硬质合金株式会社 Cubic boron nitride sintered body
CN114867700B (en) * 2019-12-16 2023-06-27 住友电工硬质合金株式会社 Cubic boron nitride sintered body

Similar Documents

Publication Publication Date Title
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP5100927B2 (en) Method for producing cubic boron nitride sintered body
JP6032375B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
GB2560642A (en) Sintered polycrystalline cubic boron nitride material
EP3210955B1 (en) Sintered compact
JP2017014084A (en) Cubic crystal boron nitride sintered body, method of producing cubic crystal boron nitride sintered body, tool and cutting tool
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
EP2146942A2 (en) Boron suboxide composite material
JP2007130700A (en) Sialon cutting tool, and tool equipped with the same
JPS644988B2 (en)
JP4887588B2 (en) Dispersion strengthened CBN-based sintered body and method for producing the same
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JP2011140414A (en) Sintered compact and cutting tool using the sintered compact
JPS644989B2 (en)
JP6365228B2 (en) Sintered body
JP2815686B2 (en) Composite sintered cutting tool material with excellent chipping resistance and its manufacturing method
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP4004024B2 (en) Titanium carbide based ceramic tool and manufacturing method thereof
JPH08239277A (en) Cubic boron nitride composite ceramic tool and production thereof
JP7336063B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP2003267787A (en) beta&#39;-SIALON-BASED CERAMIC TOOL AND ITS PRODUCTION METHOD
JP2900545B2 (en) Cutting tool whose cutting edge is made of cubic boron nitride based sintered body
JP2006193353A (en) Alumina sintered body, cutting insert, and cutting tool
JP2004114163A (en) Alumina group ceramic tool and production method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027