JP2007169107A - Cubic bn ultra-high pressure sintered compact and its producing method - Google Patents

Cubic bn ultra-high pressure sintered compact and its producing method Download PDF

Info

Publication number
JP2007169107A
JP2007169107A JP2005369026A JP2005369026A JP2007169107A JP 2007169107 A JP2007169107 A JP 2007169107A JP 2005369026 A JP2005369026 A JP 2005369026A JP 2005369026 A JP2005369026 A JP 2005369026A JP 2007169107 A JP2007169107 A JP 2007169107A
Authority
JP
Japan
Prior art keywords
cbn
composite
nitride
pressure sintered
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005369026A
Other languages
Japanese (ja)
Other versions
JP5092237B2 (en
Inventor
Masaki Kobayashi
正樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2005369026A priority Critical patent/JP5092237B2/en
Publication of JP2007169107A publication Critical patent/JP2007169107A/en
Application granted granted Critical
Publication of JP5092237B2 publication Critical patent/JP5092237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cubic BN ultra-high pressure sintered compact which is most suitable for high-speed cutting or intermittent cutting of high hardness steel such as carburized material or hardened material of steel; and a method for producing the same. <P>SOLUTION: The cubic BN ultra-high pressure sintered compact comprises 30-80 vol% of cubic BN and the balance composed of a binding phase, formed of at least one kind selected from carbides, nitrides, borides and oxides of group 4a, 5a and 6a elements of the periodic table, nitrides and oxides of Al, and carbides and nitrides of Si, and mutual solid solutions thereof, and inevitable impurities. The binding phase contains (1) at least one kind of complex compound of complex nitrides and complex carbonitrides containing at least one of Zr and Hf and Ti, (2) a complex boride containing at least one of Zr and Hf and Ti, (3) AlN, and (4) Al<SB>2</SB>O<SB>3</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼の浸炭材,焼入れ材など高硬度鋼の高速切削、断続切削に最適なcBN基超高圧焼結体およびその製造方法に関する。   The present invention relates to a cBN-based ultrahigh-pressure sintered body that is optimal for high-speed cutting and intermittent cutting of high-hardness steel such as a carburized steel and a hardened steel, and a method for producing the same.

鋼の浸炭材,焼入れ材など高硬度鋼の切削には、40〜70体積%のcBNと残りがTiNを主成分とする結合相とからなるcBN基超高圧焼結体が一般に使用されている。TiN以外の結合相としては、焼結助剤として添加した金属Alから生成したAlN,Al23や、cBNとTiNとが反応して生成したTiB2などが挙げられる。 For cutting high hardness steel such as carburized steel and hardened steel, a cBN-based ultrahigh pressure sintered body composed of 40 to 70% by volume of cBN and the balance of TiN as a main component is generally used. . Examples of the binder phase other than TiN include AlN and Al 2 O 3 generated from metal Al added as a sintering aid, and TiB 2 generated by reaction of cBN and TiN.

最近の加工現場では高速切削あるいは高送り切削による高能率化が求められており、cBN基超高圧焼結体においても基本的な要求性能である耐摩耗性、耐欠損性、耐チッピング性の改善が必要となっている。そこで、これらの性能向上のために結合相の成分に関して多数の検討が行われている。   Recently, high-efficiency is required by high-speed cutting or high-feed cutting at the machining site, and improvement of wear resistance, fracture resistance, and chipping resistance, which are basic required performances even in cBN-based ultra-high pressure sintered bodies. Is required. Therefore, many studies have been made on the components of the binder phase in order to improve the performance.

cBN基超高圧焼結体の結合相の成分に関する従来技術として、(Ti,M)(N,C,O)(ただし、MはZr,Hf,V,Nb,Ta,Cr,Mo,Wの中の少なくとも1種)で表される複合炭窒酸化物を含有させたもの(例えば、特許文献1参照。)、N/C≦0.15であるチタンの炭窒化物と、Al,W,Co及びZrの中の少なくとも1種の金属との金属間化合物からなるもの(例えば、特許文献2参照。)、またTiCN,WC,AlN,TiB2,Al23,の含有量と粒子径を限定したもの(例えば、特許文献3参照。)、さらにTi,Zr,Hf,Taの炭化物,窒化物,炭窒化物、Al化合物、Al23の含有量を限定し、かつcBN粒子がAl化合物を介して結合した構造からなるもの(例えば、特許文献4参照。)がある。 (Ti, M) (N, C, O) (where M is Zr, Hf, V, Nb, Ta, Cr, Mo, W) as a conventional technique regarding the components of the binder phase of the cBN-based ultra-high pressure sintered body (See, for example, Patent Document 1), titanium carbonitride with N / C ≦ 0.15, Al, W, Content and particle size of an intermetallic compound with at least one metal of Co and Zr (see, for example, Patent Document 2), TiCN, WC, AlN, TiB 2 , Al 2 O 3 (See, for example, Patent Document 3), Ti, Zr, Hf, Ta carbide, nitride, carbonitride, Al compound, Al 2 O 3 content, and cBN particles Containing a structure bonded through an Al compound (for example, see Patent Document 4) .) There is.

これらの従来技術の中で、Zr,Hfの窒化物を含有させたものは、結合相の耐熱性、化学的安定性が向上して耐摩耗性が改善されるものの、靱性,熱伝導性などが不十分なために耐欠損性、耐チッピング性に劣り、硬さが低下するために耐摩耗性の改善も不十分であると言う問題がある。   Among these prior arts, those containing nitrides of Zr and Hf improve the heat resistance and chemical stability of the binder phase and improve the wear resistance, but the toughness, thermal conductivity, etc. Insufficient wear resistance and chipping resistance are inferior, and there is a problem that wear resistance is insufficiently improved because hardness decreases.

特開平7−172924号公報JP-A-7-172924 特開平7−286229号公報JP-A-7-286229 特開平8−81270号公報JP-A-8-81270 特開平8−253837号公報JP-A-8-253837

本発明は、上記のような問題点を解決したもので、具体的には、ZrおよびHfの少なくとも1方とTiとを含む複合窒化物および複合炭窒化物の少なくとも1種を原料粉末に使用し、焼結時にcBNと反応させてZrおよびHfの少なくとも1方とTiとを含む複合ホウ化物を含有させることによって、結合相の硬さ,靱性,耐熱性,化学的安定性,熱伝導性などを改善して耐摩耗性と耐欠損性,耐チッピング性を大幅に向上させたcBN基超高圧焼結体の提供を目的とする。   The present invention solves the above-described problems. Specifically, at least one of a composite nitride containing at least one of Zr and Hf and Ti and a composite carbonitride is used as a raw material powder. In addition, by reacting with cBN during sintering to include a composite boride containing at least one of Zr and Hf and Ti, the hardness, toughness, heat resistance, chemical stability, and thermal conductivity of the binder phase It is an object of the present invention to provide a cBN-based ultra-high pressure sintered body that is improved in wear resistance, fracture resistance, and chipping resistance by improving the above.

本発明者は、高硬度鋼切削用のcBN基超高圧焼結体の寿命向上について検討していたところ、結合相にZrおよびHfの少なくとも1方の窒化物を含有させると、耐熱性や鋼に対する化学的安定性が増大して耐摩耗性が改善されること、ZrおよびHfの少なくとも1方のホウ化物を含有させると硬さ,靱性や熱伝導性が増大して耐摩耗性と耐チッピング性が向上すること、ZrおよびHfの少なくとも1方の窒化物,ホウ化物を含有させるには、Tiとの複合窒化物を出発原料に使用してcBN(立方晶窒化ホウ素)と焼結させれば良いと言う知見を得て、本発明を完成するに至ったものである。   The present inventor has been studying the improvement in the life of a cBN-based ultrahigh-pressure sintered body for cutting high-hardness steel. When the binder phase contains at least one nitride of Zr and Hf, the heat resistance and steel The chemical stability against wear is improved and wear resistance is improved, and the inclusion of at least one boride of Zr and Hf increases the hardness, toughness and thermal conductivity to increase wear resistance and chipping resistance. In order to improve the property, and to contain at least one nitride and boride of Zr and Hf, a composite nitride with Ti can be used as a starting material and sintered with cBN (cubic boron nitride). The present inventors have obtained knowledge that it is better to complete the present invention.

すなわち、本発明のcBN基超高圧焼結体は、cBN:30〜80体積%と、残りが周期律表4a,5a,6a族元素の炭化物,窒化物,ホウ化物,酸化物、Alの窒化物,酸化物、Siの炭化物,窒化物およびこれらの相互固溶体の中の少なくとも1種からなる結合相と不可避不純物とでなるcBN基超高圧焼結体において、結合相は(1)ZrおよびHfの少なくとも1方とTiとを含む複合窒化物および複合炭窒化物の少なくとも1種の複合化合物と、(2)ZrおよびHfの少なくとも1方とTiとを含む複合ホウ化物と、(3)AlNと、(4)Al23とを含有するものである。 That is, the cBN-based ultrahigh-pressure sintered body of the present invention has cBN: 30 to 80% by volume, and the remainder is a carbide, nitride, boride, oxide, or Al nitride of the periodic table 4a, 5a, and 6a group elements. In a cBN-based ultrahigh pressure sintered body composed of a binder phase consisting of at least one of oxides, oxides, Si carbides, nitrides and their mutual solid solutions and inevitable impurities, the binder phases are (1) Zr and Hf (2) a composite boride containing at least one of Zr and Hf and Ti, and (3) AlN. And (4) Al 2 O 3 .

本発明のcBN基超高圧焼結体における結合相の必須成分(1)である複合化合物としては、具体的には、(Ti,Zr)N,(Ti,Hf)N,(Ti,Zr,Hf)N,(Ti,Zr,Hf)(C,N)などが挙げられる。そして、これらの複合窒化物,複合炭窒化物などの複合化合物を(Ti1-aa)(C1-bb)(ただし、MはZrおよびHfの少なくとも1方を示す。)と表した場合に、aはTiとMとの合計に対するMの原子比を示し、bはCとNとの合計に対するNの原子比を示し、a,bはそれぞれ、0.1≦a≦0.6、0≦b≦0.7を満足すると好ましい。aの値が0.1未満では耐摩耗性に劣り、0.6を超えて大きくなると耐チッピング性が低下する。bの値が0.7を超えて大きくなると鋼に対する化学的安定性が急減して耐摩耗性が低下する。また、複合窒化物,複合炭窒化物などの複合化合物の含有量は、結合相全体に対して40〜75体積%が好ましい。40体積%未満では耐摩耗性の改善効果が少なく、75体積%を超えて大きくなると相対的に複合ホウ化物量が減少して耐チッピング性が低下する。 Specifically, the composite compound which is an essential component (1) of the binder phase in the cBN-based ultrahigh pressure sintered body of the present invention includes (Ti, Zr) N, (Ti, Hf) N, (Ti, Zr, Hf) N, (Ti, Zr, Hf) (C, N) and the like. These composite nitrides and composite carbonitrides are referred to as (Ti 1-a M a ) (C 1-b N b ) (where M represents at least one of Zr and Hf). Where a represents the atomic ratio of M to the sum of Ti and M, b represents the atomic ratio of N to the sum of C and N, and a and b are 0.1 ≦ a ≦ 0, respectively. .6, 0 ≦ b ≦ 0.7 is satisfied. If the value of a is less than 0.1, the wear resistance is inferior, and if it exceeds 0.6, the chipping resistance decreases. If the value of b exceeds 0.7, the chemical stability with respect to the steel decreases rapidly and the wear resistance decreases. Further, the content of the composite compound such as composite nitride or composite carbonitride is preferably 40 to 75% by volume with respect to the entire binder phase. When the amount is less than 40% by volume, the effect of improving the wear resistance is small. When the amount exceeds 75% by volume, the amount of the composite boride is relatively reduced and the chipping resistance is lowered.

結合相の必須成分(2)である複合ホウ化物は、具体的には、(Ti,Zr)B2,(Ti,Hf)B2,(Ti,Zr,Hf)B2が挙げられる。ここで、複合ホウ化物は、必須成分(1)の複合化合物が焼結反応によってホウ化物に変化したものであるため、TiとZr,Hfとの割合はほぼ複合化合物に一致する。そして、これらの複合ホウ化物を(Ti1-cc)B2(ただし、MはZrおよびHfの少なくとも1方を示す。)と表した場合に、cはTiとMとの合計に対するMの原子比を示し、cは、0.1≦c≦0.6を満足すると好ましい。cの値が0.1未満では耐摩耗性に劣り、0.6を超えて大きくなると耐チッピング性が低下する。また、複合ホウ化物の含有量は、結合相全体に対して10〜40体積%が好ましい。10体積%未満では耐チッピング性の改善効果が少なく、40体積%を超えて大きくなると相対的に複合窒化物,複合炭窒化物などの複合化合物量が減少して耐摩耗性が低下する。 Specific examples of the composite boride which is an essential component (2) of the binder phase include (Ti, Zr) B 2 , (Ti, Hf) B 2 , and (Ti, Zr, Hf) B 2 . Here, since the composite boride is a compound in which the composite compound of the essential component (1) is changed to a boride by a sintering reaction, the ratio of Ti, Zr, and Hf substantially matches the composite compound. When these composite borides are expressed as (Ti 1-c M c ) B 2 (where M is at least one of Zr and Hf), c is M relative to the sum of Ti and M. It is preferable that c satisfies 0.1 ≦ c ≦ 0.6. If the value of c is less than 0.1, the wear resistance is inferior, and if it exceeds 0.6, the chipping resistance decreases. Moreover, 10-40 volume% is preferable with respect to the whole binder phase content of a composite boride. If it is less than 10% by volume, the effect of improving the chipping resistance is small, and if it exceeds 40% by volume, the amount of complex compounds such as complex nitrides and complex carbonitrides is relatively reduced and wear resistance is lowered.

結合相の必須成分(3)であるAlNは、焼結助剤である金属AlとcBNとの反応によって生じるもので、その量は結合相全体に対して10〜30体積%の範囲が好ましい。10体積%未満では焼結性に劣り、30体積%を超えて大きくなると硬さと靱性が低下して耐摩耗性と耐チッピング性が共に劣る。また、必須成分(4)であるAl23は、焼結助剤である金属Alと原料粉末中あるいは工程混入の酸素との反応によって生じるもので、結合相全体に対して2〜20体積%が好ましい。 AlN, which is an essential component (3) of the binder phase, is produced by a reaction between metal Al, which is a sintering aid, and cBN, and the amount thereof is preferably in the range of 10 to 30% by volume with respect to the whole binder phase. If it is less than 10% by volume, the sinterability is inferior, and if it exceeds 30% by volume, the hardness and toughness are lowered and both the wear resistance and chipping resistance are inferior. The essential component (4), Al 2 O 3, is produced by a reaction between metal Al, which is a sintering aid, and oxygen in the raw material powder or mixed in the process. % Is preferred.

以上の4つの必須成分以外に、ZrC,HfN,VB,TaB,CrB,WC,ZrO2,SiC,Si34などの周期律表4a,5a,6a族元素の炭化物,窒化物,ホウ化物,酸化物、Siの炭化物,窒化物を含有しても良い。これら化合物の含有量は、結合相全体に対して総量で20体積%以下が好ましい。 In addition to the above four essential components, carbides, nitrides and borides of periodic table 4a, 5a and 6a elements such as ZrC, HfN, VB, TaB, CrB, WC, ZrO 2 , SiC and Si 3 N 4 , Oxide, Si carbide, and nitride may be contained. The total content of these compounds is preferably 20% by volume or less with respect to the entire binder phase.

本発明のcBN基超高圧焼結体におけるcBNの含有量は、30体積%未満では強度、靱性が低下してチッピングを起こし易く、逆に80体積%を超えて大きくなるとcBNと鋼との反応摩耗が増大するために、30〜80体積%と定めた。   If the content of cBN in the cBN-based ultra-high pressure sintered body of the present invention is less than 30% by volume, the strength and toughness tend to decrease and chipping easily occurs. Conversely, if the content exceeds 80% by volume, the reaction between cBN and steel occurs. In order to increase wear, the volume was determined to be 30 to 80% by volume.

本発明のcBN基超高圧焼結体の製造方法の一つは、cBN粉末と、ZrおよびHfの少なくとも1方とTiとを含む複合窒化物,複合炭窒化物および複合炭酸窒化物の中の少なくとも1種の粉末と、金属アルミニウム粉末とを混合粉砕する第1工程、第1工程で得られた混合粉末を圧力3〜7GPa,温度1300〜1600℃の超高圧高温下で焼結する第2工程を含むものである。また、本発明のcBN基超高圧焼結体の製造方法の一つは、cBN粉末と、ZrおよびHfの少なくとも1方とTiとを含む複合窒化物,複合炭窒化物および複合炭酸窒化物の少なくとも1種の粉末と、金属アルミニウム粉末と、周期律表4a,5a,6a族元素の炭化物,窒化物,ホウ化物,酸化物、Alの窒化物,酸化物およびSiの炭化物,窒化物の中の少なくとも1種の結合相形成粉末とを混合粉砕する第1工程、第1工程で得られた混合粉末を圧力3〜7GPa,温度1300〜1600℃の超高圧高温下で焼結する第2工程を含むものである。   One of the methods for producing a cBN-based ultrahigh-pressure sintered body of the present invention is a composite nitride, composite carbonitride and composite carbonitride containing cBN powder, at least one of Zr and Hf, and Ti. A first step of mixing and pulverizing at least one kind of powder and a metal aluminum powder; a second step of sintering the mixed powder obtained in the first step at a pressure of 3 to 7 GPa and a temperature of 1300 to 1600 ° C. under a high pressure and high temperature It includes a process. One of the methods for producing a cBN-based ultrahigh-pressure sintered body of the present invention is a composite nitride, composite carbonitride, and composite carbonitride containing cBN powder, at least one of Zr and Hf, and Ti. Among at least one kind of powder, metallic aluminum powder, and carbides, nitrides, borides, oxides, Al nitrides, oxides and Si carbides and nitrides of Group 4a, 5a, and 6a elements of the periodic table First step of mixing and pulverizing at least one kind of binder phase forming powder, and second step of sintering the mixed powder obtained in the first step under a pressure of 3 to 7 GPa and a temperature of 1300 to 1600 ° C. Is included.

出発原料として使用するZrおよびHfの少なくとも1方とTiとを含む複合窒化物および複合炭窒化物の少なくとも1種の粉末は、例えば、ZrN,HfNとTiN,TiCNとTiH2との混合粉末を真空加熱により固溶体化したものである。この粉末の組成式を(Ti,M)(C,N)x(但し、xはTiとMとの合計に対するCとNとの合計の原子比を示す。)で表した場合、xの値は0.6〜0.9の範囲が好ましい。xの値が0.6未満であると、焼結反応で生じる複合ホウ化物の割合が高く、逆に0.9を超えて大きくなると複合ホウ化物の割合が低くなるからである。 As the starting material, at least one powder of composite nitride and composite carbonitride containing at least one of Zr and Hf and Ti, for example, a mixed powder of ZrN, HfN and TiN, TiCN and TiH 2 is used. It is a solid solution by vacuum heating. When the composition formula of this powder is represented by (Ti, M) (C, N) x (where x represents the atomic ratio of C and N to the total of Ti and M), the value of x Is preferably in the range of 0.6 to 0.9. This is because if the value of x is less than 0.6, the ratio of the composite boride produced by the sintering reaction is high, and conversely if it exceeds 0.9, the ratio of the composite boride decreases.

本発明のcBN基超高圧焼結体は、ZrおよびHfの少なくとも1方とTiとを含む複合窒化物、複合炭窒化物が耐熱性や鋼に対する化学的安定性を増大させる作用をし、反応生成したZrおよびHfの少なくとも1方とTiとを含む複合ホウ化物が硬さ,靱性や熱伝導性を増大させる作用をし、結果として得られたcBN基超高圧焼結体の耐摩耗性と耐チッピング性とを同時に改善する作用をしているものである。   The cBN-based ultrahigh-pressure sintered body of the present invention is a composite nitride containing at least one of Zr and Hf and Ti, and the composite carbonitride acts to increase heat resistance and chemical stability against steel, The resulting composite boride containing at least one of Zr and Hf and Ti acts to increase the hardness, toughness and thermal conductivity, and as a result, the wear resistance of the resulting cBN-based ultrahigh pressure sintered body It works to improve the chipping resistance at the same time.

本発明のcBN基超高圧焼結体は、従来のcBN基超高圧焼結体工具に比べて、特に高硬度鋼の高速断続旋削で約2倍の寿命を達成できると言う効果を有する。   The cBN-based ultrahigh-pressure sintered body of the present invention has an effect that it can achieve a life that is approximately twice that of conventional cBN-based ultrahigh-pressure sintered tools, particularly with high-speed intermittent turning of high-hardness steel.

まず、市販されている平均粒径1.7μmのZrN,平均粒径2.3μmのHfN,平均粒径1.5μmのTiN,平均粒径1.5mのTiCおよび平均粒径5μmのTiH2の各粉末を用いて、表1に示す配合組成に秤量し、ステンレス製ポットに外掛けで0.2重量%のパラフィンワックスとヘキサン溶媒を超硬合金製ボ−ルと共に挿入し、24時間のボールミル後、乾燥して混合粉末とした。これらの混合粉末をジルコニア製ルツボに軽く充填し、加熱炉に挿入した後、約5Paの真空中で昇温して1600℃で1時間の加熱処理を施した。そして、この処理粉末を解砕し、上記ボールミルによる48時間の粉砕を行って(A)〜(D)の複合炭酸窒化物粉末を得た。得られた粉末の平均粒径(FSSS)と窒素量,炭素量,酸素量の測定結果から計算で求めた組成式を表1に併記した。尚、X線回折により、全ての粉末がほぼ均一な固溶体であることを確認した。
First, commercially available ZrN having an average particle diameter of 1.7 μm, HfN having an average particle diameter of 2.3 μm, TiN having an average particle diameter of 1.5 μm, TiC having an average particle diameter of 1.5 m, and TiH 2 having an average particle diameter of 5 μm. Each powder was weighed to the composition shown in Table 1, and 0.2% by weight of paraffin wax and hexane solvent were inserted into a stainless steel pot together with a cemented carbide ball, and the ball mill for 24 hours. Thereafter, it was dried to obtain a mixed powder. These mixed powders were lightly filled into a zirconia crucible and inserted into a heating furnace, and then heated in a vacuum of about 5 Pa and subjected to heat treatment at 1600 ° C. for 1 hour. The treated powder was crushed and pulverized for 48 hours by the ball mill to obtain composite carbonitride powders (A) to (D). Table 1 also shows the composition formula obtained by calculation from the average particle size (FSSS) of the obtained powder and the measurement results of nitrogen content, carbon content, and oxygen content. X-ray diffraction confirmed that all the powders were almost uniform solid solutions.

Figure 2007169107
Figure 2007169107

そして、得られた複合炭酸窒化物粉末(A)〜(D),前記のZrN,HfN,TiCおよび市販されている平均粒径3.0μmのcBN,平均粒径1.2μmのTiN0.7,平均粒径0.9μmの金属Al,平均粒径0.5μmのWC,3モル%のY23を固溶した平均粒径0.2μmのZrO2の各粉末を用いて、表2に示す組成に秤量し、これをウレタン内張りしたステンレスポットに超硬合金製ボールとヘキサン溶媒,パラフィンと共に挿入し、窒素中乾燥を行って混合粉末とした。 The obtained composite carbonitride powders (A) to (D), the aforementioned ZrN, HfN, TiC, and commercially available cBN having an average particle diameter of 3.0 μm, TiN 0.7 having an average particle diameter of 1.2 μm, an average Table 2 shows each powder of metal Al having a particle diameter of 0.9 μm, WC having an average particle diameter of 0.5 μm, and ZrO 2 having an average particle diameter of 0.2 μm in which 3 mol% of Y 2 O 3 is dissolved. The composition was weighed and inserted into a stainless steel pot lined with urethane together with a cemented carbide ball, hexane solvent, and paraffin, and dried in nitrogen to obtain a mixed powder.

Figure 2007169107
Figure 2007169107

次に、得られた混合粉末のプレス成形体を超硬合金製の台金上に置いてジルコニウムカプセル中に埋設し、真空加熱炉に挿入して800℃で1時間の脱ガス処理を行った後、このカプセルを超高圧高温発生装置にセットし、5.5GPaの圧力、1450℃の温度、30分の保持時間の条件でもって焼結して本発明品1〜9および比較品1〜5のcBN基超高圧焼結体を得た。そして、放電加工による切断とダイヤモンドによる研削、ラップ加工して測定用試料を作製し、ヌープ硬さ(荷重:4.8N)を測定した。その結果を表2に併記した。   Next, the obtained pressed powder compact was placed on a cemented carbide base metal, embedded in a zirconium capsule, inserted into a vacuum heating furnace, and degassed at 800 ° C. for 1 hour. Thereafter, the capsules were set in an ultra-high pressure and high temperature generator, sintered under the conditions of a pressure of 5.5 GPa, a temperature of 1450 ° C., and a holding time of 30 minutes. CBN-based ultra-high pressure sintered body was obtained. And the sample for a measurement was produced by cutting by electric discharge machining, grinding by diamond, and lapping, and Knoop hardness (load: 4.8 N) was measured. The results are also shown in Table 2.

また、各試料の成分をX線回折法により同定した後、走査電子顕微鏡で撮影した組織写真の画像解析結果とX線回折法による定量分析結果を照合して各成分の含有量を求めた。そして、結合相成分に関しては、その割合を算出した。これらの結果を表3に示す。尚、本発明品に含有される複合窒化物,複合炭窒化物,複合ホウ化物中のTi,Zr,Hf量をEDSで分析したところ、配合に用いた複合炭酸窒化物粉末の組成式(表1中)にほぼ一致した。   Moreover, after identifying the component of each sample by X-ray diffraction method, the content of each component was calculated | required by collating the image analysis result of the structure | tissue photograph image | photographed with the scanning electron microscope, and the quantitative analysis result by X-ray diffraction method. And about the binder phase component, the ratio was computed. These results are shown in Table 3. When the amounts of Ti, Zr, and Hf in the composite nitride, composite carbonitride, and composite boride contained in the product of the present invention were analyzed by EDS, the composition formula of the composite carbonitride powder used in the blending (Table 1).

Figure 2007169107
Figure 2007169107

表3の結果から、複合炭酸窒化物を結合相の出発原料に用いた本発明品では、複合ホウ化物を含有しているのに対して、TiNとZrN,HfNを別々に用いた比較品では、生成するホウ化物はTiB2であり、また複合窒化物を形成していないことが分かる。 From the results of Table 3, the product of the present invention using composite carbonitride as the starting material for the binder phase contains composite boride, whereas the comparative product using TiN, ZrN, and HfN separately. It can be seen that the boride formed is TiB 2 and does not form a composite nitride.

実施例1で得られた本発明品2,3,5,8,9および比較品1,3,4,5の各焼結体を放電加工による切断、超硬合金製チップ台金へのロー付け、ダイヤモンド砥石による研削加工を経て、切削試験用チップ形状:TNMA160408を作製した。そして、下記条件による切削試験を行い、その結果を表4に示した。
(A)外周断続湿式切削;被削材:SCM415の浸炭焼入材(2本溝入り、HRC=61)、切削速度:200m/min、切込み量:0.5mm、送り量:0.1mm/rev、評価基準:平均逃げ面摩耗量VB=0.2mmとなる又は欠損,チッピングまでの切削時間。
(B)端面断続乾式切削;被削材:FC30(HB210〜230)、切削速度:400m/min、切込み量:0.5mm、送り量:0.20mm/rev、評価基準:平均逃げ面摩耗量VB=0.2mmになる又は欠損,チッピングまでの切削時間。
The sintered bodies of the present invention products 2, 3, 5, 8, 9 and comparative products 1, 3, 4, 5 obtained in Example 1 were cut by electric discharge machining and applied to chip tips made of cemented carbide. The chip shape for cutting test: TNMA160408 was produced through grinding with a diamond grindstone. And the cutting test by the following conditions was done and the result was shown in Table 4.
(A) Peripheral intermittent wet cutting; Work material: Carburizing and quenching material of SCM415 (with two grooves, HRC = 61), Cutting speed: 200 m / min, Cutting amount: 0.5 mm, Feeding amount: 0.1 mm / rev, evaluation criteria: average flank wear amount VB = 0.2 mm or cutting time until chipping and chipping.
(B) End face intermittent dry cutting; Work material: FC30 (HB210-230), Cutting speed: 400 m / min, Cutting amount: 0.5 mm, Feeding amount: 0.20 mm / rev, Evaluation criteria: Average flank wear amount Cutting time until VB = 0.2mm or chipping and chipping.

Figure 2007169107
Figure 2007169107

表4の結果から、比較品に比べて本発明品は、浸炭焼入鋼の高速断続旋削では平均で1.9倍、鋳物の高速旋削では1.4倍の寿命があり、高硬度鋼の高速切削に効果的と分かる。   From the results in Table 4, the product of the present invention has an average life of 1.9 times in high-speed intermittent turning of carburized and hardened steel and 1.4 times in high-speed turning of casting, compared with the comparative product. It turns out to be effective for high-speed cutting.

Claims (4)

cBN:30〜80体積%と、残りが周期律表4a,5a,6a族元素の炭化物,窒化物,ホウ化物,酸化物、Alの窒化物,酸化物、Siの炭化物,窒化物およびこれらの相互固溶体の中の少なくとも1種からなる結合相と不可避不純物とでなるcBN基超高圧焼結体において、結合相は(1)ZrおよびHfの少なくとも1方とTiとを含む複合窒化物および複合炭窒化物の少なくとも1種の複合化合物と、(2)ZrおよびHfの少なくとも1方とTiとを含む複合ホウ化物と、(3)AlNと、(4)Al23とを含有するcBN基超高圧焼結体。 cBN: 30 to 80% by volume, and the remainder is periodic table 4a, 5a, 6a group element carbide, nitride, boride, oxide, Al nitride, oxide, Si carbide, nitride and these In a cBN-based ultrahigh-pressure sintered body composed of at least one binder phase and inevitable impurities in the mutual solid solution, the binder phase is (1) a composite nitride and composite containing at least one of Zr and Hf and Ti CBN containing at least one complex compound of carbonitride, (2) a complex boride containing at least one of Zr and Hf and Ti, (3) AlN, and (4) Al 2 O 3 Super high pressure sintered body. 上記結合相は、結合相全体に対して、(Ti1-aa)(C1-bb)(ただし、MはZrおよびHfの少なくとも1方を示し、aはTiとMとの合計に対するMの原子比を示し、bはCとNとの合計に対するNの原子比を示し、a,bはそれぞれ、0.1≦a≦0.6、0≦b≦0.7を満足する。)で表される複合化合物:40〜75体積%と、(Ti1-cc)B2(ただし、MはZrおよびHfの少なくとも1方を示し、cはTiとMとの合計に対するMの原子比を示し、cは、0.1≦c≦0.6を満足する。)で表される複合ホウ化物:10〜40体積%と、AlN:10〜30体積%と、Al23:2〜20体積%とからなるcBN基超高圧焼結体。 The bonded phase is (Ti 1-a M a ) (C 1-b N b ) (wherein M represents at least one of Zr and Hf, and a represents a combination of Ti and M with respect to the entire bonded phase. B represents the atomic ratio of N to the sum of C and N, and a and b satisfy 0.1 ≦ a ≦ 0.6 and 0 ≦ b ≦ 0.7, respectively. Compound compound represented by: 40 to 75% by volume and (Ti 1-c M c ) B 2 (wherein M represents at least one of Zr and Hf, and c represents the sum of Ti and M) M represents the atomic ratio of M to C, and c satisfies 0.1 ≦ c ≦ 0.6.) Composite boride represented by: 10 to 40% by volume, AlN: 10 to 30% by volume, Al 2 O 3 : cBN-based ultrahigh-pressure sintered body composed of 2 to 20% by volume. cBN粉末と、ZrおよびHfの少なくとも1方とTiとを含む複合窒化物,複合炭窒化物および複合炭酸窒化物の中の少なくとも1種の粉末と、金属アルミニウム粉末とを混合粉砕する第1工程、第1工程で得られた混合粉末を圧力4〜6GPa,温度1400〜1600℃の超高圧高温下で焼結する第2工程を含むcBN基超高圧焼結体の製造方法。   First step of mixing and crushing cBN powder, at least one of composite nitride containing at least one of Zr and Hf and Ti, composite carbonitride and composite carbonitride, and metal aluminum powder A method for producing a cBN-based ultrahigh-pressure sintered body comprising a second step of sintering the mixed powder obtained in the first step at a pressure of 4 to 6 GPa and a temperature of 1400 to 1600 ° C. under high pressure and high temperature. cBN粉末と、ZrおよびHfの少なくとも1方とTiとを含む複合窒化物,複合炭窒化物および複合炭酸窒化物の中の少なくとも1種の粉末と、金属アルミニウム粉末と、周期律表4a,5a,6a族元素の炭化物,窒化物,ホウ化物,酸化物、Alの窒化物,酸化物およびSiの炭化物,窒化物の中の少なくとも1種の結合相形成粉末とを混合粉砕する第1工程、第1工程で得られた混合粉末を圧力4〜6GPa,温度1400〜1600℃の超高圧高温下で焼結する第2工程を含むcBN基超高圧焼結体の製造方法。

cBN powder, composite nitride containing at least one of Zr and Hf, and Ti, at least one of composite carbonitride and composite carbonitride, metallic aluminum powder, periodic table 4a, 5a , A first step of mixing and grinding the carbide, nitride, boride, oxide, Al nitride, oxide and Si carbide of the group 6a element, and at least one binder phase forming powder in the nitride, A method for producing a cBN-based ultrahigh-pressure sintered body comprising a second step of sintering the mixed powder obtained in the first step at a pressure of 4 to 6 GPa and a temperature of 1400 to 1600 ° C under an ultrahigh pressure and high temperature.

JP2005369026A 2005-12-22 2005-12-22 cBN-based ultra-high pressure sintered body and method for producing the same Active JP5092237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369026A JP5092237B2 (en) 2005-12-22 2005-12-22 cBN-based ultra-high pressure sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369026A JP5092237B2 (en) 2005-12-22 2005-12-22 cBN-based ultra-high pressure sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007169107A true JP2007169107A (en) 2007-07-05
JP5092237B2 JP5092237B2 (en) 2012-12-05

Family

ID=38296169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369026A Active JP5092237B2 (en) 2005-12-22 2005-12-22 cBN-based ultra-high pressure sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5092237B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014191567A1 (en) * 2013-05-31 2014-12-04 Element Six Limited Pcbn material, tool elements comprising same and method for using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI129420B (en) 2020-04-23 2022-02-15 Savroc Ltd An aqueous electroplating bath

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236253A (en) * 1989-03-10 1990-09-19 Sumitomo Electric Ind Ltd High hardness sintered body for tool
JPH07172924A (en) * 1993-12-17 1995-07-11 Toshiba Tungaloy Co Ltd Highly tough sintered compact for tool and its production
JPH0891936A (en) * 1994-09-29 1996-04-09 Kyocera Corp Sintered material of boron nitride of cubic system
JP2004026555A (en) * 2002-06-25 2004-01-29 Toshiba Tungaloy Co Ltd Cubic boron nitride-containing sintered compact and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236253A (en) * 1989-03-10 1990-09-19 Sumitomo Electric Ind Ltd High hardness sintered body for tool
JPH07172924A (en) * 1993-12-17 1995-07-11 Toshiba Tungaloy Co Ltd Highly tough sintered compact for tool and its production
JPH0891936A (en) * 1994-09-29 1996-04-09 Kyocera Corp Sintered material of boron nitride of cubic system
JP2004026555A (en) * 2002-06-25 2004-01-29 Toshiba Tungaloy Co Ltd Cubic boron nitride-containing sintered compact and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014191567A1 (en) * 2013-05-31 2014-12-04 Element Six Limited Pcbn material, tool elements comprising same and method for using same
CN105246858A (en) * 2013-05-31 2016-01-13 六号元素有限公司 Pcbn material, tool elements comprising same and method for using same

Also Published As

Publication number Publication date
JP5092237B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP4558042B2 (en) cBN sintered body and cutting tool using the same
JP5189504B2 (en) Composite sintered body
JP5664795B2 (en) Cubic boron nitride sintered body
JP5100927B2 (en) Method for producing cubic boron nitride sintered body
GB2560642A (en) Sintered polycrystalline cubic boron nitride material
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
JP4830571B2 (en) cBN super high pressure sintered body
JP2017014084A (en) Cubic crystal boron nitride sintered body, method of producing cubic crystal boron nitride sintered body, tool and cutting tool
JP2009067637A (en) Cubic boron nitride sintered compact and method for producing the same
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP6615108B2 (en) High temperature oxidation resistant rare metal-free hard sintered body and method for producing the same
JP2021080161A (en) Composite ceramic composition and method of forming the same
JP2011256067A (en) Sintered compact, cutting tool using the same, and method of producing the sintered compact
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JP6283985B2 (en) Sintered body
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP2011207689A (en) Composite sintered compact
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JP2006111947A (en) Ultra-fine particle of cermet
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2011140414A (en) Sintered compact and cutting tool using the sintered compact
JP4887588B2 (en) Dispersion strengthened CBN-based sintered body and method for producing the same
JP6365228B2 (en) Sintered body
JP4004024B2 (en) Titanium carbide based ceramic tool and manufacturing method thereof
JP2004114163A (en) Alumina group ceramic tool and production method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250