JP2009067637A - Cubic boron nitride sintered compact and method for producing the same - Google Patents

Cubic boron nitride sintered compact and method for producing the same Download PDF

Info

Publication number
JP2009067637A
JP2009067637A JP2007238739A JP2007238739A JP2009067637A JP 2009067637 A JP2009067637 A JP 2009067637A JP 2007238739 A JP2007238739 A JP 2007238739A JP 2007238739 A JP2007238739 A JP 2007238739A JP 2009067637 A JP2009067637 A JP 2009067637A
Authority
JP
Japan
Prior art keywords
sintered body
boron nitride
cubic boron
cbn
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007238739A
Other languages
Japanese (ja)
Other versions
JP5059528B2 (en
Inventor
Kazuko Yamamoto
佳津子 山本
Hitoshi Sumiya
均 角谷
Naohiro Toda
直大 戸田
Katsumi Okamura
克己 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2007238739A priority Critical patent/JP5059528B2/en
Publication of JP2009067637A publication Critical patent/JP2009067637A/en
Application granted granted Critical
Publication of JP5059528B2 publication Critical patent/JP5059528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-hardness sintered compact which has a high cBN content and is capable of fully exhibiting the characteristic properties, such as high hardness and high thermal conductivity, which is inherent in cBN, and thus is applicable also to high-speed cutting of a hardly cut material and can achieve a long tool lifetime. <P>SOLUTION: The cubic boron nitride sintered compact is a sintered compact based on cubic boron nitride, wherein at least one element selected from the group consisting of F, Cl, Br and I is contained, and the concentration of the element is 50 ppb to 100 ppm by wt.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、立方晶型窒化硼素(cBN)を含有する焼結体(以下、cBN焼結体と記す)及びその製造方法に関するものであり、より詳しくは寿命に優れる立方晶型窒化硼素焼結体に関するものである。   The present invention relates to a sintered body containing cubic boron nitride (cBN) (hereinafter referred to as a cBN sintered body) and a method for producing the same, and more specifically, cubic boron nitride sintered having excellent lifetime. It is about the body.

cBN(cubic boron nitride)は、ダイヤモンドに次ぐ硬度・熱伝導率を有し、ダイヤモンドと比較し、鉄系金属との反応性が低いという特徴を有し、焼入鋼や鋳鉄の切削にはこのcBNを含有するcBN焼結体が多用されている。焼入鋼切削にはTiセラミックス系の結合材中にcBN粒子が離散した構造の焼結体が有用である。   cBN (Cubic Boron Nitride) has the second highest hardness and thermal conductivity after diamond, and is characterized by low reactivity with ferrous metals compared to diamond. This is useful for cutting hardened steel and cast iron. A cBN sintered body containing cBN is frequently used. A sintered body having a structure in which cBN particles are dispersed in a Ti ceramic binder is useful for cutting hardened steel.

一方難削材の切削には、cBNの高硬度、高熱伝導率という特徴を最大限に生かした、cBN粒子の含有率が高く粒子同士が接触・反応した骨格構造を持つcBN焼結体が適用される。工具材質の熱伝導率が高いと刃先温度の上昇を抑制することができるため、工具材質の温度変化による強度低下を軽減でき、工具寿命が向上する。例えば特許文献1に示されるように、Al系合金を触媒としてcBN粒子同士を反応、結合させて焼結されるcBN焼結体が知られている。また、特許文献2では、Al系合金の組成を調整することにより焼結性を向上させ比較的低圧でもcBN焼結体を得る方法が開示されている。   On the other hand, for cutting difficult-to-cut materials, a cBN sintered body with a high cBN particle content and a skeletal structure in which the particles are brought into contact with each other and applied, taking full advantage of the high hardness and high thermal conductivity of cBN. Is done. If the thermal conductivity of the tool material is high, an increase in the cutting edge temperature can be suppressed, so that a decrease in strength due to a temperature change of the tool material can be reduced, and the tool life is improved. For example, as shown in Patent Document 1, a cBN sintered body that is sintered by reacting and bonding cBN particles with an Al-based alloy as a catalyst is known. Patent Document 2 discloses a method for obtaining a cBN sintered body even at a relatively low pressure by improving the sinterability by adjusting the composition of the Al-based alloy.

また、特許文献3で、cBN粒子とAlのみから生成され、cBNと、cBNとAl間の反応生成物である窒化アルミニウムおよび二硼化アルミニウムからなっている、cBN粒子同士が互いに結合した骨格構造を持つ焼結体を製造する方法が開示されている。   Further, in Patent Document 3, a skeletal structure in which cBN particles are bonded to each other, which is formed only from cBN particles and Al, and is composed of cBN and aluminum nitride and aluminum diboride which are reaction products between cBN and Al. A method of manufacturing a sintered body having the above is disclosed.

しかしながら、cBNの含有率が高く骨格構造を有した焼結体を得るためには、cBN粒子同士が接触するため、cBN粒子同士を反応させて焼結する必要があるが、触媒を用いてもcBN粒子が高圧下においても2000℃程度までの温度域では安定なため反応しにくく、cBN粒子間の反応部分に欠陥が多数導入されている、あるいは接触のみで未反応部分が残る場合が多く、工具として使用した場合に欠損や粒子脱落の起点となり、十分な工具寿命が得られない。   However, in order to obtain a sintered body having a high content of cBN and a skeleton structure, the cBN particles are in contact with each other. Therefore, it is necessary to cause the cBN particles to react with each other and sinter them. In many cases, the cBN particles are stable in a temperature range of up to about 2000 ° C. even under high pressure, so that the reaction is difficult. Many defects are introduced into the reaction parts between the cBN particles, or unreacted parts are often left only by contact. When used as a tool, it becomes a starting point for chipping and particle dropping, and a sufficient tool life cannot be obtained.

また、触媒作用を持つ金属が焼結体内のcBN骨格構造の間に金属としても残存する為、切削時の刃先温度に相当する高温下では極端に機械強度が低下してしまい市場の望む工具寿命が得られていない。
特公昭52−43846号公報 特公昭57−59228号公報 特公昭63−20792号公報
In addition, since a metal having a catalytic action remains as a metal between the cBN skeleton structures in the sintered body, the mechanical strength is extremely lowered at a high temperature corresponding to the cutting edge temperature at the time of cutting, and the desired tool life in the market. Is not obtained.
Japanese Examined Patent Publication No. 52-43846 Japanese Examined Patent Publication No. 57-59228 Japanese Examined Patent Publication No. 63-20792

本発明の目的は、cBN含有率の高い焼結体の上記の問題点を解決し、高硬度・高熱伝導率といったcBNの特性を十分に発揮でき、難削材の高速切削にも適用でき、長い工具寿命を達成可能な高硬度焼結体を提供することである。   The object of the present invention is to solve the above-mentioned problems of a sintered body having a high cBN content, to fully exhibit the characteristics of cBN such as high hardness and high thermal conductivity, and can be applied to high-speed cutting of difficult-to-cut materials, The object is to provide a high hardness sintered body capable of achieving a long tool life.

本発明者らは鋭意研究の結果、ハロゲン化水素に優れた触媒効果があり、cBN粒子の固相焼結で粒子間に強固な結合生成を促進し、強靭なcBN焼結体を生成する効果があることを見出した。また、その効果はcBNが安定な領域よりも低温低圧においても効果を
発揮し、工業的に安価な高強度立方晶窒化硼素焼結体を得ることができた。すなわち、本発明は以下の構成を採用する。
As a result of diligent research, the present inventors have an excellent catalytic effect on hydrogen halide, an effect of promoting strong bond formation between particles by solid-phase sintering of cBN particles, and generating a tough cBN sintered body. Found that there is. Further, the effect was exhibited even at a lower temperature and a lower pressure than the region where cBN was stable, and a high-strength cubic boron nitride sintered body that was industrially inexpensive could be obtained. That is, the present invention adopts the following configuration.

(1)立方晶窒化硼素を主成分とする焼結体であって、焼結体中にF、Cl、Br、Iからなる群のいずれか1種以上の元素が含まれ、その濃度がwt%で50ppb以上100ppm以下であることを特徴とする立方晶窒化硼素焼結体。
(2)立方晶窒化硼素を主成分とする焼結体であって、焼結体中にF、Cl、Br、Iからなる群のいずれか1種以上の元素が含まれ、その濃度がwt%で50ppb以上10ppm以下であることを特徴とする立方晶窒化硼素焼結体。
(3)前記立方晶窒化硼素の平均粒径が0.5μm以上5μm以下であることを特徴とする上記(1)又は(2)に記載の立方晶窒化硼素焼結体。
(4)前記立方晶窒化硼素が体積含有率で70%以上であることを特徴とする上記(1)〜(3)のいずれか一に記載の立方晶窒化硼素焼結体。
(5)前記立方晶窒化硼素焼結体の熱伝導率が100W/(m・K)以上であることを特徴とする上記(1)〜(4)のいずれか一に記載の立方晶窒化硼素焼結体。
(6)立方晶窒化硼素を主成分とする焼結体であって、該立方晶窒化硼素焼結体が、周期律表のIV、VI、VIII〜X族元素及び、Alからなる群より選択される元素の単体、相互固溶体、炭化物、窒化物、炭窒化物、硼化物及び、酸化物のいずれか一つ以上を含む上記(1)〜(5)のいずれか一に記載の立方晶窒化硼素焼結体。
(7)HF、HCl、HBr、HIから成るハロゲン化水素の水溶液であるハロゲン化水素酸中で立方晶窒化硼素粉末を加熱処理した後に焼結することを特徴とする立方晶窒化硼素焼結体の製造方法。
(1) A sintered body containing cubic boron nitride as a main component, wherein the sintered body contains one or more elements selected from the group consisting of F, Cl, Br, and I, and the concentration is wt. A cubic boron nitride sintered body characterized by being 50 ppb or more and 100 ppm or less.
(2) A sintered body containing cubic boron nitride as a main component, wherein the sintered body contains one or more elements selected from the group consisting of F, Cl, Br, and I, and the concentration is wt. A cubic boron nitride sintered body characterized by being 50 ppb or more and 10 ppm or less.
(3) The cubic boron nitride sintered body according to the above (1) or (2), wherein the cubic boron nitride has an average particle size of 0.5 μm or more and 5 μm or less.
(4) The cubic boron nitride sintered body according to any one of (1) to (3), wherein the cubic boron nitride has a volume content of 70% or more.
(5) The cubic boron nitride sintered body according to any one of the above (1) to (4), wherein the cubic boron nitride sintered body has a thermal conductivity of 100 W / (m · K) or more. Sintered body.
(6) A sintered body mainly composed of cubic boron nitride, wherein the cubic boron nitride sintered body is selected from the group consisting of elements IV, VI, VIII to X in the periodic table and Al The cubic nitriding according to any one of the above (1) to (5), comprising any one or more of a simple substance, a mutual solid solution, carbide, nitride, carbonitride, boride and oxide Boron sintered body.
(7) A cubic boron nitride sintered body characterized by sintering cubic boron nitride powder after heat treatment in hydrohalic acid, which is an aqueous solution of hydrogen halide comprising HF, HCl, HBr, and HI. Manufacturing method.

本発明に係るcBN焼結体は、cBN粒子間の結合強度が強いため、焼結体としての熱伝導率が高く、高負荷切削時の刃先温度上昇・強度劣化を抑制する効果がある。また焼結体の機械強度も高いため、切削時の欠損・摩耗が抑制され従来材に比べて大幅に工具寿命が延長される。   Since the cBN sintered body according to the present invention has a strong bond strength between the cBN particles, the thermal conductivity of the sintered body is high, and there is an effect of suppressing the temperature rise and strength deterioration at the time of high-load cutting. In addition, since the sintered body has high mechanical strength, chipping and wear during cutting are suppressed, and the tool life is greatly extended compared to conventional materials.

本発明に係るcBN焼結体は、焼結体中にF、Cl、Br、Iからなる群のいずれか1種以上の元素が含まれ、その濃度がwt%で50ppb以上100ppm以下であることを特徴とする。また、当該濃度はwt%で50ppb以上10ppm以下であることがより好ましい。
上記元素の焼結体中の濃度が50ppbを下回る場合には、cBN間結合が強化された接合点が少なすぎるため、この効果が焼結体の特性を向上させ望む工具特性が得るに至らない。100ppmを超える場合には、ハロゲンはcBN結晶粒界に偏析しており、熱伝導率の低下、ひいては切削時の刃先温度向上を招き工具特性が劣るものとなるため好ましくない。
また、非常に刃先負荷が高い切削の場合においては、熱伝導率のわずかな低下が、大きく耐摩耗性・耐欠損性に影響し、期待すべき工具性能が得られない。上述の如く、残留ハロゲンは粒界に集中するため、ハロゲン種の含有量が10ppmを超えると熱伝導率が低下する傾向にあるので、このような用途の場合には、ハロゲン種の焼結体における濃度は10ppm以下であることがより好ましい。
The cBN sintered body according to the present invention contains one or more elements of the group consisting of F, Cl, Br, and I in the sintered body, and the concentration is 50 ppb or more and 100 ppm or less in wt%. It is characterized by. The concentration is more preferably 50 ppb or more and 10 ppm or less in terms of wt%.
When the concentration of the element in the sintered body is less than 50 ppb, there are too few joint points where the bond between cBN is strengthened, so this effect improves the properties of the sintered body and does not provide the desired tool characteristics. . If it exceeds 100 ppm, the halogen is segregated at the cBN grain boundaries, resulting in a decrease in thermal conductivity and, consequently, an increase in cutting edge temperature during cutting, resulting in poor tool characteristics.
Moreover, in the case of cutting with a very high cutting edge load, a slight decrease in thermal conductivity greatly affects the wear resistance and fracture resistance, and the expected tool performance cannot be obtained. As described above, since the residual halogen concentrates at the grain boundaries, if the halogen species content exceeds 10 ppm, the thermal conductivity tends to decrease. The concentration in is more preferably 10 ppm or less.

本発明に係るcBN焼結体は、その主成分となる立方晶窒化硼素の平均粒径が0.5μm〜5μmであることを特徴とする。当該平均粒径が0.5μm未満の場合には、cBN粒子の粒界による散乱効果が大きくなり、望む焼結体の熱伝導率が得られない。また、5μmを超える場合にはcBN粒子の高負荷切削における耐欠損性が著しく低下し、本発明の目的に合致しない。より好ましい平均粒径は0.5〜0.2μmである。   The cBN sintered body according to the present invention is characterized in that an average particle diameter of cubic boron nitride as a main component is 0.5 μm to 5 μm. When the average particle size is less than 0.5 μm, the scattering effect due to the grain boundary of the cBN particles becomes large, and the desired thermal conductivity of the sintered body cannot be obtained. On the other hand, if it exceeds 5 μm, the fracture resistance of cBN particles in high-load cutting is remarkably lowered, which does not meet the object of the present invention. A more preferable average particle diameter is 0.5 to 0.2 μm.

本発明に係るcBN焼結体は、その主成分となる立方晶窒化硼素が体積含有率で70%以上であることを特徴とする。70%よりも充填率が低いと均質に結合材とcBN粒子が混合された完粉を用いて焼結された焼結体中のcBN粒子同士の接触面積が少なくなってしまい十分な熱伝導率の向上が望めない。cBN粒子の体積含有率は高いほど好ましい。   The cBN sintered body according to the present invention is characterized in that cubic boron nitride as a main component thereof is 70% or more by volume. When the filling rate is lower than 70%, the contact area between the cBN particles in the sintered body that is sintered using the finished powder in which the binder and the cBN particles are uniformly mixed is reduced, and sufficient thermal conductivity is obtained. I cannot expect improvement. The higher the volume content of cBN particles, the better.

本発明に係るcBN焼結体は、熱伝導率が100W/(m・K)以上であることを特徴とする。当該熱伝導率が100W/(m・K)未満の場合には、高負荷切削時に刃先温度が上昇してしまい、刃先強度の劣化を招き切削性能が低下する。   The cBN sintered body according to the present invention has a thermal conductivity of 100 W / (m · K) or more. When the thermal conductivity is less than 100 W / (m · K), the cutting edge temperature increases during high-load cutting, leading to deterioration of cutting edge strength and cutting performance.

また、本発明に係るcBN焼結体は、周期律表のIV、VI、VIII〜X族元素、Fe、Co、Ni及び、Alからなる群より選択される元素の単体、相互固溶体、炭化物、窒化物、炭窒化物、硼化物及び、酸化物のいずれか一つ以上を結合材として含むことが好ましい。これらの結合材により、cBN粒子同士の結合を強固にすることが可能となる。具体的には、Co、Al、WC、TiN等を好ましく用いることができる。   In addition, the cBN sintered body according to the present invention is a simple element of elements selected from the group consisting of IV, VI, VIII to X group elements of the periodic table, Fe, Co, Ni, and Al, mutual solid solution, carbide, It is preferable to include any one or more of nitride, carbonitride, boride, and oxide as a binder. These binders can strengthen the bond between the cBN particles. Specifically, Co, Al, WC, TiN, etc. can be preferably used.

本発明に係るcBN焼結体は、HF、HCl、HBr、HIから成るハロゲン化水素の水溶液であるハロゲン化水素酸中でcBN粉末を加熱処理した後に所定の温度圧力条件下で焼結することを特徴とする製造方法により、製造することができる。本発明のようにハロゲン化水素の触媒効果を利用すると、結合材を含む場合には5.5〜6.5GPa、1400〜1700℃、結合材を含まない場合には6.0〜7.0GPa、1600〜1900℃の圧力温度条件でcBN粒子を焼結することが可能となる。   The cBN sintered body according to the present invention is obtained by sintering cBN powder in a hydrohalic acid, which is an aqueous solution of hydrogen halide comprising HF, HCl, HBr, and HI, and then sintering under a predetermined temperature and pressure condition. It can manufacture by the manufacturing method characterized by these. When the catalytic effect of hydrogen halide is used as in the present invention, 5.5 to 6.5 GPa and 1400 to 1700 ° C. when the binder is included, and 6.0 to 7.0 GPa when the binder is not included. It becomes possible to sinter the cBN particles under pressure temperature conditions of 1600 to 1900 ° C.

cBN粒子をcBNが安定に存在する高温高圧下に保持すると接触点での拡散反応が生じ、粒子同士を結合させたcBN単体の焼結体が得られる。しかしながら粒子の3重点に相当する箇所においては、空隙が生じ発生圧力が低下する為、低圧で安定な同位体であるhBNが生成される。hBNが粒界に介在すると、焼結体強度は極端に低くなるため工具としての性能は著しく低下する。hBN−cBN変換反応を促進する触媒効果を有する物質を加えることでcBNの安定温度圧力領域よりも低温・低圧下で三重点に生成されるhBNをcBNに変換させることが可能である。hBN−cBN変換反応を促進する触媒としてcBN砥粒を合成する際に使用されるアルカリ金属窒化物(H180525)やメラミンなどのNH基含有物質が知られている(H120202)。 When the cBN particles are kept under high temperature and high pressure where cBN is stably present, a diffusion reaction occurs at the contact point, and a sintered body of cBN alone in which the particles are bonded to each other is obtained. However, voids are generated at the locations corresponding to the triple points of the particles, and the generated pressure is reduced, so that hBN, which is a stable isotope at low pressure, is generated. When hBN is present at the grain boundary, the strength of the sintered body becomes extremely low, so that the performance as a tool is significantly reduced. By adding a substance having a catalytic effect that promotes the hBN-cBN conversion reaction, it is possible to convert hBN produced at the triple point to cBN at a lower temperature and lower pressure than the stable temperature and pressure range of cBN. NH 2 group-containing substances such as alkali metal nitride (H180525) and melamine used for synthesizing cBN abrasive grains as a catalyst for promoting hBN-cBN conversion reaction are known (H120202).

以下、本発明を実施例により具体的に説明する。
[焼結体作製]
平均粒径の異なる数種のcBN粒子を37wt%−HCl中で150℃にて所定時間(表1に示す)保持してHCl処理cBN粉末を得た。
Hereinafter, the present invention will be specifically described by way of examples.
[Sintered body preparation]
Several kinds of cBN particles having different average particle diameters were kept in 37 wt% -HCl at 150 ° C. for a predetermined time (shown in Table 1) to obtain HCl-treated cBN powder.

<実施例−1、2、3、7、8 比較例−4、5>
上記HCl処理cBN粉末を超硬製容器に充填し、圧力6.5GPa、温度1800℃で焼結して、結合材を含まないcBN焼結体を焼結させた。
<Examples 1, 2, 3, 7, 8 Comparative Example-4, 5>
The above-mentioned HCl-treated cBN powder was filled into a cemented carbide container and sintered at a pressure of 6.5 GPa and a temperature of 1800 ° C. to sinter a cBN sintered body containing no binder.

<実施例−4>
平均粒径2μmのcBN粒子を37wt%−HF中で150℃にて所定時間保持してHF処理cBN粉末を得た。このHF処理cBN粉末を超硬製容器に充填し、圧力6.5GPa、温度1800℃で焼結して結合材を含まないcBN焼結体を焼結させた。
<Example-4>
CBN particles having an average particle diameter of 2 μm were held in 37 wt% -HF at 150 ° C. for a predetermined time to obtain HF-treated cBN powder. The HF-treated cBN powder was filled into a cemented carbide container and sintered at a pressure of 6.5 GPa and a temperature of 1800 ° C. to sinter a cBN sintered body containing no binder.

<実施例−5、6、9 比較例−6>
超硬合金製ポットおよびボールを用いて、Co、AlおよびWCからなる結合材粉末(
結合在中重量比:Co−65%、Al−34%、およびWC−1%)と、平均粒径の異なるHCl処理cBN粉末とを混ぜ合わせ、超硬製容器に充填し、圧力6.0GPa、温度1600℃で焼結させた。
<Example-5, 6, 9 Comparative Example-6>
Using cemented carbide pot and ball, binder powder made of Co, Al and WC (
(Weight ratio in bonding: Co-65%, Al-34%, and WC-1%) and HCl-treated cBN powders having different average particle diameters are mixed, filled into a cemented carbide container, and a pressure of 6.0 GPa And sintered at a temperature of 1600 ° C.

<実施例−10>
TiN粉末とAl粉末を80:20の質量比で均一に混合した後、真空炉でこの混合粉末を真空中で1200℃に30分間保ち熱処理を施した。その後、超硬合金製ポットと超硬合金製ボールとからなるボールミルで上記の熱処理済み混合粉末を粉砕して結合材用の原料粉末を得た。
結合材原料粉末と平均粒径が5μmであるHCl中加熱処理を施した立方晶窒化硼素粉末とを上記のボールミルを用いて立方晶窒化硼素粉末が68体積%となるような配合比で均一に混合した。この後、この混合粉末を真空炉にて900℃で30分間保持して脱ガスした。
次に脱ガス済みの混合粉末をモリブデン製カプセルに充填後、6GPa−1500℃まで加圧と同時に昇温してこの圧力温度条件下に再度5分間保持した。
<Example-10>
TiN powder and Al powder were uniformly mixed at a mass ratio of 80:20, and then this mixed powder was heat-treated at 1200 ° C. for 30 minutes in a vacuum oven. Thereafter, the heat-treated mixed powder was pulverized with a ball mill composed of a cemented carbide pot and a cemented carbide ball to obtain a raw material powder for a binder.
The binder raw material powder and the cubic boron nitride powder subjected to heat treatment in HCl having an average particle diameter of 5 μm are uniformly mixed in a mixing ratio such that the cubic boron nitride powder is 68% by volume using the above-mentioned ball mill. Mixed. Thereafter, the mixed powder was degassed by being held at 900 ° C. for 30 minutes in a vacuum furnace.
Next, after the degassed mixed powder was filled into a molybdenum capsule, the temperature was increased to 6 GPa-1500 ° C. simultaneously with pressurization, and this pressure temperature condition was maintained again for 5 minutes.

<比較例−1>
平均粒径2μmのHCl中で加熱処理していないcBN粉末を超硬製容器に充填し、圧力6.5GPa、温度1800℃で焼結して結合材を含まないcBN焼結体を焼結させた。
<比較例−2>
超硬合金製ポットおよびボールを用いて、Co、AlおよびWCからなる結合材粉末(結合在中重量比:Co−65%、Al−34%、およびWC−1%)と、平均粒径2μmのHCl処理していないcBN粉末とを混ぜ合わせ、超硬製容器に充填し、圧力6GPa、温度1600℃で焼結させた。
<比較例−3>
平均粒径5μmのHCl処理していないcBN粉末を用いた以外は実施例10と同様にして行った。
<Comparative Example-1>
A cemented carbide container is filled with cBN powder that has not been heat-treated in HCl having an average particle diameter of 2 μm, and sintered at a pressure of 6.5 GPa and a temperature of 1800 ° C. to sinter a cBN sintered body that does not contain a binder. It was.
<Comparative Example-2>
Using cemented carbide pots and balls, a binder powder composed of Co, Al, and WC (weight ratio during bonding: Co-65%, Al-34%, and WC-1%) and an average particle diameter of 2 μm Was mixed with cBN powder that had not been treated with HCl, filled into a cemented carbide container, and sintered at a pressure of 6 GPa and a temperature of 1600 ° C.
<Comparative Example-3>
The same procedure as in Example 10 was performed except that cBN powder having an average particle diameter of 5 μm and not treated with HCl was used.

[焼結体組成・不純物分析]
上記方法で得られる焼結体をグロー放電質量分析法を用いて構成元素の定量分析を行った。
本手法は試料を電極として対向電極との間に電解を設けてグロー放電させ、試料をスパッタリングによりイオン化させてイオンを質量分析するものである。標準試料による校正が不要であり、固体試料の分析ができる点が簡便で優れている。
本分析方法で求めた質量比より、cBN含有率85%以上のものについては結合材が金属層であると仮定して体積含有率を求めた。また、残留ハロゲン濃度を定量分析を行った。
cBN体積含有率68%のものについては分析値よりcBN含有率を算出するには仮定が多くなるため、仕込み量で評価した。
結果を表1に示す。
[Sintered body composition / impurity analysis]
The sintered body obtained by the above method was subjected to quantitative analysis of constituent elements using glow discharge mass spectrometry.
In this method, electrolysis is provided between a sample as an electrode and a counter electrode to cause glow discharge, and the sample is ionized by sputtering to perform ion mass spectrometry. Calibration with a standard sample is not required, and the solid sample can be analyzed easily and easily.
From the mass ratio determined by this analysis method, the volume content was determined on the assumption that the binder was a metal layer for those having a cBN content of 85% or more. In addition, the residual halogen concentration was quantitatively analyzed.
For those with a cBN volume content of 68%, there were many assumptions for calculating the cBN content from the analysis value, and therefore, the evaluation was made with the amount charged.
The results are shown in Table 1.

Figure 2009067637
Figure 2009067637

[切削評価]
cBN焼結体を加工し、ISO規格SNGA120408の形状の切削用チップを作成し、以下の条件にて切削評価を行い、工具寿命の評価を行う。
被削材;ダクタイル鋳鉄 FCD450丸棒 外径旋削加工
切削条件;切削速度V=35m/min.
切り込みd=0.15mm、
送り f=0.2mm/rev. 湿式、
寿命判定:切削長100m毎に刃先摩耗状態を観察し、逃げ面からの観察で刃先の稜線が、切削前の刃先稜線より200μm以上摩耗するか若しくは、刃先の急激な欠損により切削を継続できなくなった状態を寿命と定め、寿命に到達するまでの切削長を計測した。
比較例1の焼結体を用いて作成した切削チップでの上記切削条件での工具寿命を1としたときの比較値を表2に示す。
[Cutting evaluation]
The cBN sintered body is processed, a cutting tip having a shape of ISO standard SNGA120408 is created, cutting evaluation is performed under the following conditions, and tool life is evaluated.
Work material: Ductile cast iron FCD450 round bar Outside diameter turning Cutting conditions: Cutting speed V = 35 m / min.
Incision d = 0.15 mm,
Feed f = 0.2 mm / rev. Wet,
Life judgment: The cutting edge wear state is observed every 100 m of cutting length, and the ridgeline of the cutting edge is worn by 200 μm or more from the cutting edge ridgeline before cutting by observation from the flank, or cutting cannot be continued due to a sharp chipping of the cutting edge. The cutting state was defined as the life and the cutting length until reaching the life was measured.
Table 2 shows comparative values when the tool life under the above-mentioned cutting conditions is 1 with a cutting tip prepared using the sintered body of Comparative Example 1.

Figure 2009067637
Figure 2009067637

ハロゲン化水素中での加熱処理を行ったcBN粉末を用いた焼結体は、処理を行っていないcBN粉末を用いて作成した焼結体よりも長い工具寿命を示した(例えば、比較例1に対して実施例1〜4、比較例2に対して実施例5〜9、比較例3に対して実施例10はいずれも工具寿命が長くなっている)。
一方、比較例4〜6はハロゲン化水素中で加熱処理を行ったcBN粉末を用いているが、それぞれハロゲン種の濃度が50ppb〜100ppmの範囲内でないため、未処理のものよりも工具寿命がやや短く、性能が劣るものとなった。
The sintered body using the cBN powder subjected to the heat treatment in hydrogen halide showed a longer tool life than the sintered body prepared using the untreated cBN powder (for example, Comparative Example 1). On the other hand, Examples 1 to 4, Comparative Examples 2 to 5 to 9, and Comparative Example 3 to Example 10 all have a longer tool life).
On the other hand, Comparative Examples 4 to 6 use cBN powder that has been heat-treated in hydrogen halide. However, since the concentration of the halogen species is not in the range of 50 ppb to 100 ppm, the tool life is longer than that of the untreated one. Slightly short and inferior in performance.

なお、本実施例においては、cBN粒子をハロゲン化水素中で熱処理することで焼結体
中に取り込む方法のみを示しているが、ハロゲン化水素の焼結完粉への添加方法はこれに限定されず、完粉に希釈ハロゲン化水素を添加してもかまわない。
In this example, only the method of incorporating cBN particles into the sintered body by heat treatment in hydrogen halide is shown, but the method of adding hydrogen halide to the sintered powder is limited to this. Alternatively, diluted hydrogen halide may be added to the finished powder.

Claims (7)

立方晶窒化硼素を主成分とする焼結体であって、焼結体中にF、Cl、Br、Iからなる群のいずれか1種以上の元素が含まれ、その濃度がwt%で50ppb以上100ppm以下であることを特徴とする立方晶窒化硼素焼結体。   A sintered body mainly composed of cubic boron nitride, wherein the sintered body contains at least one element selected from the group consisting of F, Cl, Br, and I, and the concentration thereof is 50 ppb at wt%. A cubic boron nitride sintered body characterized by being 100 ppm or less. 立方晶窒化硼素を主成分とする焼結体であって、焼結体中にF、Cl、Br、Iからなる群のいずれか1種以上の元素が含まれ、その濃度がwt%で50ppb以上10ppm以下であることを特徴とする立方晶窒化硼素焼結体。   A sintered body mainly composed of cubic boron nitride, wherein the sintered body contains at least one element selected from the group consisting of F, Cl, Br, and I, and the concentration thereof is 50 ppb at wt%. A cubic boron nitride sintered body characterized by being 10 ppm or less. 前記立方晶窒化硼素の平均粒径が0.5μm以上5μm以下であることを特徴とする請求項1又は2に記載の立方晶窒化硼素焼結体。   3. The cubic boron nitride sintered body according to claim 1, wherein an average particle diameter of the cubic boron nitride is 0.5 μm or more and 5 μm or less. 前記立方晶窒化硼素が体積含有率で70%以上であることを特徴とする請求項1〜3のいずれか一に記載の立方晶窒化硼素焼結体。   The cubic boron nitride sintered body according to any one of claims 1 to 3, wherein the cubic boron nitride has a volume content of 70% or more. 前記立方晶窒化硼素焼結体の熱伝導率が100W/(m・K)以上であることを特徴とする請求項1〜4のいずれか一に記載の立方晶窒化硼素焼結体。   The cubic boron nitride sintered body according to any one of claims 1 to 4, wherein the cubic boron nitride sintered body has a thermal conductivity of 100 W / (m · K) or more. 立方晶窒化硼素を主成分とする焼結体であって、該立方晶窒化硼素焼結体が周期律表のIV、VI、VIII〜X族元素及び、Alからなる群より選択される元素の単体、相互固溶体、炭化物、窒化物、炭窒化物、硼化物及び、酸化物のいずれか一つ以上を含む請求項1〜5のいずれか一に記載の立方晶窒化硼素焼結体。   A sintered body mainly composed of cubic boron nitride, wherein the cubic boron nitride sintered body is an element selected from the group consisting of groups IV, VI, VIII to X of the periodic table and Al. The cubic boron nitride sintered body according to any one of claims 1 to 5, comprising any one or more of a simple substance, a mutual solid solution, a carbide, a nitride, a carbonitride, a boride, and an oxide. HF、HCl、HBr、HIから成るハロゲン化水素の水溶液であるハロゲン化水素酸中で立方晶窒化硼素粉末を加熱処理した後に焼結することを特徴とする立方晶窒化硼素焼結体の製造方法。   A method for producing a cubic boron nitride sintered body comprising sintering cubic boron nitride powder after heat treatment in hydrohalic acid which is an aqueous solution of hydrogen halide comprising HF, HCl, HBr, and HI .
JP2007238739A 2007-09-14 2007-09-14 Cubic boron nitride sintered body and manufacturing method thereof Active JP5059528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238739A JP5059528B2 (en) 2007-09-14 2007-09-14 Cubic boron nitride sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238739A JP5059528B2 (en) 2007-09-14 2007-09-14 Cubic boron nitride sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009067637A true JP2009067637A (en) 2009-04-02
JP5059528B2 JP5059528B2 (en) 2012-10-24

Family

ID=40604298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238739A Active JP5059528B2 (en) 2007-09-14 2007-09-14 Cubic boron nitride sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5059528B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111261A1 (en) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 Sintered cubic boron nitride tool
JP2011189421A (en) * 2010-03-12 2011-09-29 Sumitomo Electric Hardmetal Corp Cubic system boron nitride sintered body tool
WO2011129422A1 (en) * 2010-04-16 2011-10-20 株式会社タンガロイ Coated sintered cbn
WO2012005275A1 (en) * 2010-07-06 2012-01-12 株式会社タンガロイ Coated polycrystalline cbn tool
US8765272B2 (en) 2009-03-10 2014-07-01 Tungaloy Corporation Cermet and coated cermet
US8784977B2 (en) 2009-06-22 2014-07-22 Tungaloy Corporation Coated cubic boron nitride sintered body tool
JP2019515864A (en) * 2016-04-11 2019-06-13 イルジン ダイアモンド カンパニー リミテッド Polycrystalline cubic boron nitride and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312316A (en) * 1989-06-12 1991-01-21 Shin Etsu Chem Co Ltd Boron nitride powder and its sintered body
JPH04349931A (en) * 1991-01-23 1992-12-04 Agency Of Ind Science & Technol Preparation of boron nitride
JPH0881269A (en) * 1994-09-16 1996-03-26 Toshiba Corp Highly heat-conductive sintered compact and circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312316A (en) * 1989-06-12 1991-01-21 Shin Etsu Chem Co Ltd Boron nitride powder and its sintered body
JPH04349931A (en) * 1991-01-23 1992-12-04 Agency Of Ind Science & Technol Preparation of boron nitride
JPH0881269A (en) * 1994-09-16 1996-03-26 Toshiba Corp Highly heat-conductive sintered compact and circuit board

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765272B2 (en) 2009-03-10 2014-07-01 Tungaloy Corporation Cermet and coated cermet
US8784977B2 (en) 2009-06-22 2014-07-22 Tungaloy Corporation Coated cubic boron nitride sintered body tool
JP2011189421A (en) * 2010-03-12 2011-09-29 Sumitomo Electric Hardmetal Corp Cubic system boron nitride sintered body tool
WO2011111261A1 (en) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 Sintered cubic boron nitride tool
US9346716B2 (en) 2010-03-12 2016-05-24 Sumitomo Electric Hardmetal Corp. Tool made of cubic boron nitride sintered body
WO2011129422A1 (en) * 2010-04-16 2011-10-20 株式会社タンガロイ Coated sintered cbn
JPWO2011129422A1 (en) * 2010-04-16 2013-07-18 株式会社タンガロイ Coated cBN sintered body
US8999531B2 (en) 2010-04-16 2015-04-07 Tungaloy Corporation Coated CBN sintered body
WO2012005275A1 (en) * 2010-07-06 2012-01-12 株式会社タンガロイ Coated polycrystalline cbn tool
US8673435B2 (en) 2010-07-06 2014-03-18 Tungaloy Corporation Coated cBN sintered body tool
JP5392408B2 (en) * 2010-07-06 2014-01-22 株式会社タンガロイ Coated cBN sintered body tool
JP2019515864A (en) * 2016-04-11 2019-06-13 イルジン ダイアモンド カンパニー リミテッド Polycrystalline cubic boron nitride and method for producing the same
US10954165B2 (en) 2016-04-11 2021-03-23 Iljin Diamond Co., Ltd. Polycrystalline cubic boron nitride and method for preparing same

Also Published As

Publication number Publication date
JP5059528B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4160898B2 (en) High strength and high thermal conductivity cubic boron nitride sintered body
KR101252332B1 (en) Composite sintered body
JP4177845B2 (en) Cubic boron nitride sintered body
JP5189504B2 (en) Composite sintered body
JP5059528B2 (en) Cubic boron nitride sintered body and manufacturing method thereof
JP6082650B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP5447844B2 (en) High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool
EP3124145A1 (en) Cubic boron nitride sintered body cutting tool
JPWO2006112156A1 (en) cBN sintered body and cutting tool using the same
JP6343888B2 (en) Cubic boron nitride sintered body cutting tool with excellent fracture resistance
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
JP5499718B2 (en) Sintered body and cutting tool using the sintered body
JP5880598B2 (en) Sintered body and cutting tool using the sintered body
JP4830571B2 (en) cBN super high pressure sintered body
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP5499717B2 (en) Sintered body and cutting tool using the sintered body
JP7015979B2 (en) cBN sintered body and cutting tool
CN114845974A (en) Cubic boron nitride sintered body and method for producing same
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JP2002029845A (en) Super-hard sintered compact
JP7377463B2 (en) cBN sintered body and cutting tools
JP2022142894A (en) cBN SINTERED COMPACT
JP5804111B2 (en) Sintered body and cutting tool using the sintered body
JP2003034836A (en) WC-Co HARD METAL SUPERIOR IN OXIDATION RESISTANCE
WO2017199752A1 (en) Tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250