JP6082650B2 - Cubic boron nitride sintered body and coated cubic boron nitride sintered body - Google Patents

Cubic boron nitride sintered body and coated cubic boron nitride sintered body Download PDF

Info

Publication number
JP6082650B2
JP6082650B2 JP2013094225A JP2013094225A JP6082650B2 JP 6082650 B2 JP6082650 B2 JP 6082650B2 JP 2013094225 A JP2013094225 A JP 2013094225A JP 2013094225 A JP2013094225 A JP 2013094225A JP 6082650 B2 JP6082650 B2 JP 6082650B2
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
sintered body
nitride sintered
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013094225A
Other languages
Japanese (ja)
Other versions
JP2014214065A (en
Inventor
小林 幸太
幸太 小林
香川 直宏
直宏 香川
松原 秀彰
秀彰 松原
哲志 松田
哲志 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Tungaloy Corp
Original Assignee
Japan Fine Ceramics Center
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Tungaloy Corp filed Critical Japan Fine Ceramics Center
Priority to JP2013094225A priority Critical patent/JP6082650B2/en
Priority to PCT/JP2014/061685 priority patent/WO2014175419A1/en
Publication of JP2014214065A publication Critical patent/JP2014214065A/en
Application granted granted Critical
Publication of JP6082650B2 publication Critical patent/JP6082650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

本発明は、立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体に関するものである。具体的には、切削工具、耐摩耗工具として最適な立方晶窒化硼素含有焼結体および被覆立方晶窒化硼素焼結体に関するものである。   The present invention relates to a cubic boron nitride sintered body and a coated cubic boron nitride sintered body. Specifically, the present invention relates to a cubic boron nitride-containing sintered body and a coated cubic boron nitride sintered body that are optimal as cutting tools and wear-resistant tools.

立方晶窒化硼素は、ダイヤモンドに次ぐ硬さと優れた熱伝導性を有し、鉄との親和性が低いという特徴を有する。立方晶窒化硼素と金属やセラミックスの結合相とでなる立方晶窒化硼素焼結体は、切削工具や耐摩耗工具などに応用されてきた。立方晶窒化硼素焼結体の従来技術としては、立方晶窒化硼素と、酸化アルミニウムと、窒化アルミニウムおよび/またはホウ化アルミニウムと、炭化チタン、窒化チタンおよび/または炭窒化チタンと、ホウ化チタンとからなる立方晶窒化硼素焼結体がある(例えば、特許文献1参照)。   Cubic boron nitride has characteristics that it has hardness next to diamond, excellent thermal conductivity, and low affinity with iron. Cubic boron nitride sintered bodies made of cubic boron nitride and a binder phase of metal or ceramic have been applied to cutting tools, wear-resistant tools, and the like. As prior art of cubic boron nitride sintered bodies, cubic boron nitride, aluminum oxide, aluminum nitride and / or aluminum boride, titanium carbide, titanium nitride and / or titanium carbonitride, titanium boride, There is a cubic boron nitride sintered body made of (for example, see Patent Document 1).

特開平7−82031号公報Japanese Patent Laid-Open No. 7-82031

加工能率を上げるため従来よりも切削条件が厳しくなる傾向の中で、これまでより工具寿命を長くすることが求められてきた。しかしながら、特許文献1に記載の立方晶窒化硼素焼結体では、こうした要求に十分に答えられなくなってきた。本発明は、このような問題を解決するもので、耐摩耗性を低下させずに耐欠損性および靭性を高め、切削工具や耐摩耗工具の工具寿命を長くする立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体を提供することを目的とする。   In the tendency for cutting conditions to become stricter than before in order to increase machining efficiency, it has been required to extend the tool life. However, the cubic boron nitride sintered body described in Patent Document 1 has not been able to adequately meet these requirements. The present invention solves such a problem, and improves the fracture resistance and toughness without reducing the wear resistance, and increases the tool life of the cutting tool and the wear-resistant tool. An object is to provide a coated cubic boron nitride sintered body.

本発明者らは、立方晶窒化硼素焼結体に関する研究を行ってきたところ、立方晶窒化硼素焼結体の靭性を高めるためには、発生した亀裂の伝播を抑制することが重要であり、そのためには、立方晶窒化硼素焼結体の結合相に多くの粒界を有することが有効であるという知見を得て、本発明を完成するに至った。   The inventors have conducted research on a cubic boron nitride sintered body, and in order to increase the toughness of the cubic boron nitride sintered body, it is important to suppress propagation of the generated cracks, For this purpose, the inventors have obtained the knowledge that it is effective to have many grain boundaries in the binder phase of the cubic boron nitride sintered body, and have completed the present invention.

本発明者らは、立方晶窒化硼素焼結体に関する研究を行ってきたところ、立方晶窒化硼素焼結体工具の耐摩耗性を高めるためには、より硬質な粒子を結合相形成のための原料粉末に用いることが有効であるという知見を得て、本発明を完成するに至った。   The present inventors have conducted research on a cubic boron nitride sintered body. In order to improve the wear resistance of a cubic boron nitride sintered body tool, harder particles are used for forming a binder phase. Obtaining knowledge that it is effective to use the raw material powder, the present invention has been completed.

本発明の要旨は、以下の通りである。
(1)立方晶窒化硼素と結合相と不可避的不純物とからなり、結合相は、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群から選択される少なくとも1種とTiの複合固溶体化合物とを含み、複合固溶体化合物はNaCl構造であり、Cu−Kα線を用いた2θ/θ法のX線回折測定により得られる複合固溶体化合物の(200)面回折線の半価幅が0.60°以上0.90°以下である立方晶窒化硼素焼結体。
(2)Cu−Kα線を用いた2θ/θ法のX線回折測定により、2θの測定範囲を30°〜90°としたときに得られる、複合固溶体化合物の(200)面回折線のピーク高さIに対する、複合固溶体化合物以外の結合相および不可避的不純物に含まれる化合物および金属の回折線の中で最も高いピーク高さIの比(I/I)は1.0以下である(1)の立方晶窒化硼素焼結体。
(3)結合相全体に含まれるTiおよびM(但し、Mは、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群から選択される少なくとも1種の元素を表す)の原子比は、Ti:M=(0.5〜0.98):(0.5〜0.02)(但し、Tiの原子比とMの原子比との合計は1になる)である(1)または(2)の立方晶窒化硼素焼結体。
(4)結合相は、複合固溶体化合物と、酸化アルミニウム、窒化アルミニウムおよび硼化アルミニウムの中の少なくとも1種のアルミニウム化合物と、硼化チタンとを含有する(1)〜(3)のいずれかの立方晶窒化硼素焼結体。
(5)複合固溶体化合物は、(Ti1−x)(C1−y)(ただし、xはTiとMとの合計に対するMの原子比を示し、yはCとNとの合計に対するNの原子比を示し、x、yはそれぞれ、0.02≦x≦0.5、0≦y≦1(ただし、複合固溶体化合物が複合固溶体炭窒化物の場合は0<y<1)である)と表される複合固溶体化合物である(1)〜(4)のいずれかの立方晶窒化硼素焼結体。
(6)立方晶窒化硼素焼結体は、立方晶窒化硼素:立方晶窒化硼素焼結体全体に対して10〜90体積%と、結合相および不可避的不純物:立方晶窒化硼素焼結体全体に対して10〜90体積%とからなり、これらの合計が100体積%となる(1)〜(5)のいずれかの立方晶窒化硼素焼結体。
(7)(1)〜(6)のいずれかの立方晶窒化硼素焼結体の表面に被覆層を形成した被覆立方晶窒化硼素焼結体。
The gist of the present invention is as follows.
(1) It consists of cubic boron nitride, a binder phase and unavoidable impurities, and the binder phase is at least one selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo and W and Ti. The compound solid solution compound has a NaCl structure, and the half width of the (200) plane diffraction line of the compound solid solution compound obtained by X-ray diffraction measurement of 2θ / θ method using Cu-Kα rays is Cubic boron nitride sintered body of 0.60 ° or more and 0.90 ° or less.
(2) The peak of the (200) plane diffraction line of the composite solid solution compound obtained when the 2θ measurement range is 30 ° to 90 ° by X-ray diffraction measurement of 2θ / θ method using Cu-Kα rays. to the height I 1, the highest peak height ratio of I 2 in compounds and metal diffraction lines included in the binding phase and incidental impurities other than the composite solid solution compound (I 2 / I 1) is 1.0 or less The cubic boron nitride sintered body according to (1).
(3) Atoms of Ti and M (wherein M represents at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo and W) contained in the entire binder phase The ratio is Ti: M = (0.5-0.98) :( 0.5-0.02) (however, the sum of the atomic ratio of Ti and the atomic ratio of M is 1) (1 ) Or (2) cubic boron nitride sintered body.
(4) The binder phase includes any one of (1) to (3), which includes a composite solid solution compound, at least one aluminum compound of aluminum oxide, aluminum nitride, and aluminum boride, and titanium boride. Cubic boron nitride sintered body.
(5) The composite solid solution compound is (Ti 1-x M x ) (C 1-y N y ) (where x represents the atomic ratio of M to the total of Ti and M, and y represents the ratio of C and N The atomic ratio of N to the total is shown, and x and y are 0.02 ≦ x ≦ 0.5 and 0 ≦ y ≦ 1, respectively, where 0 <y <1 when the composite solid solution compound is a composite solid solution carbonitride ) is a is) a composite solid solution compounds represented (1) to any one of cubic boron nitride sintered body (4).
(6) The cubic boron nitride sintered body has a cubic boron nitride: 10 to 90% by volume with respect to the entire cubic boron nitride sintered body, a binder phase and inevitable impurities: the entire cubic boron nitride sintered body. The cubic boron nitride sintered body according to any one of (1) to (5), which is 10 to 90% by volume with respect to the total, and the total of these is 100% by volume.
(7) A coated cubic boron nitride sintered body in which a coating layer is formed on the surface of the cubic boron nitride sintered body according to any one of (1) to (6).

本発明の立方晶窒化硼素焼結体は、結合相と立方晶窒化硼素と不可避的不純物とからなる。立方晶窒化硼素が立方晶窒化硼素焼結体全体に対して10体積%未満になり、結合相および不可避的不純物が立方晶窒化硼素焼結体全体に対して90体積%を超えて多くなると耐欠損性が低下し、一方、立方晶窒化硼素が立方晶窒化硼素焼結体全体に対して90体積%を超えて多くなり、結合相が立方晶窒化硼素焼結体全体に対して10体積%未満になると耐摩耗性が低下するので、本発明の立方晶窒化硼素焼結体は、立方晶窒化硼素焼結体全体に対して10〜90体積%の立方晶窒化硼素と、立方晶窒化硼素焼結体全体に対して10〜90体積%の結合相および不可避的不純物とからなり、これらの合計が100体積%となる立方晶窒化硼素焼結体が好ましい。   The cubic boron nitride sintered body of the present invention comprises a binder phase, cubic boron nitride and unavoidable impurities. When the cubic boron nitride is less than 10% by volume with respect to the entire cubic boron nitride sintered body and the binder phase and inevitable impurities are more than 90% by volume with respect to the entire cubic boron nitride sintered body, On the other hand, the deficiency is reduced, while the cubic boron nitride is more than 90% by volume with respect to the entire cubic boron nitride sintered body, and the binder phase is 10% by volume with respect to the entire cubic boron nitride sintered body. Since the wear resistance is reduced when the ratio is less than 10%, the cubic boron nitride sintered body of the present invention has 10 to 90% by volume of cubic boron nitride and cubic boron nitride based on the entire cubic boron nitride sintered body. A cubic boron nitride sintered body composed of 10 to 90% by volume of binder phase and inevitable impurities with respect to the entire sintered body, and the total of these is 100% by volume is preferable.

本発明の結合相は、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群から選択される少なくとも1種とTiの複合固溶体化合物とを含有する。本発明の複合固溶体化合物として、例えば、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群から選択される少なくとも1種と、Tiの複合固溶体炭化物、複合固溶体窒化物、複合固溶体炭窒化物、複合固溶体炭硼化物、複合固溶体窒硼化物、複合固溶体炭窒硼化物、複合固溶体炭酸化物、複合固溶体窒酸化物、複合固溶体炭窒酸化物、複合固溶体炭硼酸化物、複合固溶体窒硼酸化物、複合固溶体炭窒硼酸化物およびこれらの相互固溶体の中から選ばれた少なくとも1種との化合物を挙げることができる。
その中でも、(Ti1−x)(C1−y)(ただし、MはZr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群から選択される少なくとも1種の元素を表し、xはTiとMとの合計に対するMの原子比を示し、yはCとNとの合計に対するNの原子比を示し、x、yはそれぞれ、0.02≦x≦0.5、0≦y≦1(ただし、複合固溶体化合物が複合固溶体炭窒化物の場合は0<y<1)である)と表される複合固溶体化合物であると、耐摩耗性に優れるので、さらに好ましい。
本発明の結合相は、複合固溶体化合物のみから構成されてもよいが、複合固溶体化合物以外に、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Fe、Co、Niの炭化物、窒化物、硼化物、珪化物、炭窒化物、炭硼化物、炭珪化物、窒硼化物、窒珪化物、硼珪化物、炭窒硼化物、炭硼珪化物、窒硼珪化物、炭窒硼珪化物およびこれらの相互固溶体、Fe、Co、Ni、Cr、Mo、Wおよびこれらの合金の中の少なくとも1種を含有することも好ましい。複合固溶体化合物以外の結合相として、例えば、酸化アルミニウム、窒化アルミニウム、硼化アルミニウムなどのアルミニウム化合物、硼化チタンなどを挙げることができる。
The binder phase of the present invention contains at least one selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, and W and a composite solid solution compound of Ti. As the composite solid solution compound of the present invention, for example, at least one selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo and W, Ti composite solid solution carbide, composite solid solution nitride, composite solid solution Carbonitride, composite solid solution carbonitride, composite solid solution carbonitride, composite solid solution carbonitride, composite solid solution carbonate, composite solid solution nitride oxide, composite solid solution carbonitride oxide, composite solid solution carbonitride, composite solid solution nitrogen Mention may be made of compounds with at least one selected from the group consisting of boric oxides, composite solid solution carbonitrides and their mutual solid solutions.
Among them, (Ti 1-x M x ) (C 1-y N y ) (where M is at least one selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, and W) X represents the atomic ratio of M to the sum of Ti and M, y represents the atomic ratio of N to the sum of C and N, and x and y are 0.02 ≦ x ≦ 0. 5, 0 ≦ y ≦ 1 (however, when the composite solid solution compound is a composite solid solution carbonitride, 0 <y <1)) , since the wear resistance is excellent, preferable.
The binder phase of the present invention may be composed only of a composite solid solution compound, but in addition to the composite solid solution compound, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Fe, Co, Ni Carbides, nitrides, borides, silicides, carbonitrides, carbonitrides, carbonitrides, borohydrides, nitrided nitrides, borosilicates, carbonitrides, borosilicates, boron nitrides It is also preferable to contain at least one of borocarbonitrides and their mutual solid solutions, Fe, Co, Ni, Cr, Mo, W and alloys thereof. Examples of the binder phase other than the composite solid solution compound include aluminum compounds such as aluminum oxide, aluminum nitride, and aluminum boride, and titanium boride.

原料粉末としては、複合固溶体化合物粉末を添加して本発明の結合相を得ることができる。従来の立方晶窒化硼素焼結体には、結合相としてTi(C,N)、TiC、TiNなどのTi化合物が用いられてきた。本発明の複合固溶体化合物は、Ti(C,N)、TiC、TiNなどのTi化合物にZr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群から選択される少なくとも1種のMを固溶させた化合物であり、Ti化合物よりも硬質である。立方晶窒化硼素焼結体中に複合固溶体化合物が含まれていることは、X線回折測定により確認することが出来る。また、立方晶窒化硼素焼結体における複合固溶体化合物中のMの固溶量は、結合相全体を、エネルギー分散型X線分光法(EDS)により得られたTiおよびMの原子比により推定することが出来る。結合相全体に含まれるTiとMとの合計に対するMの原子比が0.02未満になると、Mの固溶による複合固溶体化合物の硬質化の効果が十分には得られない。また、TiとMとの合計に対するMの原子比が0.5を超えると、結合相の熱伝導率が低下する傾向が見られる。このことから、結合相全体に含まれるTiおよびMの原子比は、Ti:M=(0.5〜0.98):(0.5〜0.02)(但し、Tiの原子比とMの原子比との合計は1になる)であると、さらに好ましい。   As the raw material powder, a composite solid solution compound powder can be added to obtain the binder phase of the present invention. In conventional cubic boron nitride sintered bodies, Ti compounds such as Ti (C, N), TiC, and TiN have been used as the binder phase. The composite solid solution compound of the present invention is at least one kind of M selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, and W in a Ti compound such as Ti (C, N), TiC, and TiN. Is a solid solution, and is harder than the Ti compound. It can be confirmed by X-ray diffraction measurement that the cubic boron nitride sintered body contains the composite solid solution compound. In addition, the solid solution amount of M in the composite solid solution compound in the cubic boron nitride sintered body is estimated by the atomic ratio of Ti and M obtained by energy dispersive X-ray spectroscopy (EDS) for the entire binder phase. I can do it. When the atomic ratio of M to the total of Ti and M contained in the whole binder phase is less than 0.02, the effect of hardening the composite solid solution compound due to solid solution of M cannot be sufficiently obtained. Moreover, when the atomic ratio of M with respect to the sum of Ti and M exceeds 0.5, the thermal conductivity of the binder phase tends to decrease. From this, the atomic ratio of Ti and M contained in the whole binder phase is Ti: M = (0.5-0.98) :( 0.5-0.02) (however, the atomic ratio of Ti and M It is more preferable that the total is 1).

本発明の立方晶窒化硼素焼結体に含まれる複合固溶体化合物の(200)面回折線の半価幅が0.60°以上を示すと、複合固溶体化合物の平均粒径は細かくなり、立方晶窒化硼素焼結体の機械的強度が向上する。しかしながら、複合固溶体化合物の(200)面回折線の半価幅は0.90°を超えて大きくなると、複合固溶体化合物の平均粒径が細かくなり過ぎて熱伝導率が低下する。そのため、複合固溶体化合物の(200)面回折線の半価幅を、0.60°以上0.90°以下とした。   When the half-value width of the (200) plane diffraction line of the composite solid solution compound contained in the cubic boron nitride sintered body of the present invention is 0.60 ° or more, the average particle size of the composite solid solution compound becomes fine, and the cubic crystal The mechanical strength of the boron nitride sintered body is improved. However, when the half-value width of the (200) plane diffraction line of the composite solid solution compound is larger than 0.90 °, the average particle size of the composite solid solution compound becomes too fine and the thermal conductivity is lowered. Therefore, the half width of the (200) plane diffraction line of the composite solid solution compound is set to 0.60 ° or more and 0.90 ° or less.

複合固溶体化合物の(200)面回折線のブラッグ角2θと半価幅とは、市販のX線回折装置を用いて測定することができる。例えば、株式会社リガク製 X線回折装置RINT TTRIIIを用いて、Cu−Kα線を用いた2θ/θ集中法光学系のX線回折測定を、出力:50kV、250mA、入射側ソーラースリット:5°、発散縦スリット:1/2°、発散縦制限スリット:10mm、散乱スリット2/3°、受光側ソーラースリット:5°、受光スリット:0.15mm、BENTモノクロメータ、受光モノクロスリット:0.8mm、サンプリング幅:0.02°、スキャンスピード:0.1°/min、2θ測定範囲:40〜46°という条件で行うと、複合固溶体化合物の(200)面回折線についてブラッグ角2θと半価幅を測定できる。複合固溶体化合物の(200)面回折線は、International Centre for Diffraction DataのPowder Diffraction File PDF-2 Release 2004(以下、PDFカードという)のPDFカードNo.32−1383に記載のTiCの(200)面回折線と、PDFカードNo.38−1420に記載のTiNの(200)面回折線との間に現れる。X線回折図形から複合固溶体化合物の(200)面回折線のブラッグ角2θと半価幅を求めるときに、X線回折装置付属の解析ソフトウェアを用いてもよい。解析ソフトウェアでは、三次式近似を用いてバックグラウンド処理およびKα2ピーク除去を行い、Pearson−VII関数を用いてプロファイルフィッティングを行った後、ピークトップ法よりピーク位置を求め、ブラッグ角2θと半価幅が導出される。   The Bragg angle 2θ and half width of the (200) plane diffraction line of the composite solid solution compound can be measured using a commercially available X-ray diffractometer. For example, using an X-ray diffractometer RINT TTRIII manufactured by Rigaku Corporation, X-ray diffraction measurement of a 2θ / θ concentration method optical system using Cu-Kα rays is performed: output: 50 kV, 250 mA, incident side solar slit: 5 ° Divergence longitudinal slit: 1/2 °, divergence longitudinal restriction slit: 10 mm, scattering slit 2/3 °, light receiving side solar slit: 5 °, light receiving slit: 0.15 mm, BENT monochromator, light receiving monochrome slit: 0.8 mm Sampling width: 0.02 °, scan speed: 0.1 ° / min, 2θ measurement range: 40-46 °, Bragg angle 2θ and half value for (200) plane diffraction line of composite solid solution compound The width can be measured. The (200) plane diffraction line of the compound solid solution compound is a PDF card No. of Powder Diffraction File PDF-2 Release 2004 (hereinafter referred to as PDF card) of International Center for Diffraction Data. No. 32-1383 TiC (200) plane diffraction line and PDF card no. It appears between the (200) plane diffraction lines of TiN described in 38-1420. When obtaining the Bragg angle 2θ and half width of the (200) plane diffraction line of the composite solid solution compound from the X-ray diffraction pattern, analysis software attached to the X-ray diffraction apparatus may be used. In the analysis software, background processing and Kα2 peak removal are performed using cubic approximation, profile fitting is performed using the Pearson-VII function, peak positions are obtained by the peak top method, Bragg angle 2θ and half width Is derived.

Cu−Kα線を用いた2θ/θ法のX線回折測定により、ブラッグ角2θの測定範囲を30°〜90°としたときに得られる、複合固溶体化合物の(200)面回折線のピーク高さIに対する複合化合物以外の結合相に含まれる化合物または金属の回折線の中で最も高いピーク高さIの比(I/I)が1.0以下であると、結合相に占める複合固溶体化合物の割合が高くなり、耐摩耗性が向上するので、さらに好ましい。その中でも、ピーク高さの比(I/I)は0.7以下であるとさらに好ましく、その中でもピーク高さの比(I/I)は0.4以下であるとさらに好ましい。X線回折図形からピーク高さIとピーク高さIとを求めるときに、X線回折装置付属の解析ソフトウェアを用いてもよい。解析ソフトウェアでは、三次式近似を用いてバックグラウンド処理およびKα2ピーク除去を行い、Pearson−VII関数を用いてプロファイルフィッティングを行った後、ピークトップ法よりピーク位置を求め、ピーク高さIとピーク高さIが導出される。 The peak height of the (200) plane diffraction line of the composite solid solution compound obtained when the measurement range of the Bragg angle 2θ is 30 ° to 90 ° by X-ray diffraction measurement of 2θ / θ method using Cu-Kα rays. When the highest peak height ratio of I 2 in the diffraction line of the compound or a metal contained in the binder phase other than the complex compound (I 2 / I 1) is 1.0 or less with respect to I 1 is, the binder phase The ratio of the composite solid solution compound to occupy increases, and the wear resistance is improved. Among them, the peak height ratio (I 2 / I 1 ) is more preferably 0.7 or less, and the peak height ratio (I 2 / I 1 ) is more preferably 0.4 or less. . When obtaining the peak height I 1 and the peak height I 2 from the X-ray diffraction pattern, analysis software attached to the X-ray diffractometer may be used. In the analysis software, background processing and Kα2 peak removal are performed using cubic approximation, profile fitting is performed using the Pearson-VII function, peak positions are obtained by the peak top method, and peak height I 1 and peak are calculated. Height I 2 is derived.

本発明の立方晶窒化硼素焼結体は、酸化アルミニウム、窒化アルミニウムおよび硼化アルミニウムの中の少なくとも1種のアルミニウム化合物と、複合固溶体化合物と、硼化チタンとからなる結合相を含むと、立方晶窒化硼素焼結体の耐摩耗性と靭性とのバランスが良く、工具として用いたときに、工具寿命をさらに長くする効果が得られるので好ましい。これは以下の理由による。酸化アルミニウム、窒化アルミニウムおよび硼化アルミニウムの中の少なくとも1種のアルミニウム化合物を含むと靭性が向上し、複合固溶体化合物を含むと耐摩耗性が向上し、硼化チタンを含むと靭性が向上する。   When the cubic boron nitride sintered body of the present invention includes a binder phase composed of at least one aluminum compound among aluminum oxide, aluminum nitride, and aluminum boride, a composite solid solution compound, and titanium boride, The crystal boron nitride sintered body has a good balance between wear resistance and toughness, and when used as a tool, the effect of further extending the tool life is obtained, which is preferable. This is due to the following reason. When at least one aluminum compound among aluminum oxide, aluminum nitride, and aluminum boride is included, toughness is improved. When a composite solid solution compound is included, wear resistance is improved. When titanium boride is included, toughness is improved.

本発明の立方晶窒化硼素焼結体に不可避的に含有される不純物としては、原料粉末などに含まれるリチウムなどが挙げられる。不可避的不純物の合計量は、通常は立方晶窒化硼素焼結体全体に対して1質量%以下に抑えることができるので、本発明の特性値に影響を及ぼすことはない。なお、本発明においては、本発明の立方晶窒化硼素焼結体の特性を損わない範囲で、立方晶窒化硼素、結合相および不可避的不純物の他に、不可避的不純物とはいえない他の成分を少量含有してもよい。   Examples of impurities inevitably contained in the cubic boron nitride sintered body of the present invention include lithium contained in raw material powders and the like. Since the total amount of inevitable impurities can be usually suppressed to 1% by mass or less with respect to the entire cubic boron nitride sintered body, the characteristic value of the present invention is not affected. In the present invention, in addition to cubic boron nitride, a binder phase, and unavoidable impurities, in addition to the cubic boron nitride sintered body of the present invention, other than inevitable impurities can be said. You may contain a small amount of ingredients.

本発明の被覆層は、被覆工具の被覆層として使用されるものであれば特に限定されないが、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから選択される金属元素の少なくとも1種からなる金属、およびこれら金属元素の少なくとも1種と炭素、窒素、酸素および硼素から選択される非金属元素の少なくとも1種とからなる化合物からなる群より選ばれた少なくとも1種の単層または積層であると、耐摩耗性が向上するのでさらに好ましい。具体的には、TiN、TiC、TiCN、TiAlN、TiSiN、CrAlNなどを挙げることができる。被覆層は単層または2層以上の積層のいずれでも好ましく、組成が異なる平均層厚5〜500nmの層を交互に2層以上積層した交互積層構造を有しても好ましい。被覆層全体の総層厚は平均層厚で、0.5μm未満であると耐摩耗性が低下し、20μmを超えると耐欠損性が低下することから、0.5〜20μmであることが好ましい。   The coating layer of the present invention is not particularly limited as long as it is used as a coating layer of a coated tool, but is selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Y, Al, and Si. Selected from the group consisting of a metal comprising at least one metal element selected from the group consisting of a metal element and a compound comprising at least one metal element selected from the group consisting of carbon, nitrogen, oxygen and boron. It is more preferable that it is at least one single layer or laminated layer since the wear resistance is improved. Specific examples include TiN, TiC, TiCN, TiAlN, TiSiN, and CrAlN. The coating layer is preferably either a single layer or a laminate of two or more layers, and preferably has an alternate laminate structure in which two or more layers having an average layer thickness of 5 to 500 nm having different compositions are alternately laminated. The total layer thickness of the entire coating layer is an average layer thickness, and if it is less than 0.5 μm, the wear resistance is lowered, and if it exceeds 20 μm, the chipping resistance is lowered. Therefore, it is preferably 0.5 to 20 μm. .

本発明の立方晶窒化硼素焼結体は、チタンとMとの合計に対するMの原子比が0.02〜0.5、炭素と窒素との合計に対する炭素の原子比が0〜1である平均粒径0.01〜0.1μmの複合固溶体化合物粉末と、アルミニウム粉末と、立方晶窒化硼素粉末と、パラフィンとを混合し、得られた混合物を成型し、圧力1.33×10−1Pa以下の真空中にて温度400〜500℃で真空熱処理を行って、パラフィンなどの有機物を除去した後、さらに同真空圧力下にて700〜1000℃で加熱して、仮焼結を行った後、超高圧高温発生装置に入れて、圧力5〜8GPa、温度1400〜1600℃の条件で焼結することで得られる。なお、原料粉末の平均粒径は、米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定した。 The cubic boron nitride sintered body of the present invention is an average in which the atomic ratio of M to the total of titanium and M is 0.02 to 0.5, and the atomic ratio of carbon to the total of carbon and nitrogen is 0 to 1. A composite solid solution compound powder having a particle size of 0.01 to 0.1 μm, an aluminum powder, a cubic boron nitride powder, and paraffin are mixed, and the resulting mixture is molded, and the pressure is 1.33 × 10 −1 Pa. After vacuum heat treatment is performed at a temperature of 400 to 500 ° C. in the following vacuum to remove organic substances such as paraffin, and further, heating is performed at 700 to 1000 ° C. under the same vacuum pressure to perform preliminary sintering. It is obtained by putting in an ultra-high pressure and high temperature generator and sintering under conditions of pressure 5-8 GPa and temperature 1400-1600 ° C. The average particle size of the raw material powder was measured by the Fisher method (Fisher Sub-Sieve Sizer (FSSS)) described in the American Society for Testing and Materials (ASTM) Standard B330.

本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性および靭性に優れるため、切削工具、耐摩耗工具に応用されると好ましく、その中でも切削工具に応用されるとさらに好ましい。   Since the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are excellent in wear resistance, fracture resistance, and toughness, they are preferably applied to cutting tools and wear resistant tools. More preferably, it is applied to a tool.

(発明の効果)
本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性および靭性に優れる。そのため、本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体を切削工具や耐摩耗工具として用いると、工具寿命を延長することができるという効果が得られる。
(Effect of the invention)
The cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are excellent in wear resistance, fracture resistance and toughness. Therefore, when the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are used as a cutting tool or a wear-resistant tool, an effect that the tool life can be extended is obtained.

(実施例1)
平均粒径2μmの立方晶窒化硼素(cBN)粉末、表1に示す組成および平均粒径の複合固溶体化合物粉末またはTi(C0.50.5)粉末、平均粒径2μmのAl粉末を用いて、表1に示す配合組成に配合した。なお、原料粉末の平均粒径は、米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定した。配合した原料粉末を、超硬合金製ボールとヘキサン溶媒とパラフィンとともにボールミル用のシリンダーに入れて、ボールミル混合した。ボールミルで混合粉砕して得られた混合粉末を、圧粉成型した。混合粉末の成型体を真空加熱炉に入れて、炉内を圧力1.33×10−3Pa以下の真空にして、温度450℃の条件で脱パラフィン処理を行った後、昇温し、圧力1.33×10−3Pa以下の真空にて、温度850℃の条件で仮焼結をした。得られた仮焼結体を金属カプセルに封入し、金属カプセルを超高圧高温発生装置に入れて、圧力5.5GPa、温度1500℃、保持時間30分の条件で焼結して、発明品および比較品の立方晶窒化硼素焼結体を得た。
Example 1
A cubic boron nitride (cBN) powder having an average particle size of 2 μm, a composite solid solution compound powder having the composition and average particle size shown in Table 1 or a Ti (C 0.5 N 0.5 ) powder, and an Al powder having an average particle size of 2 μm. And blended into the composition shown in Table 1. The average particle size of the raw material powder was measured by the Fisher method (Fisher Sub-Sieve Sizer (FSSS)) described in the American Society for Testing and Materials (ASTM) Standard B330. The blended raw material powder was placed in a ball mill cylinder together with a cemented carbide ball, a hexane solvent, and paraffin, and ball mill mixed. The mixed powder obtained by mixing and pulverizing with a ball mill was compacted. The mixed powder molded body is put into a vacuum heating furnace, the inside of the furnace is evacuated to a pressure of 1.33 × 10 −3 Pa or less, deparaffinized at a temperature of 450 ° C., then heated up, pressure Preliminary sintering was performed at a temperature of 850 ° C. in a vacuum of 1.33 × 10 −3 Pa or less. The obtained temporary sintered body is sealed in a metal capsule, and the metal capsule is put into an ultra-high pressure and high temperature generator, and sintered under the conditions of pressure 5.5 GPa, temperature 1500 ° C., and holding time 30 minutes. A comparative cubic boron nitride sintered body was obtained.

Figure 0006082650
Figure 0006082650

こうして得られた立方晶窒化硼素焼結体について、SEM観察、EDS測定、波長分散型X線分光法(WDS)測定、X線回折測定を行って、立方晶窒化硼素焼結体の組成を調べた。また、立方晶窒化硼素焼結体の断面組織をSEM観察して、立方晶窒化硼素(cBN)の体積%と結合相の体積%とを測定した。結合相の複合固溶体化合物の組成は、以下のようにして確認した。発明品1〜12および比較品1についてX線回折測定を行うと、TiC(PDFカードNo.32−1383)の回折線とTiN(PDFカードNo.38−1420)の回折線との間に、NaCl構造の化合物の回折線が観察された。また、表3に示すように、このNaCl構造の化合物の(200)面回折線のピーク高さIに対して、他の結合相の回折線のピーク高さIは0.2以下であるので、結合相の大部分は、このNaCl構造の化合物であると推定できる。一方、EDS測定の結果より、発明品1〜12および比較品1の結合相には、TiとMとが表4に示す割合で含まれている。表4に示されるように、結合相に含まれるTiとMとの比率は、原料粉末の複合固溶体化合物粉末のTiとMとの比率と同じであった。そこで、原料粉末の複合固溶体化合物粉末のX線回折測定を行ったところ、原料粉末の複合固溶体化合物粉末の回折線のブラッグ角2θと、TiCの回折線とTiNの回折線との間にあるNaCl構造の化合物の回折線のブラッグ角2θとは一致した。これらの結果から、NaCl構造の化合物の組成を、原料粉末の複合固溶体化合物粉末と同じ組成にした。比較品2については、X線回折測定を行うと、TiCの回折線とTiNの回折線との間にNaCl構造の回折線が観察された。EDS測定とWDS測定との結果から、表4に示すように、比較品2の結合相にはTiが含まれていた。原料粉末のTi(C0.50.5)粉末のX線回折測定を行ったところ、原料粉末のTi(C0.50.5)粉末の回折線のブラッグ角2θと、NaCl構造の化合物の回折線のブラッグ角2θとは一致したので、NaCl構造の化合物の組成をTi(C0.50.5)とした。これらの結果を表2に示した。 The cubic boron nitride sintered body thus obtained was subjected to SEM observation, EDS measurement, wavelength dispersive X-ray spectroscopy (WDS) measurement, and X-ray diffraction measurement to examine the composition of the cubic boron nitride sintered body. It was. Further, the cross-sectional structure of the cubic boron nitride sintered body was observed with an SEM, and the volume% of cubic boron nitride (cBN) and the volume% of the binder phase were measured. The composition of the composite solid solution compound of the binder phase was confirmed as follows. When X-ray diffraction measurement is performed on Inventions 1 to 12 and Comparative Product 1, between the diffraction line of TiC (PDF card No. 32-1383) and the diffraction line of TiN (PDF card No. 38-1420), A diffraction line of a compound having a NaCl structure was observed. Further, as shown in Table 3, the peak height I 2 of the diffraction lines of other bonded phases is 0.2 or less with respect to the peak height I 1 of the (200) plane diffraction line of this NaCl structure compound. Therefore, it can be assumed that most of the bonded phase is a compound having this NaCl structure. On the other hand, from the results of EDS measurement, Ti and M are contained in the binder phases of Inventions 1 to 12 and Comparative Product 1 in the ratios shown in Table 4. As shown in Table 4, the ratio of Ti and M contained in the binder phase was the same as the ratio of Ti and M of the composite solid solution compound powder of the raw material powder. Therefore, when X-ray diffraction measurement was performed on the composite solid solution compound powder of the raw material powder, a NaCl between the Bragg angle 2θ of the diffraction line of the composite solid solution compound powder of the raw material powder and the diffraction lines of TiC and TiN was obtained. The Bragg angle 2θ of the diffraction line of the compound having the structure coincided. From these results, the composition of the compound having the NaCl structure was set to the same composition as the composite solid solution compound powder of the raw material powder. When the X-ray diffraction measurement was performed for the comparative product 2, a diffraction line having a NaCl structure was observed between the TiC diffraction line and the TiN diffraction line. From the results of the EDS measurement and the WDS measurement, as shown in Table 4, the binder phase of the comparative product 2 contained Ti. Was subjected to Ti (C 0.5 N 0.5) X-ray diffraction measurement of the powder of the raw material powder, the raw material powder Ti (C 0.5 N 0.5) and the Bragg angle 2θ of the diffraction lines of the powder, NaCl Since the Bragg angle 2θ of the diffraction line of the compound having the structure coincided with that of the compound having the structure, the composition of the compound having the NaCl structure was Ti (C 0.5 N 0.5 ). These results are shown in Table 2.

Figure 0006082650
Figure 0006082650

得られた立方晶窒化硼素焼結体について、回折線の半価幅とピーク高さとを測定するために、株式会社リガク製X線回折装置RINT TTRIIIを使用して、出力:50kV、250mA、入射側ソーラースリット:5°、発散縦スリット:1/2°、発散縦制限スリット:10mm、散乱スリット2/3°、受光側ソーラースリット:5°、受光スリット:0.15mm、BENTモノクロメータ、受光モノクロスリット:0.8mm、サンプリング幅:0.02°、スキャンスピード:0.1°/min、2θ測定範囲:30°〜90°という条件で、Cu−Kα線を用いた2θ/θ集中法光学系のX線回折測定を行った。得られたX線回折図形から、X線回折装置付属のMDI社製XRD解析ソフトウェアJADE6を用いて、TiC(PDFカードNo.32−1383)の回折線とTiN(PDFカードNo.38−1420)の回折線との間にあるNaCl構造の複合固溶体化合物およびTi(C0.50.5)の(200)面回折線について、半価幅とピーク高さIとを求めた。また、MDI社製XRDX線回折装置付属の解析ソフトウェアJADE6を用いて、複合固溶体化合物およびTi(C0.50.5)を除く結合相および不可避的不純物の回折線の中で最も高いピーク高さIを求め、Iに対するIのピーク高さの比(I/I)を求めた。それらの値を表3に示した。なお、X線回折装置付属のMDI社製XRD解析ソフトウェアJADE6では、三次式近似を用いてバックグラウンド処理およびKα2ピーク除去を行い、Pearson−VII関数を用いてプロファイルフィッティングを行った後、ピークトップ法よりピーク位置を求め、各回折線の半価幅とピーク高さとを導出している。 In order to measure the half width of the diffraction line and the peak height of the obtained cubic boron nitride sintered body, an output: 50 kV, 250 mA, incident, using a Rigaku Corporation X-ray diffractometer RINT TTRIII. Side solar slit: 5 °, divergence longitudinal slit: 1/2 °, divergence longitudinal restriction slit: 10 mm, scattering slit 2/3 °, light receiving side solar slit: 5 °, light receiving slit: 0.15 mm, BENT monochromator, light receiving Monochrome slit: 0.8 mm, sampling width: 0.02 °, scan speed: 0.1 ° / min, 2θ measurement range: 2θ / θ concentration method using Cu-Kα ray under the conditions of 30 ° to 90 ° An X-ray diffraction measurement of the optical system was performed. From the obtained X-ray diffraction pattern, the diffraction line of TiC (PDF card No. 32-1383) and TiN (PDF card No. 38-1420) are used by using MRD XRD analysis software JADE6 attached to the X-ray diffractometer. The half-value width and the peak height I 1 were determined for the (200) plane diffraction lines of the NaCl-structured composite solid solution compound and Ti (C 0.5 N 0.5 ) between the two diffraction lines. The highest peak among the diffraction lines of the combined phase and inevitable impurities excluding the composite solid solution compound and Ti (C 0.5 N 0.5 ) using the analysis software JADE6 attached to the XRDX line diffractometer manufactured by MDI It obtains the height I 2, was determined the ratio of the peak of the I 2 height for I 1 (I 2 / I 1 ). These values are shown in Table 3. In addition, in the XRD analysis software JADE6 manufactured by MDI attached to the X-ray diffractometer, the background processing and Kα2 peak removal are performed using cubic approximation, the profile fitting is performed using the Pearson-VII function, and then the peak top method is used. Further, the peak position is obtained, and the half width and peak height of each diffraction line are derived.

Figure 0006082650
Figure 0006082650

次に、立方晶窒化硼素焼結体の結合相に含まれるTiとMとの比率(原子比)を、EDS測定を行って調べた。その結果を表4に示す。   Next, the ratio (atomic ratio) of Ti and M contained in the binder phase of the cubic boron nitride sintered body was examined by performing EDS measurement. The results are shown in Table 4.

Figure 0006082650
Figure 0006082650

次に、Indentation fracture法(メディアンタイプ)を用いて、立方晶窒化硼素焼結体の破壊靭性値K1Cと印加荷重98Nのビッカース硬さHvとを測定した。これらの結果は表5に示した。 Next, with reference Indentation fracture method (median type), it was measured with Vickers hardness Hv of the applied load 98N and fracture toughness value K 1C of cubic boron nitride sintered body. These results are shown in Table 5.

Figure 0006082650
Figure 0006082650

次に、発明品および比較品を、ISO規格CNGA120408インサート形状の切削工具に加工した。得られた切削工具について、下記の切削試験(1)(2)を行った。その結果を表6に示す。   Next, the inventive product and the comparative product were processed into ISO standard CNGA120408 insert-shaped cutting tools. The obtained cutting tools were subjected to the following cutting tests (1) and (2). The results are shown in Table 6.

切削試験(1)
外周連続乾式切削(旋削)、
被削材:SCM415H(HRC60.9〜61.7)、
被削材形状:円柱φ63mm×L200mm、
切削速度:250m/min、
切込み:0.25mm、
送り:0.1mm/rev、
工具寿命:VBc=0.15mmに達するまでの切削時間または欠損までの切削時間。
Cutting test (1)
Peripheral continuous dry cutting (turning),
Work material: SCM415H (HRC 60.9-61.7),
Work material shape: Cylinder φ63mm × L200mm,
Cutting speed: 250 m / min,
Cutting depth: 0.25mm,
Feed: 0.1 mm / rev,
Tool life: Cutting time to reach VBc = 0.15 mm or cutting time to breakage.

切削試験(2)
外周弱断続乾式切削(旋削)、
被削材:SCM435H(HRC60.9〜61.7)、
被削材形状:90°V溝2本入り円柱φ48mm×L200mm、
切削速度:200m/min、
切込み:0.25mm、
送り:0.1mm/rev、
工具寿命:VBc=0.15mmに達するまでの切削時間または欠損までの切削時間。
Cutting test (2)
Peripheral weak intermittent dry cutting (turning),
Work material: SCM435H (HRC 60.9-61.7),
Work material shape: Cylindrical φ 48 mm x L 200 mm with two 90 ° V grooves,
Cutting speed: 200 m / min,
Cutting depth: 0.25mm,
Feed: 0.1 mm / rev,
Tool life: Cutting time to reach VBc = 0.15 mm or cutting time to breakage.

Figure 0006082650
Figure 0006082650

発明品の立方晶窒化硼素焼結体は、比較品の立方晶窒化硼素焼結体に比べて、硬さHvおよび破壊靭性値K1Cが高く、その結果、切削時の耐摩耗性および耐欠損性が上昇し、連続切削および弱断続切削において、比較品に比べて工具寿命が長い。 The inventive cubic boron nitride sintered body has higher hardness Hv and fracture toughness value K 1C than the comparative cubic boron nitride sintered body, and as a result, wear resistance and fracture resistance during cutting. The tool life is longer than that of the comparative product in continuous cutting and weak interrupted cutting.

(実施例2)
平均粒径2μmの立方晶窒化硼素(cBN)粉末、表7に示す組成および平均粒径の複合固溶体化合物粉末またはTi(C0.50.5)粉末、平均粒径2μmのAl粉末を用いて、表7に示す配合組成に配合した。なお、原料粉末の平均粒径は、米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定した。配合した原料粉末を、超硬合金製ボールとヘキサン溶媒とパラフィンとともにボールミル用のシリンダーに入れて、ボールミル混合した。ボールミルで混合粉砕して得られた混合粉末を、圧粉成型した。混合粉末の成型体を真空加熱炉に入れて、炉内を圧力1.33×10−3Pa以下の真空にして、温度450℃の条件で脱パラフィン処理を行った後、昇温し、圧力1.33×10−3Pa以下の真空にて、温度850℃の条件で仮焼結をした。得られた仮焼結体を金属カプセルに封入し、金属カプセルを超高圧高温発生装置に入れて、圧力5.5GPa、温度1500℃、保持時間30分の条件で焼結して、発明品および比較品の立方晶窒化硼素焼結体を得た。
(Example 2)
A cubic boron nitride (cBN) powder having an average particle diameter of 2 μm, a composite solid solution compound powder having the composition and average particle diameter shown in Table 7 or a Ti (C 0.5 N 0.5 ) powder, and an Al powder having an average particle diameter of 2 μm. And blended into the blending composition shown in Table 7. The average particle size of the raw material powder was measured by the Fisher method (Fisher Sub-Sieve Sizer (FSSS)) described in the American Society for Testing and Materials (ASTM) Standard B330. The blended raw material powder was placed in a ball mill cylinder together with a cemented carbide ball, a hexane solvent, and paraffin, and ball mill mixed. The mixed powder obtained by mixing and pulverizing with a ball mill was compacted. The mixed powder molded body is put into a vacuum heating furnace, the inside of the furnace is evacuated to a pressure of 1.33 × 10 −3 Pa or less, deparaffinized at a temperature of 450 ° C., then heated up, pressure Preliminary sintering was performed at a temperature of 850 ° C. in a vacuum of 1.33 × 10 −3 Pa or less. The obtained temporary sintered body is sealed in a metal capsule, and the metal capsule is put into an ultra-high pressure and high temperature generator, and sintered under the conditions of pressure 5.5 GPa, temperature 1500 ° C., and holding time 30 minutes. A comparative cubic boron nitride sintered body was obtained.

Figure 0006082650
Figure 0006082650

こうして得られた立方晶窒化硼素焼結体について、SEM観察、EDS測定、WDS測定、X線回折測定を行って、焼結体の組成を調べた。また、立方晶窒化硼素焼結体の断面組織をSEM観察して、立方晶窒化硼素(cBN)の体積%と結合相の体積%とを測定した。結合相の複合固溶体化合物の組成は、以下のようにして確認した。発明品13〜24および比較品3についてX線回折測定を行うと、TiC(PDFカードNo.32−1383)の回折線とTiN(PDFカードNo.38−1420)の回折線との間に、NaCl構造の化合物の回折線が観察された。また、表9に示すように、このNaCl構造の化合物の(200)面回折線のピーク高さIに対して、他の結合相の回折線のピーク高さIは0.18以下であるので、結合相の大部分は、このNaCl構造の化合物であると推定できる。一方、EDS測定の結果より、発明品13〜24および比較品3の結合相には、TiとMとが表10に示す割合で含まれている。表10に示されるように、結合相に含まれるTiとMとの比率は、原料粉末の複合固溶体化合物粉末のTiとMとの比率と同じであった。そこで、原料粉末の複合固溶体化合物粉末のX線回折測定を行ったところ、原料粉末の複合固溶体化合物粉末の回折線のブラッグ角2θと、TiCの回折線とTiNの回折線との間にあるNaCl構造の化合物の回折線のブラッグ角2θとは一致した。これらの結果から、NaCl構造の化合物の組成を、原料粉末の複合固溶体化合物粉末と同じ組成にした。比較品4については、X線回折測定を行うと、TiCの回折線とTiNの回折線との間にNaCl構造の回折線が観察された。EDS測定とWDS測定との結果から、表10に示すように、比較品4の結合相にはTiが含まれていた。原料粉末のTi(C0.50.5)粉末のX線回折測定を行ったところ、原料粉末のTi(C0.50.5)粉末の回折線のブラッグ角2θと、NaCl構造の化合物の回折線のブラッグ角2θとは一致したので、NaCl構造の化合物の組成をTi(C0.50.5)とした。これらの結果を表8に示した。 The cubic boron nitride sintered body thus obtained was subjected to SEM observation, EDS measurement, WDS measurement, and X-ray diffraction measurement to examine the composition of the sintered body. Further, the cross-sectional structure of the cubic boron nitride sintered body was observed with an SEM, and the volume% of cubic boron nitride (cBN) and the volume% of the binder phase were measured. The composition of the composite solid solution compound of the binder phase was confirmed as follows. When X-ray diffraction measurement was performed on Invention Products 13 to 24 and Comparative Product 3, between the diffraction line of TiC (PDF card No. 32-1383) and the diffraction line of TiN (PDF card No. 38-1420), A diffraction line of a compound having a NaCl structure was observed. Further, as shown in Table 9, the peak height I 2 of the diffraction lines of other bonded phases is 0.18 or less with respect to the peak height I 1 of the (200) plane diffraction line of this NaCl structure compound. Therefore, it can be presumed that most of the bonded phase is a compound having this NaCl structure. On the other hand, from the results of EDS measurement, Ti and M are contained in the binder phases of Invention Products 13 to 24 and Comparative Product 3 in the proportions shown in Table 10. As shown in Table 10, the ratio of Ti and M contained in the binder phase was the same as the ratio of Ti and M in the composite solid solution compound powder of the raw material powder. Therefore, when X-ray diffraction measurement was performed on the composite solid solution compound powder of the raw material powder, a NaCl between the Bragg angle 2θ of the diffraction line of the composite solid solution compound powder of the raw material powder and the diffraction lines of TiC and TiN was obtained. The Bragg angle 2θ of the diffraction line of the compound having the structure coincided. From these results, the composition of the compound having the NaCl structure was set to the same composition as the composite solid solution compound powder of the raw material powder. When the X-ray diffraction measurement was performed on the comparative product 4, a diffraction line having a NaCl structure was observed between the TiC diffraction line and the TiN diffraction line. From the results of EDS measurement and WDS measurement, as shown in Table 10, the binder phase of the comparative product 4 contained Ti. Was subjected to Ti (C 0.5 N 0.5) X-ray diffraction measurement of the powder of the raw material powder, the raw material powder Ti (C 0.5 N 0.5) and the Bragg angle 2θ of the diffraction lines of the powder, NaCl Since the Bragg angle 2θ of the diffraction line of the compound having the structure coincided with that of the compound having the structure, the composition of the compound having the NaCl structure was Ti (C 0.5 N 0.5 ). These results are shown in Table 8.

Figure 0006082650
Figure 0006082650

得られた立方晶窒化硼素焼結体について、回折線の半価幅とピーク高さとを測定するために、株式会社リガク製X線回折装置RINT TTRIIIを使用して、実施例と同じ測定条件でX線回折測定を行った。得られたX線回折図形から、実施例1と同様にX線回折装置付属のMDI社製XRD解析ソフトウェアJADE6を用いて、TiC(PDFカードNo.32−1383)の回折線とTiN(PDFカードNo.38−1420)の回折線との間にあるNaCl構造の複合固溶体化合物およびTi(C0.50.5)の(200)面回折線について、半価幅とピーク高さIとを求めた。同様に、複合固溶体化合物およびTi(C0.50.5)を除く結合相および不可避的不純物の回折線の中で最も高いピーク高さIを求め、Iに対するIのピーク高さの比(I/I)を求めた。それらの値を表9に示した。 For the obtained cubic boron nitride sintered body, in order to measure the half width of the diffraction line and the peak height, an X-ray diffractometer RINT TTRIII manufactured by Rigaku Corporation was used under the same measurement conditions as in the examples. X-ray diffraction measurement was performed. From the obtained X-ray diffraction pattern, the diffraction line of TiC (PDF card No. 32-1383) and TiN (PDF card) were used in the same manner as in Example 1 using the XRD analysis software JADE6 manufactured by MDI. No. 38-1420) The half-value width and the peak height I 1 of the complex solid solution compound of NaCl structure and the (200) plane diffraction line of Ti (C 0.5 N 0.5 ) between the diffraction line of No. 38-1420) And asked. Similarly, the highest peak height I 2 in the diffraction lines of the bonded phase and inevitable impurities excluding the composite solid solution compound and Ti (C 0.5 N 0.5 ) is obtained, and the peak height of I 2 with respect to I 1 The ratio (I 2 / I 1 ) was determined. These values are shown in Table 9.

Figure 0006082650
Figure 0006082650

次に、立方晶窒化硼素焼結体の結合相に含まれるTiとMとの比率(原子比)を、EDS測定を行って調べた。その結果を表10に示す。   Next, the ratio (atomic ratio) of Ti and M contained in the binder phase of the cubic boron nitride sintered body was examined by performing EDS measurement. The results are shown in Table 10.

Figure 0006082650
Figure 0006082650

次に、Indentation fracture法(メディアンタイプ)を用いて、立方晶窒化硼素焼結体の破壊靭性値K1Cと印加荷重98Nのビッカース硬さHvとを測定した。これらの結果は表11に示した。 Next, with reference Indentation fracture method (median type), it was measured with Vickers hardness Hv of the applied load 98N and fracture toughness value K 1C of cubic boron nitride sintered body. These results are shown in Table 11.

Figure 0006082650
Figure 0006082650

次に、発明品および比較品を、ISO規格CNGA120408インサート形状の切削工具に加工した。得られた切削工具について、下記の切削試験(3)(4)を行った。その結果を表12に示す。   Next, the inventive product and the comparative product were processed into ISO standard CNGA120408 insert-shaped cutting tools. The obtained cutting tool was subjected to the following cutting tests (3) and (4). The results are shown in Table 12.

切削試験(3)
外周連続乾式切削(旋削)、
被削材:SCM415H(HRC60.9〜61.7)、
被削材形状:円柱φ63mm×L200mm、
切削速度:250m/min、
切込み:0.15mm、
送り:0.1mm/rev、
工具寿命:VBc=0.15mmに達するまでの切削時間または欠損までの切削時間。
Cutting test (3)
Peripheral continuous dry cutting (turning),
Work material: SCM415H (HRC 60.9-61.7),
Work material shape: Cylinder φ63mm × L200mm,
Cutting speed: 250 m / min,
Cutting depth: 0.15 mm,
Feed: 0.1 mm / rev,
Tool life: Cutting time to reach VBc = 0.15 mm or cutting time to breakage.

切削試験(4)
外周弱断続乾式切削(旋削)、
被削材:SCM435H(HRC60.9〜61.7)、
被削材形状:90°V溝2本入り円柱φ48mm×L200mm、
切削速度:100m/min、
切込み:0.15mm、
送り:0.1mm/rev、
工具寿命:VBc=0.15mmに達するまでの切削時間または欠損までの切削時間。
Cutting test (4)
Peripheral weak intermittent dry cutting (turning),
Work material: SCM435H (HRC 60.9-61.7),
Work material shape: Cylindrical φ 48 mm x L 200 mm with two 90 ° V grooves,
Cutting speed: 100 m / min,
Cutting depth: 0.15 mm,
Feed: 0.1 mm / rev,
Tool life: Cutting time to reach VBc = 0.15 mm or cutting time to breakage.

Figure 0006082650
Figure 0006082650

発明品の立方晶窒化硼素焼結体は、比較品の立方晶窒化硼素焼結体に比べて、硬さHvおよび破壊靭性値K1Cが高く、その結果、切削時の耐摩耗性および耐欠損性が上昇し、連続切削および弱断続切削において、従来品に比べて工具寿命が長い。 The inventive cubic boron nitride sintered body has higher hardness Hv and fracture toughness value K 1C than the comparative cubic boron nitride sintered body, and as a result, wear resistance and fracture resistance during cutting. The tool life is longer than conventional products in continuous cutting and weak interrupted cutting.

(実施例3)
平均粒径2μmの立方晶窒化硼素(cBN)粉末、表13に示す組成および平均粒径の複合固溶体化合物粉末またはTi(C0.50.5)粉末、平均粒径2μmのAl粉末を用いて、表13に示す配合組成に配合した。なお、原料粉末の平均粒径は、米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定した。配合した原料粉末を、超硬合金製ボールとヘキサン溶媒とパラフィンとともにボールミル用のシリンダーに入れて、ボールミル混合した。ボールミルで混合粉砕して得られた混合粉末を、圧粉成型した。混合粉末の成型体を真空加熱炉に入れて、炉内を圧力1.33×10−3Pa以下の真空にして、温度450℃の条件で脱パラフィン処理を行った後、昇温し、圧力1.33×10−3Pa以下の真空にて、温度850℃の条件で仮焼結をした。得られた仮焼結体を金属カプセルに封入し、金属カプセルを超高圧高温発生装置に入れて、圧力5.5GPa、温度1500℃、保持時間30分の条件で焼結して、発明品および比較品の立方晶窒化硼素焼結体を得た。
(Example 3)
A cubic boron nitride (cBN) powder having an average particle diameter of 2 μm, a composite solid solution compound powder or Ti (C 0.5 N 0.5 ) powder having the composition and average particle diameter shown in Table 13, and an Al powder having an average particle diameter of 2 μm. And blended into the blending composition shown in Table 13. The average particle size of the raw material powder was measured by the Fisher method (Fisher Sub-Sieve Sizer (FSSS)) described in the American Society for Testing and Materials (ASTM) Standard B330. The blended raw material powder was placed in a ball mill cylinder together with a cemented carbide ball, a hexane solvent, and paraffin, and ball mill mixed. The mixed powder obtained by mixing and pulverizing with a ball mill was compacted. The mixed powder molded body is put into a vacuum heating furnace, the inside of the furnace is evacuated to a pressure of 1.33 × 10 −3 Pa or less, deparaffinized at a temperature of 450 ° C., then heated up, pressure Preliminary sintering was performed at a temperature of 850 ° C. in a vacuum of 1.33 × 10 −3 Pa or less. The obtained temporary sintered body is sealed in a metal capsule, and the metal capsule is put into an ultra-high pressure and high temperature generator, and sintered under the conditions of pressure 5.5 GPa, temperature 1500 ° C., and holding time 30 minutes. A comparative cubic boron nitride sintered body was obtained.

Figure 0006082650
Figure 0006082650

こうして得られた立方晶窒化硼素焼結体について、SEM観察、EDS測定、WDS測定、X線回折測定を行って、立方晶窒化硼素焼結体の組成を調べた。また、立方晶窒化硼素焼結体の断面組織をSEM観察して、立方晶窒化硼素(cBN)の体積%と結合相の体積%とを測定した。結合相の複合固溶体化合物の組成は、以下のようにして確認した。発明品25〜36および比較品5についてX線回折測定を行うと、TiC(PDFカードNo.32−1383)の回折線とTiN(PDFカードNo.38−1420)の回折線との間に、NaCl構造の化合物の回折線が観察された。また、表15に示すように、このNaCl構造の化合物の(200)面回折線のピーク高さIに対して、他の結合相の回折線のピーク高さIは0.34以下であるので、結合相の大部分は、このNaCl構造の化合物であると推定できる。一方、EDS測定の結果より、発明品25〜36および比較品5の結合相には、TiとMとが表16に示す割合で含まれている。表16に示されるように、結合相に含まれるTiとMとの比率は、原料粉末の複合固溶体化合物粉末のTiとMとの比率と同じであった。そこで、原料粉末の複合固溶体化合物粉末のX線回折測定を行ったところ、原料粉末の複合固溶体化合物粉末の回折線のブラッグ角2θと、TiCの回折線とTiNの回折線との間にあるNaCl構造の化合物の回折線のブラッグ角2θとは一致した。これらの結果から、NaCl構造の化合物の組成を、原料粉末の複合固溶体化合物粉末と同じ組成にした。比較品6については、X線回折測定を行うと、TiCの回折線とTiNの回折線との間にNaCl構造の回折線が観察された。EDS測定とWDS測定との結果から、表16に示すように、比較品6の結合相にはTiが含まれていた。原料粉末のTi(C0.50.5)粉末のX線回折測定を行ったところ、原料粉末のTi(C0.50.5)粉末の回折線のブラッグ角2θと、NaCl構造の化合物の回折線のブラッグ角2θとは一致したので、NaCl構造の化合物の組成をTi(C0.50.5)とした。これらの結果を表14に示した。 The cubic boron nitride sintered body thus obtained was subjected to SEM observation, EDS measurement, WDS measurement, and X-ray diffraction measurement to examine the composition of the cubic boron nitride sintered body. Further, the cross-sectional structure of the cubic boron nitride sintered body was observed with an SEM, and the volume% of cubic boron nitride (cBN) and the volume% of the binder phase were measured. The composition of the composite solid solution compound of the binder phase was confirmed as follows. When X-ray diffraction measurement is performed on the inventive products 25 to 36 and the comparative product 5, between the diffraction lines of TiC (PDF card No. 32-1383) and the diffraction lines of TiN (PDF card No. 38-1420), A diffraction line of a compound having a NaCl structure was observed. Further, as shown in Table 15, the peak height I 2 of the diffraction lines of other bonded phases is 0.34 or less with respect to the peak height I 1 of the (200) plane diffraction line of this NaCl structure compound. Therefore, it can be assumed that most of the bonded phase is a compound having this NaCl structure. On the other hand, from the results of EDS measurement, Ti and M are contained in the binder phases of Invention Products 25 to 36 and Comparative Product 5 in the ratios shown in Table 16. As shown in Table 16, the ratio of Ti and M contained in the binder phase was the same as the ratio of Ti and M of the composite solid solution compound powder of the raw material powder. Therefore, when X-ray diffraction measurement was performed on the composite solid solution compound powder of the raw material powder, a NaCl between the Bragg angle 2θ of the diffraction line of the composite solid solution compound powder of the raw material powder and the diffraction lines of TiC and TiN was obtained. The Bragg angle 2θ of the diffraction line of the compound having the structure coincided. From these results, the composition of the compound having the NaCl structure was set to the same composition as the composite solid solution compound powder of the raw material powder. When the X-ray diffraction measurement was performed on the comparative product 6, a diffraction line having a NaCl structure was observed between the TiC diffraction line and the TiN diffraction line. From the results of the EDS measurement and the WDS measurement, as shown in Table 16, the binder phase of the comparative product 6 contained Ti. Was subjected to Ti (C 0.5 N 0.5) X-ray diffraction measurement of the powder of the raw material powder, the raw material powder Ti (C 0.5 N 0.5) and the Bragg angle 2θ of the diffraction lines of the powder, NaCl Since the Bragg angle 2θ of the diffraction line of the compound having the structure coincided with that of the compound having the structure, the composition of the compound having the NaCl structure was Ti (C 0.5 N 0.5 ). These results are shown in Table 14.

Figure 0006082650
Figure 0006082650

得られた立方晶窒化硼素焼結体について、回折線の半価幅とピーク高さとを測定するために、株式会社リガク製X線回折装置RINT TTRIIIを使用して、実施例1と同じ測定条件でX線回折測定を行った。得られたX線回折図形から、実施例1と同様に、X線回折装置付属のMDI社製XRD解析ソフトウェアJADE6を用いて、TiC(PDFカードNo.32−1383)の回折線とTiN(PDFカードNo.38−1420)の回折線との間にあるNaCl構造の複合固溶体化合物およびTi(C0.50.5)の(200)面回折線について、半価幅とピーク高さIとを求めた。同様に、複合固溶体化合物およびTi(C0.50.5)を除く結合相および不可避的不純物の回折線の中で最も高いピーク高さIを求め、Iに対するIのピーク高さの比(I/I)を求めた。それらの値を表15に示した。 About the obtained cubic boron nitride sintered compact, in order to measure the half-value width and peak height of a diffraction line, the same measurement conditions as Example 1 were used using Rigaku Co., Ltd. X-ray diffraction apparatus RINT TTRIII. The X-ray diffraction measurement was performed. From the obtained X-ray diffraction pattern, the diffraction line of TiC (PDF card No. 32-1383) and TiN (PDF) were used in the same manner as in Example 1 using the XRD analysis software JADE6 manufactured by MDI. Half-width and peak height I for the complex solid solution compound of NaCl structure and the (200) plane diffraction line of Ti (C 0.5 N 0.5 ) between the diffraction line of Card No. 38-1420) 1 was requested. Similarly, the highest peak height I 2 in the diffraction lines of the bonded phase and inevitable impurities excluding the composite solid solution compound and Ti (C 0.5 N 0.5 ) is obtained, and the peak height of I 2 with respect to I 1 The ratio (I 2 / I 1 ) was determined. These values are shown in Table 15.

Figure 0006082650
Figure 0006082650

次に、立方晶窒化硼素焼結体の結合相に含まれるTiとMとの比率(原子比)を、EDS測定を行って調べた。その結果を表16に示す。   Next, the ratio (atomic ratio) of Ti and M contained in the binder phase of the cubic boron nitride sintered body was examined by performing EDS measurement. The results are shown in Table 16.

Figure 0006082650
Figure 0006082650

次に、I ndentation fracture法(メディアンタイプ)を用いて、立方晶窒化硼素焼結体の破壊靭性値K1Cと印加荷重98Nのビッカース硬さHvとを測定した。これらの結果は表17に示した。 Next, the fracture toughness value K 1C of the cubic boron nitride sintered body and the Vickers hardness Hv with an applied load of 98 N were measured using an indentation fracture method (median type). These results are shown in Table 17.

Figure 0006082650
Figure 0006082650

次に、発明品および比較品を、ISO規格CNGA120408インサート形状の切削工具に加工した。得られた切削工具について、下記の切削試験(5)(6)を行った。その結果を表18に示す。   Next, the inventive product and the comparative product were processed into ISO standard CNGA120408 insert-shaped cutting tools. The obtained cutting tools were subjected to the following cutting tests (5) and (6). The results are shown in Table 18.

切削試験(5)
外周連続乾式切削(旋削)、
被削材:SCM415H(HRC60.9〜61.7)、
被削材形状:円柱φ63mm×L200mm、
切削速度:150m/min、
切込み:0.25mm、
送り:0.1mm/rev、
工具寿命:VBc=0.15mmに達するまでの切削時間または欠損までの切削時間。
Cutting test (5)
Peripheral continuous dry cutting (turning),
Work material: SCM415H (HRC 60.9-61.7),
Work material shape: Cylinder φ63mm × L200mm,
Cutting speed: 150 m / min,
Cutting depth: 0.25mm,
Feed: 0.1 mm / rev,
Tool life: Cutting time to reach VBc = 0.15 mm or cutting time to breakage.

切削試験(6)
外周弱断続乾式切削(旋削)、
被削材:SCM435H(HRC60.9〜61.7)、
被削材形状:90°V溝2本入り円柱φ48mm×L200mm、
切削速度:150m/min、
切込み:0.25mm、
送り:0.1mm/rev、
評価:VBc=0.15mmに達するまでの切削時間または欠損までの切削時間。
Cutting test (6)
Peripheral weak intermittent dry cutting (turning),
Work material: SCM435H (HRC 60.9-61.7),
Work material shape: Cylindrical φ 48 mm x L 200 mm with two 90 ° V grooves,
Cutting speed: 150 m / min,
Cutting depth: 0.25mm,
Feed: 0.1 mm / rev,
Evaluation: Cutting time until reaching VBc = 0.15 mm or cutting until defect.

Figure 0006082650
Figure 0006082650

発明品の立方晶窒化硼素焼結体は、比較品の立方晶窒化硼素焼結体に比べて、硬さHvおよび破壊靭性値K1Cが高く、その結果、切削時の耐摩耗性および耐欠損性が上昇し、連続切削および弱断続切削において、従来品に比べて工具寿命が長い。 The inventive cubic boron nitride sintered body has higher hardness Hv and fracture toughness value K 1C than the comparative cubic boron nitride sintered body, and as a result, wear resistance and fracture resistance during cutting. The tool life is longer than conventional products in continuous cutting and weak interrupted cutting.

(実施例4)
実施例1の発明品1の表面に、PVD装置を用いて被覆処理を行った。立方晶窒化硼素焼結体の表面に平均層厚3μmのTiN層を被覆したものを発明品37、立方晶窒化硼素焼結体の表面に平均層厚3μmのTiAlN層を被覆したものを発明品38とした。発明品37、38について、実施例1と同じ切削試験(1)(2)を行った。その結果を表19に示す。
Example 4
The surface of Invention 1 of Example 1 was coated using a PVD apparatus. Invented product 37 in which the surface of a cubic boron nitride sintered body is coated with a TiN layer having an average layer thickness of 3 μm. Invented product in which the surface of a cubic boron nitride sintered body is coated with a TiAlN layer having an average layer thickness of 3 μm. 38. The inventive products 37 and 38 were subjected to the same cutting tests (1) and (2) as in Example 1. The results are shown in Table 19.

Figure 0006082650
Figure 0006082650

被覆層を被覆した発明品37、38は、被覆層を被覆していない発明品1よりも、さらに工具寿命を長くすることができた。   The inventive products 37 and 38 coated with the coating layer were able to further extend the tool life compared to the inventive product 1 not coated with the coating layer.

本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性および靱性に優れ、特に、切削工具や耐摩耗工具として用いた場合に、工具寿命を延長できるので、産業上の利用可能性が高い。   The cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are excellent in wear resistance, fracture resistance, and toughness, and particularly when used as a cutting tool or wear resistant tool. Since it can be extended, industrial applicability is high.

Claims (6)

立方晶窒化硼素と結合相と不可避的不純物とからなり、結合相は、Zr、Hf、Nb、Cr、MoおよびWからなる群から選択される少なくとも1種とTiとの複合固溶体炭窒化物を含み、複合固溶体炭窒化物はNaCl構造であり、Cu−Kα線を用いた2θ/θ法のX線回折測定により得られる複合固溶体炭窒化物の(200)面回折線の半価幅が0.60°以上0.90°以下であり、
結合相全体に含まれるTiおよびM(但し、Mは、Zr、Hf、Nb、Cr、MoおよびWからなる群から選択される少なくとも1種の元素を表す)の原子比は、Ti:M=(0.5〜0.9):(0.5〜0.1)(但し、Tiの原子比とMの原子比との合計は1になる)である立方晶窒化硼素焼結体。
A composite solid solution carbonitride of Ti and at least one selected from the group consisting of Zr, Hf, Nb , Cr, Mo, and W, comprising cubic boron nitride, a binder phase, and inevitable impurities The composite solid solution carbonitride has a NaCl structure, and the half width of the (200) plane diffraction line of the composite solid solution carbonitride obtained by the X-ray diffraction measurement of 2θ / θ method using Cu-Kα ray is 0.60 ° more than 0.90 ° Ri der below,
The atomic ratio of Ti and M (wherein M represents at least one element selected from the group consisting of Zr, Hf, Nb, Cr, Mo and W) contained in the entire binder phase is Ti: M = (0.5-0.9) :( 0.5 to 0.1) (the total of the atomic ratios and M atomic ratio of Ti becomes 1) cubic boron nitride sintered body Ru der.
Cu−Kα線を用いた2θ/θ法のX線回折測定により、2θの測定範囲を30°〜90°としたときに得られる、複合固溶体炭窒化物の(200)面回折線のピーク高さIに対する複合固溶体炭窒化物以外の結合相および不可避的不純物に含まれる化合物および金属の回折線の中で最も高いピーク高さIのピーク高さ比(I/I)は1.0以下である請求項1に記載の立方晶窒化硼素焼結体。 Peak height of (200) plane diffraction line of composite solid solution carbonitride obtained by X-ray diffraction measurement of 2θ / θ method using Cu-Kα ray, when 2θ measurement range is 30 ° to 90 ° composite solid solution carbonitride other nitrides of binder phase and inevitably contained impurities compounds and metal tallest peak peak height ratio of the height I 2 in the diffraction line for the I 1 is (I 2 / I 1) 1 The cubic boron nitride sintered body according to claim 1, which is 0.0 or less. 結合相は、複合固溶体炭窒化物と、酸化アルミニウム、窒化アルミニウムおよび硼化アルミニウムの中の少なくとも1種のアルミニウム化合物と、硼化チタンとを含有する請求項1または2に記載の立方晶窒化硼素焼結体。 The cubic boron nitride according to claim 1 or 2 , wherein the binder phase contains a composite solid solution carbonitride, at least one aluminum compound of aluminum oxide, aluminum nitride, and aluminum boride, and titanium boride. Sintered body. 複合固溶体炭窒化物は、(Ti1−x)(C1−y)(ただし、MはZr、Hf、Nb、Ta、Cr、MoおよびWからなる群から選択される少なくとも1種の元素を表し、xはTiとMとの合計に対するMの原子比を示し、yはCとNとの合計に対するNの原子比を示し、x、yはそれぞれ、0.02≦x≦0.5、01である)と表される複合固溶体炭窒化物である請求項1〜のいずれか1項に記載の立方晶窒化硼素焼結体。 The composite solid solution carbonitride is (Ti 1-x M x ) (C 1-y N y ) (where M is at least one selected from the group consisting of Zr, Hf, Nb, Ta, Cr, Mo and W) X represents the atomic ratio of M to the sum of Ti and M, y represents the atomic ratio of N to the sum of C and N, and x and y are 0.02 ≦ x ≦, respectively. The cubic boron nitride sintered body according to any one of claims 1 to 3 , which is a composite solid solution carbonitride expressed as 0.5, 0 < y < 1. 立方晶窒化硼素焼結体は、立方晶窒化硼素:立方晶窒化硼素焼結体全体に対して10〜90体積%と、結合相および不可避的不純物:立方晶窒化硼素焼結体全体に対して10〜90体積%とからなり、これらの合計が100体積%となる請求項1〜のいずれか1項に記載の立方晶窒化硼素焼結体。 The cubic boron nitride sintered body has a cubic boron nitride: 10 to 90% by volume with respect to the entire cubic boron nitride sintered body, and a binder phase and inevitable impurities: with respect to the entire cubic boron nitride sintered body. The cubic boron nitride sintered body according to any one of claims 1 to 4 , comprising 10 to 90% by volume, and a total of these is 100% by volume. 請求項1〜のいずれか1項に記載の立方晶窒化硼素焼結体の表面に被覆層を形成した被覆立方晶窒化硼素焼結体。
A coated cubic boron nitride sintered body in which a coating layer is formed on the surface of the cubic boron nitride sintered body according to any one of claims 1 to 5 .
JP2013094225A 2013-04-26 2013-04-26 Cubic boron nitride sintered body and coated cubic boron nitride sintered body Active JP6082650B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013094225A JP6082650B2 (en) 2013-04-26 2013-04-26 Cubic boron nitride sintered body and coated cubic boron nitride sintered body
PCT/JP2014/061685 WO2014175419A1 (en) 2013-04-26 2014-04-25 Sintered object of cubic boron nitride and coated sintered object of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013094225A JP6082650B2 (en) 2013-04-26 2013-04-26 Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Publications (2)

Publication Number Publication Date
JP2014214065A JP2014214065A (en) 2014-11-17
JP6082650B2 true JP6082650B2 (en) 2017-02-15

Family

ID=51791984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094225A Active JP6082650B2 (en) 2013-04-26 2013-04-26 Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Country Status (2)

Country Link
JP (1) JP6082650B2 (en)
WO (1) WO2014175419A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6650106B2 (en) * 2014-11-27 2020-02-19 三菱マテリアル株式会社 Cubic boron nitride based sintered body and cutting tool made of cubic boron nitride based sintered body
KR102573968B1 (en) * 2016-01-29 2023-09-05 일진다이아몬드(주) Composite sintered body for cutting tools and cutting tools using the same
CN107434415B (en) * 2017-06-12 2020-10-02 金华中烨超硬材料有限公司 Polycrystalline cubic boron nitride composite sheet with high thermal stability and good thermal conductivity and production method thereof
JP6933017B2 (en) * 2017-06-29 2021-09-08 三菱マテリアル株式会社 Cubic boron nitride base sintered body and cutting tool
JPWO2020179809A1 (en) * 2019-03-05 2020-09-10
EP4000779A4 (en) * 2019-07-18 2022-09-14 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered compact
WO2021010476A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic crystal boron nitride sintered body
JP6928197B2 (en) * 2019-07-18 2021-09-01 住友電気工業株式会社 Cubic boron nitride sintered body
WO2021010475A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact
US11518718B2 (en) 2019-07-18 2022-12-06 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material
CN114096502B (en) 2019-07-18 2023-03-21 住友电气工业株式会社 Cubic boron nitride sintered body and method for producing same
WO2021124701A1 (en) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact and method for manufacturing same
JP6990339B2 (en) * 2019-12-16 2022-02-03 住友電気工業株式会社 Cubic boron nitride sintered body
CN111057925B (en) * 2019-12-31 2021-08-20 富耐克超硬材料股份有限公司 Polycrystalline diamond cubic boron nitride composite sheet and preparation method thereof
GB202001369D0 (en) * 2020-01-31 2020-03-18 Element Six Ltd Polycrystalline cubic boron nitride material
WO2022138401A1 (en) * 2020-12-25 2022-06-30 京セラ株式会社 Insert and cutting tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012991B2 (en) * 1979-05-01 1985-04-04 住友電気工業株式会社 Manufacturing method of sintered body for high hardness tools
JPS5978978A (en) * 1982-10-27 1984-05-08 東芝タンガロイ株式会社 High density boron nitride sintered body and manufacture
JPS6369760A (en) * 1987-02-18 1988-03-29 住友電気工業株式会社 Sintered body for high hardness tools and manufacture
JPH07172924A (en) * 1993-12-17 1995-07-11 Toshiba Tungaloy Co Ltd Highly tough sintered compact for tool and its production
JPH07196372A (en) * 1993-12-29 1995-08-01 Tonen Corp Boron nitride ceramic and its production
JP3489297B2 (en) * 1995-11-15 2004-01-19 三菱マテリアル株式会社 Cutting tool made of high-strength cubic boron nitride based sintered body
JP5660034B2 (en) * 2009-04-17 2015-01-28 株式会社タンガロイ Cubic boron nitride sintered body and coated cubic boron nitride sintered body
US8999531B2 (en) * 2010-04-16 2015-04-07 Tungaloy Corporation Coated CBN sintered body

Also Published As

Publication number Publication date
JP2014214065A (en) 2014-11-17
WO2014175419A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP6082650B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP5664795B2 (en) Cubic boron nitride sintered body
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP5305056B1 (en) Cutting tool made of cubic boron nitride based sintered body
JP5660034B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
WO2016104563A1 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP6637664B2 (en) Cubic boron nitride sintered compact cutting tool
JP6032375B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
JP5771883B2 (en) Cubic boron nitride sintered tool
WO2011129422A1 (en) Coated sintered cbn
JP5892423B2 (en) CBN sintered compact cutting tool with excellent toughness
JP2019156692A (en) Cubic crystal boron nitride sintered body, and tool having cubic crystal boron nitride sintered body
WO2010104094A1 (en) Cermet and coated cermet
JP6283985B2 (en) Sintered body
JP5804448B2 (en) Cubic boron nitride based ultra-high pressure sintered body, cutting tool using this as a tool base, and surface-coated cutting tool
JP2020011870A (en) Cubic boron nitride sintered compact and tool including cubic boron nitride sintered compact
JP6365228B2 (en) Sintered body
JP7336063B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP7336062B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6082650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250