JP6933017B2 - Cubic boron nitride base sintered body and cutting tool - Google Patents

Cubic boron nitride base sintered body and cutting tool Download PDF

Info

Publication number
JP6933017B2
JP6933017B2 JP2017127028A JP2017127028A JP6933017B2 JP 6933017 B2 JP6933017 B2 JP 6933017B2 JP 2017127028 A JP2017127028 A JP 2017127028A JP 2017127028 A JP2017127028 A JP 2017127028A JP 6933017 B2 JP6933017 B2 JP 6933017B2
Authority
JP
Japan
Prior art keywords
particles
sintered body
cbn
cbn sintered
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017127028A
Other languages
Japanese (ja)
Other versions
JP2019011206A (en
Inventor
史朗 小口
史朗 小口
庸介 宮下
庸介 宮下
雅大 矢野
雅大 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017127028A priority Critical patent/JP6933017B2/en
Publication of JP2019011206A publication Critical patent/JP2019011206A/en
Application granted granted Critical
Publication of JP6933017B2 publication Critical patent/JP6933017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、高硬度、高強度、耐熱性を備え、特に、すぐれた靱性を有する立方晶窒化ほう素(以下、「cBN」ともいう)基焼結体(以下、「cBN焼結体」ともいう)およびこのcBN焼結体からなる切削工具に関し、特に、cBN焼結体の結合相の成分であるAl粒子がTi化合物粒子を内包した組織を有することにより、硬度、強度、耐熱性を低下させることなく靭性を向上させたcBN焼結体および靱性の向上によってチッピング、欠損等の異常損傷の発生を抑制したcBN焼結体製切削工具に関する。 The present invention is a cubic boron nitride (hereinafter, also referred to as “cBN”)-based sintered body (hereinafter, also referred to as “cBN sintered body”) having high hardness, high strength, and heat resistance, and particularly having excellent toughness. With respect to the cutting tool made of the cBN sintered body, in particular, the hardness, strength, and heat resistance of the Al 2 O 3 particles, which are the components of the bonding phase of the cBN sintered body, because they have a structure containing Ti compound particles. The present invention relates to a cBN sintered body having improved toughness without lowering the toughness, and a cutting tool made of a cBN sintered body having improved toughness to suppress the occurrence of abnormal damage such as chipping and chipping.

cBN焼結体は、ダイヤモンドに次ぐ高硬度、熱伝導率を有し、さらに、鉄系材料との親和性が低いという点から、鋼、鋳鉄等の鉄系被削材の切削加工用の工具として、従来から広く利用されている。
そして、切削加工工具用材料としての性能の改善を図るという観点から、cBN焼結体の強度、耐熱性、靭性、硬さ等をさらに向上させるべく、従来からいくつかの提案がなされている。
The cBN sintered body has a high hardness and thermal conductivity next to diamond, and has a low affinity for iron-based materials. Therefore, it is a tool for cutting iron-based work materials such as steel and cast iron. Has been widely used in the past.
From the viewpoint of improving the performance as a material for cutting tools, some proposals have been made conventionally for further improving the strength, heat resistance, toughness, hardness and the like of the cBN sintered body.

例えば、特許文献1には、鋼、鋳鉄等の鉄系被削材との親和性の低い工具材料として、硬質相cBNを20〜80体積%含有し、残部が、周期律表の4a、5a、6aの炭化物、窒化物、ほう化物等のセラミックス化合物を結合相としたcBN焼結体からなる切削工具が提案されており、この切削工具は、結合相がCo等の金属ではないために、高強度で、耐熱性、耐摩耗性に優れるとされている。 For example, Patent Document 1 contains 20 to 80% by volume of a hard phase cBN as a tool material having a low affinity with iron-based work materials such as steel and cast iron, and the balance is 4a and 5a in the periodic table. , 6a, a cutting tool made of a cBN sintered body having a ceramic compound such as a carbide, a nitride, or a boride as a bonding phase has been proposed. It is said to have high strength and excellent heat resistance and abrasion resistance.

また、特許文献2には、cBN焼結体の結合相中に、Zr,Si,Hf,Ge,W,Coの単体および化合物の微量粒子を添加することで、cBN焼結体中の結合相成分として含有されるAl粒子の粒径を制御し、これにより、cBN焼結体の強度を低下させることなく耐熱性を向上させることが提案されている。 Further, in Patent Document 2, by adding a simple substance of Zr, Si, Hf, Ge, W, Co and a trace amount of a compound to the bonded phase of the cBN sintered body, the bonded phase in the cBN sintered body is added. It has been proposed to control the particle size of the Al 2 O 3 particles contained as a component, thereby improving the heat resistance without lowering the strength of the cBN sintered body.

また、非特許文献1には、セラミックスのマトリックス粒内にナノサイズのセラミックス粒子を分散させた複合セラミックス粒子(ナノコンポジット)を形成することにより、セラミックスの弱点である靱性等を改善したナノ複合材料が提案されており、例えば、化学蒸着法により、Siマトリックス粒内に直径5nmのTiN粒子を内包させたナノ複合材料が紹介されている。 Further, in Non-Patent Document 1, a nanocomposite material in which toughness, which is a weak point of ceramics, is improved by forming composite ceramic particles (nanocomposites) in which nano-sized ceramic particles are dispersed in a matrix grain of ceramics. Has been proposed. For example, a nanocomposite material in which TiN particles having a diameter of 5 nm are encapsulated in Si 3 N 4 matrix particles by a chemical vapor deposition method has been introduced.

特開昭53−77811号公報Japanese Unexamined Patent Publication No. 53-77811 国際公開第2008/093577号International Publication No. 2008/093577

「New Design Concept of structural Ceramics −Ceramic Nanocomposites−Koichi NIIHARA」(日本セラミックス協会学術論文誌創立100周年記念号)99[10]974−982(1991)"New Design Concept of structural Ceramics-Ceramic Nanocomposites-Koichi NIIHARA" (100th Anniversary Issue of Academic Journal of the Ceramic Society of Japan) 99 [10] 974-982 (1991)

前記特許文献1に示されるcBN焼結体においては、結合相としてセラミックス化合物を用いているため、Co等の金属を結合相として用いた場合に比べて、強度、耐熱性、耐摩耗性の向上が認められる。しかし、このcBN焼結体は、切れ刃に高負荷が作用する合金鋼等の断続切削加工用切削工具として用いた場合には、靱性が十分であるとはいえないため、チッピング、欠損等の異常損傷を発生し、短期間で寿命に至るという問題がある。
また、前記特許文献2で提案されているcBN焼結体においては、Al粒子の粒径制御のために、Zr,Si,Hf,Ge,W,Coの微量粒子の添加をしているが、これらの粒子の添加はAl粒子の耐熱性を損なうことはない。しかし、Al粒子は結合相中の脆性成分であるため、依然として靭性の向上を図ることはできない。さらに、添加した微量粒子によって、結合相中に不純物が形成されることにより、cBN焼結体の強度が低下するという問題がある。
In the cBN sintered body shown in Patent Document 1, since a ceramic compound is used as the bonding phase, the strength, heat resistance, and wear resistance are improved as compared with the case where a metal such as Co is used as the bonding phase. Is recognized. However, when this cBN sintered body is used as a cutting tool for intermittent cutting of alloy steel or the like in which a high load acts on the cutting edge, it cannot be said that the toughness is sufficient. There is a problem that abnormal damage occurs and the life is reached in a short period of time.
Further, in the cBN sintered body proposed in Patent Document 2, trace particles of Zr, Si, Hf, Ge, W, and Co are added in order to control the particle size of Al 2 O 3 particles. However, the addition of these particles does not impair the heat resistance of the Al 2 O 3 particles. However, since Al 2 O 3 particles are brittle components in the bound phase, the toughness cannot be improved yet. Further, there is a problem that the strength of the cBN sintered body is lowered due to the formation of impurities in the bonded phase by the added trace particles.

そこで、本発明者等は、上記課題を解決し、cBN焼結体の硬度、強度、耐熱性を低下させることなく靱性を向上させるべく鋭意研究を重ねたところ、次のような知見を得た。 Therefore, the present inventors have solved the above problems and conducted intensive studies to improve the toughness without lowering the hardness, strength, and heat resistance of the cBN sintered body, and obtained the following findings. ..

従来のcBN焼結体は、通常、cBN焼結体の硬質相成分であるcBN粉末を、例えば、結合相形成成分であるTiN粉末、TiAl粉末、Al粉末等とともにボールミルで混合し、これを高圧高温条件下で焼結するという工程で作製されている。 In the conventional cBN sintered body, cBN powder, which is a hard phase component of the cBN sintered body, is usually mixed with, for example, TiN powder, TiAl 3 powder, Al 2 O 3 powder, etc., which are bonding phase forming components, in a ball mill. , This is manufactured by the process of sintering under high pressure and high temperature conditions.

本発明者等は、前記従来のcBN焼結体の作製工程を変更することにより、cBN粒子と結合相からなるcBN焼結体において、Ti化合物粒子をその粒内に内包したAl粒子が結合相内に分散して存在する結合相組織を有するcBN焼結体を作製し得ることを見出した。
そして、このような結合相組織を有するcBN焼結体は、ほぼ同量のAl粒子(但し、Al粒子に、Ti化合物粒子は内包されていない)を含有する従来のcBN焼結体に比して、硬度、強度、耐熱性にすぐれることに加え、すぐれた靱性を備えることを見出したのである。
By changing the conventional process for producing the cBN sintered body, the present inventors and others have created Al 2 O 3 particles in which Ti compound particles are encapsulated in the cBN sintered body composed of the cBN particles and the bonded phase. It has been found that a cBN sintered body having a bonded phase structure in which is dispersed in the bonded phase can be produced.
The cBN sintered body having such a bonded phase structure is a conventional cBN containing substantially the same amount of Al 2 O 3 particles (however, Ti compound particles are not included in the Al 2 O 3 particles). They found that they have excellent toughness in addition to being superior in hardness, strength, and heat resistance as compared to sintered bodies.

本発明に係るcBN焼結体の作製工程と、従来の作製工程との大きな違いは、原料粉末の調整(詳細については後記する)にある。
例えば、図1に示すように、従来の一般的なcBN焼結体の作製工程としては、結合相形成用の原料粉末(例えば、Ti化合物粉末、金属Al粉末およびAl粉末等)をボールミルで混合し、乾燥した後真空焼結し、これをボールミルで粉砕して混合粉末(以下、この混合粉末を「混合粉末A」という)を作製し、その後、前記混合粉末Aと硬質成分であるcBN粒子を超硬製ポット中へ投入してボールミルで混合した後、高圧高温焼結することによってcBN焼結体を作製していた。
The major difference between the production process of the cBN sintered body according to the present invention and the conventional production process lies in the preparation of the raw material powder (details will be described later).
For example, as shown in FIG. 1, as a conventional general process for producing a cBN sintered body, raw material powder for forming a bonded phase (for example, Ti compound powder, metal Al powder, Al 2 O 3 powder, etc.) is used. It is mixed with a ball mill, dried and then vacuum sintered, and this is crushed with a ball mill to prepare a mixed powder (hereinafter, this mixed powder is referred to as "mixed powder A"), and then with the mixed powder A and a hard component. A cBN sintered body was produced by putting certain cBN particles into a super hard pot, mixing them with a ball mill, and then sintering them at high pressure and high temperature.

しかし、本発明では、上記従来の工程とは別に、Ti化合物粒子をその粒内に内包したAl粒子を含有する混合粉末(以下、この混合粉末を「混合粉末B」という)を作製する工程を新たに設け、上記従来の工程において、混合粉末AとcBN粒子を超硬製ポット中へ投入する段階で、前記で作製した混合粉末Bを超硬製ポット中へ同時に投入して、超音波法で混合し、その後、高圧高温焼結することによってcBN焼結体を作製する点が本発明の大きな特徴である。
図2に、本発明によるcBN焼結体の作製工程の概略説明図を示す。
そして、このような作製工程によってcBN焼結体を作製することによって、前述したように、Ti化合物粒子をその粒内に内包したAl粒子が結合相内に分散して存在する結合相組織を有するcBN焼結体を作製することができ、そして、このような結合相組織を有するcBN焼結体は、硬度、強度、耐熱性とともに靱性にもすぐれるのである。
さらに、切削工具の切れ刃部を、硬度、強度、耐熱性及び靱性にすぐれる前記本発明のcBN焼結体で構成した場合には、高負荷が作用する合金鋼等の断続切削加工等において、チッピング、欠損等の異常損傷の発生を抑制することができ、その結果、長期の使用にわたってすぐれた切削性能を発揮する切削工具を得ることができる。
However, in the present invention, apart from the above-mentioned conventional step, a mixed powder containing Al 2 O 3 particles containing Ti compound particles in the particles (hereinafter, this mixed powder is referred to as “mixed powder B”) is produced. In the above-mentioned conventional step, at the stage of charging the mixed powder A and the cBN particles into the cemented carbide pot, the mixed powder B produced above is simultaneously charged into the cemented carbide pot. A major feature of the present invention is that a cBN sintered body is produced by mixing by an ultrasonic method and then sintering at high pressure and high temperature.
FIG. 2 shows a schematic explanatory view of a process for producing a cBN sintered body according to the present invention.
Then, by producing the cBN sintered body by such a production step, as described above, the Al 2 O 3 particles in which the Ti compound particles are encapsulated in the particles are dispersed and exist in the bonding phase. A cBN sintered body having a structure can be produced, and the cBN sintered body having such a bonded phase structure is excellent in hardness, strength, heat resistance and toughness.
Further, when the cutting edge portion of the cutting tool is composed of the cBN sintered body of the present invention having excellent hardness, strength, heat resistance and toughness, in intermittent cutting of alloy steel or the like on which a high load acts. , The occurrence of abnormal damage such as chipping and chipping can be suppressed, and as a result, a cutting tool that exhibits excellent cutting performance over a long period of use can be obtained.

本発明は、上記知見に基づいてなされたものであって、
「(1)立方晶窒化ほう素粒子と結合相からなる立方晶窒化ほう素基焼結体において、前記立方晶窒化ほう素粒子の含有量は、前記立方晶窒化ほう素基焼結体の40体積%以上85体積%以下であり、前記結合相はAl粒子を含み、しかも、該Al粒子のうちで、Ti粒子を内包するAl粒子が存在し、前記TiN粒子を内包するAl 粒子の含有量は、前記結合相の5体積%以上50体積%以下である結合相組織を有することを特徴とする立方晶窒化ほう素基焼結体。
)前記Ti粒子を内包するAl粒子に対する、Al粒子に内包されるTi粒子の含有量は、3体積%以上25体積%以下であることを特徴とする(1)記載の立方晶窒化ほう素基焼結体。
)切削工具の切れ刃が、(1)または(2)に記載の立方晶窒化ほう素基焼結体から構成されていることを特徴とする立方晶窒化ほう素基焼結体製切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings.
"(1) In a cubic boron nitride based sintered body composed of cubic boron nitride particles and a bonded phase, the content of the cubic nitride boron particles is 40 of the cubic boron nitride based sintered body. not less than vol% 85 vol% or less, wherein the binder phase comprises Al 2 O 3 particles, moreover, among the Al 2 O 3 particles, there are Al 2 O 3 particles containing the Ti N particles, wherein the content of Al 2 O 3 particles containing the TiN particles, cubic boron nitride containing groups sintered body characterized by having a 5 vol% to 50 vol% der Ru binder phase structure of the binder phase.
( 2 ) The content of the Ti N particles contained in the Al 2 O 3 particles is 3% by volume or more and 25% by volume or less with respect to the Al 2 O 3 particles containing the Ti N particles (2). The cubic boron nitride based sintered body according to 1).
( 3 ) Cutting made of a cubic boron nitride-based sintered body, wherein the cutting edge of the cutting tool is composed of the cubic boron nitride-based sintered body according to (1) or (2). tool. "
It is characterized by.

本発明について、以下に説明する。 The present invention will be described below.

本発明のcBN焼結体では、cBN粒子の平均粒径を特に規定するものではないが、cBN粒子の平均粒径は、0.3〜12μmの範囲内とすることが好ましい。
これは、平均粒径が0.3μm〜12μmのcBN粒子が焼結体内に分散することにより、工具使用中に工具表面のcBN粒子が脱落して生じる刃先の凹凸形状を起点とするチッピングを抑制するだけでなく、工具使用中に刃先に加わる応力により生じるcBN粒子と結合相との界面から進展するクラック、あるいはcBN粒を貫通して進展するクラックの伝播を焼結体中に分散したcBN粒子により抑制することにより、耐欠損性を向上させることができるからである。
また、本発明で用いるcBN粒子の平均粒径は、0.5〜8μmの範囲内であることがより好ましく、また、さらに好ましくは、0.5〜5μmの範囲内である。
なお、cBN粒子の平均粒径は、例えば、cBN焼結体の断面組織について、SEMを用いてcBN焼結体組織を観察し、二次電子像を取得し、得られた画像内のcBN粒子の部分を画像処理にて抜き出し、画像解析より求めた各cBN粒子の最大長を求め、それを各粒子の直径とし、複数個所においてcBN粒子の直径を測定し、これらの測定値を平均することによって、cBN粒子の平均粒径とする。
In the cBN sintered body of the present invention, the average particle size of the cBN particles is not particularly specified, but the average particle size of the cBN particles is preferably in the range of 0.3 to 12 μm.
This suppresses chipping starting from the uneven shape of the cutting edge that occurs when cBN particles on the tool surface fall off during tool use because cBN particles with an average particle size of 0.3 μm to 12 μm are dispersed in the sintered body. In addition to this, the cBN particles that propagate from the interface between the cBN particles and the bonding phase, which are generated by the stress applied to the cutting edge during tool use, or the cracks that propagate through the cBN particles are dispersed in the sintered body. This is because the fracture resistance can be improved by suppressing the particles.
The average particle size of the cBN particles used in the present invention is more preferably in the range of 0.5 to 8 μm, and even more preferably in the range of 0.5 to 5 μm.
Regarding the average particle size of the cBN particles, for example, with respect to the cross-sectional structure of the cBN sintered body, the cBN sintered body structure was observed using SEM to obtain a secondary electron image, and the cBN particles in the obtained image were obtained. The part of is extracted by image processing, the maximum length of each cBN particle obtained by image analysis is obtained, it is used as the diameter of each particle, the diameter of the cBN particle is measured at a plurality of places, and these measured values are averaged. The average particle size of the cBN particles is set according to.

本発明のcBN焼結体におけるcBN粒子の含有割合についても特に制限するものではないが、cBN焼結体に占めるcBN粒子の含有割合が40体積%未満となった場合には、cBN粒子同士が接触して結合相と十分に反応できない未焼結な部分は少なくなるが、その反面、cBN焼結体の硬さが低下し、耐摩耗性が劣化する。
一方、cBN粒子の含有割合が95体積%を超える場合には、切削加工用工具として使用した場合に、焼結体中にクラックの起点となる空隙が生成しやすくなり、耐欠損性が低下することから、cBN焼結体におけるcBN粒子の含有量は40〜85体積%とすることが好ましい。
また、より好ましいcBN粒子の含有量は50〜80体積%であり。さらに好ましいのは50〜75体積%である。
なお、cBN焼結体に占めるcBN粒子の含有量は、cBN焼結体の断面組織をSEMによって観察し、得られた二次電子像内のcBN粒子の部分を画像処理によって抜き出し、画像解析によってcBN粒子が占める面積を算出し、1画像内のcBN粒子が占める割合を求め、少なくとも3画像を処理し求めた値の平均値をcBN粒子の含有量として求める。なお、画像処理に用いる観察領域としては、例えば、cBN粒子の平均粒径3μmの場合、15μm×15μm程度の視野領域が望ましい。
The content ratio of cBN particles in the cBN sintered body of the present invention is not particularly limited, but when the content ratio of cBN particles in the cBN sintered body is less than 40% by volume, the cBN particles are separated from each other. Although the number of unsintered portions that come into contact with each other and cannot sufficiently react with the bonded phase is reduced, on the other hand, the hardness of the cBN sintered body is reduced and the wear resistance is deteriorated.
On the other hand, when the content ratio of cBN particles exceeds 95% by volume, when used as a cutting tool, voids that are the starting points of cracks are likely to be generated in the sintered body, and the fracture resistance is lowered. Therefore, the content of cBN particles in the cBN sintered body is preferably 40 to 85% by volume.
Further, the content of the more preferable cBN particles is 50 to 80% by volume. More preferably, it is 50 to 75% by volume.
The content of cBN particles in the cBN sintered body is determined by observing the cross-sectional structure of the cBN sintered body by SEM, extracting the portion of the cBN particles in the obtained secondary electron image by image processing, and performing image analysis. The area occupied by the cBN particles is calculated, the ratio occupied by the cBN particles in one image is obtained, and the average value of the values obtained by processing at least three images is obtained as the content of the cBN particles. As the observation region used for image processing, for example, when the average particle size of cBN particles is 3 μm, a visual field region of about 15 μm × 15 μm is desirable.

本発明のcBN焼結体は、cBN粒子と結合相から構成されるが、前記結合相には、Al粒子が分散して存在しており、しかも、該Al粒子として、Al粒子の内部に例えばTiNからなるTi化合物粒子を内包するAl粒子が存在する結合相組織が形成されている。
なお、本発明でいう「Al粒子に内包されたTi化合物粒子」あるいは「Ti化合物粒子を内包するAl粒子」とは、例えば、Ti化合物粒子がTiNである場合には、透過型電子顕微鏡(TEM)を用いた断面観察(図3(a)参照)において、まず、Al、O、Ti、Nについての元素マッピングを行い、次いで、2値化処理を行い(図3(b)〜(e)参照)、AlとOとの重なった領域をAlであるとし(図4参照)、また、TiとNの重なった領域をTi化合物(例えば、TiN)であるとする(図4参照)。次いで、Alの連続している領域をAl粒子であるとして、該Al粒子の境界に接しておらず、かつ、Al粒子の境界内に存在するTi化合物を特定し、これを「Al粒子に内包されたTi化合物粒子」であると定義し、また、該Ti化合物粒子を内包するAl粒子を「Ti化合物粒子を内包するAl粒子」と定義する(図4参照)。
The cBN sintered body of the present invention is composed of cBN particles and a bonded phase, and Al 2 O 3 particles are dispersed and present in the bonded phase, and the Al 2 O 3 particles are used as the Al 2 O 3 particles. Al 2 O 3 is present Al 2 O 3 particles inside enclosing Ti compound particles made of, for example TiN particles bonded phase structure is formed.
The term "Ti compound particles contained in Al 2 O 3 particles" or "Al 2 O 3 particles containing Ti compound particles" in the present invention means, for example, when the Ti compound particles are TiN. In cross-sectional observation using a transmission electron microscope (TEM) (see FIG. 3A), first, element mapping for Al, O, Ti, and N is performed, and then binarization processing is performed (FIG. 3 (Fig. 3). b)-(e), it is assumed that the region where Al and O overlap is Al 2 O 3 (see FIG. 4), and the region where Ti and N overlap is a Ti compound (for example, TiN). (See Fig. 4). Then, a region that is continuous for Al 2 O 3 is Al 2 O 3 particles, not in contact with the boundary of the Al 2 O 3 particles, and are present within the boundaries of Al 2 O 3 particles Ti the compound was identified, which was defined as "Al 2 O 3 contained been Ti compound particles to particles", also the Al 2 O 3 particles containing the Ti compound particles containing the "Ti compound particles Al It is defined as "2 O 3 particles" (see FIG. 4).

Ti化合物粒子を内包するAl粒子が、結合相中に分散して存在する結合相組織を有する本発明のcBN焼結体は、ほぼ同量のAl粒子(但し、Al粒子は、Ti化合物粒子を内包していない)を含有するcBN焼結体に比して、すぐれた硬度、強度、耐熱性および靱性を備える。
これは、cBN焼結体の結合相における脆弱成分といえるAl粒子中に、Alよりも熱膨張率の大きいTi化合物粒子を内包することによって、Al粒子内でのクラック発生を抑制でき、その結果、Al粒子の靱性が向上する。また、Al粒子に内包されるTi化合物粒子は、Al粒子に比して十分に小さいため、Al粒子が本来有する耐熱性を損なうことはなく、cBN焼結体の耐熱性の維持向上が図られる。
また、このようなAl粒子を結合相中に分散させることで、cBN焼結体の主結合相であるTi化合物の異常粒成長抑制効果を損なうことなく、靭性に優れたcBN焼結体を得ることができる。
さらに、Al粒子にTi化合物を内包させることで、Al粒子内の結晶性等の均一化によって、Al粒子の異常粒成長を抑制し、粒形状の制御を行うことができるとともに、粒内不均質に起因する粒子破壊による強度の低下を抑制することができる。
The cBN sintered body of the present invention having a bonded phase structure in which Al 2 O 3 particles containing Ti compound particles are dispersed in the bonded phase has approximately the same amount of Al 2 O 3 particles (however, Al 2). O 3 particles, as compared with the cBN sintered body containing no enclosing Ti compound particles), provided excellent hardness, strength, heat resistance and toughness.
This is the Al 2 O 3 particles and say fragile component in the binder phase of the cBN sintered body, by containing a large Ti compound particles in the thermal expansion rate than Al 2 O 3, in a Al 2 O 3 particles Crack generation can be suppressed, and as a result, the toughness of Al 2 O 3 particles is improved. Further, Ti compound particles contained in Al 2 O 3 particles, since Al is sufficiently small compared to 2 O 3 particles not impair the heat resistance inherent is Al 2 O 3 particles, cBN sintered body The heat resistance of is maintained and improved.
Further, by dispersing such Al 2 O 3 particles in the bonded phase, cBN sintering having excellent toughness is not impaired without impairing the effect of suppressing abnormal grain growth of the Ti compound which is the main bonded phase of the cBN sintered body. You can get a body.
Further, by enclosing the Ti compound Al 2 O 3 particles, the uniformity of the crystallinity or the like of the Al 2 O 3 particles, and suppress abnormal grain growth of Al 2 O 3 particles, and controls the particle shape At the same time, it is possible to suppress a decrease in strength due to particle destruction due to inhomogeneity in the particles.

cBN焼結体の結合相中に分散して存在するTi化合物粒子を内包するAl粒子の含有体積割合は、cBN焼結体の特性(特に、靱性)に影響を与えるが、前記Ti化合物粒子を内包するAl粒子の含有量が、結合相に対して5体積%以上50体積%以下を占めるようになると、cBN焼結体に高負荷(例えば、断続切削加工時の断続的かつ衝撃的な機械的な高負荷)が作用することによってcBN焼結体にクラックが発生したとしても、クラックの伝播・進展が抑制されるようになるため、破断発生が防止される。
したがって、cBN焼結体の結合相に対する前記Ti化合物粒子を内包するAl粒子の含有量は5体積%以上50体積%以下とすることが好ましい。
The content volume ratio of the Al 2 O 3 particles containing the Ti compound particles dispersed in the bonded phase of the cBN sintered body affects the characteristics (particularly toughness) of the cBN sintered body. When the content of Al 2 O 3 particles containing compound particles occupies 5% by volume or more and 50% by volume or less with respect to the bonded phase, a high load is applied to the cBN sintered body (for example, intermittent cutting during intermittent cutting). Even if cracks occur in the cBN sintered body due to the action of a target and shocking mechanical high load), the propagation and propagation of the cracks are suppressed, so that the occurrence of breakage is prevented.
Therefore, the content of the Al 2 O 3 particles containing the Ti compound particles with respect to the bonded phase of the cBN sintered body is preferably 5% by volume or more and 50% by volume or less.

また、Al粒子に内包されたTi化合物粒子の含有量、即ち、(Al粒子に内包されたTi化合物粒子の体積)×100/(Ti化合物粒子を内包するAl粒子の体積)は、3体積%以上40体積%以下であることが好ましい。この含有量は、少なくとも10個、好ましくは50個以上のTi化合物粒子を内包するAl粒子から算出した平均値とする。
これは、Al粒子がその内部に平均体積割合で3体積%以上40体積%以下のTi化合物粒子を内包することによって、Al粒子自体の靱性が向上し、その結果として、cBN焼結体の靱性も向上するからである。
ただ、Al粒子に内包されるTi化合物粒子の平均体積割合が25体積%を超えるようになると、内包されたTi化合物粒子自体の内部をクラックが貫通して伝播してしまうこと、あるいは、内包されたTi化合物粒子とAlとの界面をクラックが伝播してしまうことがあるため、クラック伝播・進展を抑制する効果が低下してくる。
また、Al粒子に内包されるTi化合物粒子の平均体積割合が10体積%未満、特に、3体積%未満になると、Al粒子自体の靱性向上効果が少なくなり、その結果、cBN焼結体の靱性向上効果が低下傾向を示すようになる。
したがって、cBN焼結体の結合相において、内部にTi化合物粒子を内包するAl粒子の体積に対するAl粒子に内包されるTi化合物粒子の体積の平均体積割合は、3体積%以上40体積%以下とすることが好ましいが、3体積%以上25体積%以下とすることがより好ましく、10体積%以上25体積%以下とすることがさらに好ましい。
Further, Al 2 O 3 content particles contained a Ti compound particles, i.e., (Al 2 O 3 volumes of encapsulated the Ti compound particles in the particle) × 100 / (Al 2 O 3 enclosing a Ti compound particles The volume of the particles) is preferably 3% by volume or more and 40% by volume or less. This content is an average value calculated from Al 2 O 3 particles containing at least 10, preferably 50 or more Ti compound particles.
This is because the Al 2 O 3 particles contain Ti compound particles of 3% by volume or more and 40% by volume or less in an average volume ratio, thereby improving the toughness of the Al 2 O 3 particles themselves, and as a result, This is because the toughness of the cBN sintered body is also improved.
However, when the average volume ratio of the Ti compound particles contained in the Al 2 O 3 particles exceeds 25% by volume, the cracks penetrate and propagate inside the contained Ti compound particles themselves, or Since cracks may propagate at the interface between the contained Ti compound particles and Al 2 O 3 , the effect of suppressing crack propagation / propagation is reduced.
Further, when the average volume ratio of the Ti compound particles contained in the Al 2 O 3 particles is less than 10% by volume, particularly less than 3% by volume, the toughness improving effect of the Al 2 O 3 particles themselves is reduced, and as a result, the toughness improving effect is reduced. The toughness improving effect of the cBN sintered body tends to decrease.
Therefore, in the bonded phase of the cBN sintered body, the average volume ratio of the volume of the Ti compound particles contained in the Al 2 O 3 particles to the volume of the Al 2 O 3 particles containing the Ti compound particles is 3% by volume. It is preferably 40% by volume or more, more preferably 3% by volume or more and 25% by volume or less, and further preferably 10% by volume or more and 25% by volume or less.

本発明に係るcBN焼結体の作製工程は、既述のように、従来のcBN焼結体の結合相形成用の原料粉末Aの作製工程(以下、「工程A」という)とは別に、Ti化合物粒子をその粒内に内包したAl粒子を含有する混合粉末Bを作製する工程(以下、「工程B」という)を新たに設けるとともに、混合粉末Aと混合粉末BとcBN粒子とを超音波法によって混合する工程(以下、「工程C」という)を設けたところを特徴とするものである。
図2とともに、それぞれの工程をより具体的に説明すれば、以下のとおりである。
≪工程A≫
図2の「従来工程(工程A)」として示すように、cBN焼結体の結合相形成成分であるTi化合物粉末、金属Al粉末およびAl粉末をボールミルで湿式混合し、乾燥・成型した後、1Pa以下の真空雰囲気中で800−1200℃の温度範囲(例えば、1000℃)で所定時間(例えば、30分)真空焼結する。
ボールミルによる湿式粉砕で所望の粒径(例えば、平均粒径0.3〜1μm)まで粉砕・乾燥させて、これを混合粉末Aとする。
≪工程B≫
図2の「Ti化合物粒子を内包するAl粒子を作製する工程(工程B)」として示すように、Ti化合物粉末(この粉末が、主として、最終的なcBN焼結体において、Al粒子に内包されるTi化合物粒子を形成するための粉末であり、例えば、TiN粉末)をボールミルで湿式粉砕する。
その後、金属Al粉末を追加投入し、前記Ti化合物粉末と金属Al粉末をボールミルで混合し、スラリー溶液を得る。
得られたスラリー溶液を取り出し、乾燥させてから成形し、1Pa以下の真空雰囲気中で800−1200℃の温度範囲(例えば、1000℃)で所定時間(例えば、30分)真空焼結する。
この焼結体を、再びボールミルなどで粉砕したのち分級し、粒度分布における10%径(「d10」とも呼ばれる)以下の粉末のみを採取し、これを混合粉末Bとする。
≪工程C≫
図2の「工程C」として示すように、工程Aで作製した混合粉末Aと、工程Bで作製した混合粉末Bと、cBN焼結体の硬質相成分であるcBN粒子を、Ti化合物を内包したAl粒子を壊さないように超音波法で混合し(なお、従来のボールミル法では、Ti化合物を内包したAl粒子を破壊する)、乾燥させ、その後、例えば、3〜8GPaの圧力、かつ、1000〜1800℃の温度範囲の焼結条件で所定時間高圧高温焼結することによって本発明の結合相組織を有するcBN焼結体を形成することができる。
ここで、超音波法による混合条件は、例えば、スラリー濃度7wt%で出力180Wにより30秒ごとに15秒のインターバルをおいて15分間混合する。
As described above, the process for producing the cBN sintered body according to the present invention is different from the process for producing the raw material powder A for forming the bonded phase of the conventional cBN sintered body (hereinafter referred to as “step A”). A new step (hereinafter referred to as “step B”) for producing a mixed powder B containing Al 2 O 3 particles in which Ti compound particles are encapsulated is provided, and the mixed powder A, the mixed powder B, and the cBN particles are provided. It is characterized in that a step (hereinafter, referred to as “step C”) of mixing and is provided by an ultrasonic method.
A more specific description of each step with FIG. 2 is as follows.
≪Process A≫
As shown as the “conventional step (step A)” in FIG. 2, the Ti compound powder, the metal Al powder, and the Al 2 O 3 powder, which are the bonding phase forming components of the cBN sintered body, are wet-mixed with a ball mill and dried / molded. After that, vacuum sintering is performed for a predetermined time (for example, 30 minutes) in a temperature range of 800-1200 ° C. (for example, 1000 ° C.) in a vacuum atmosphere of 1 Pa or less.
It is pulverized and dried to a desired particle size (for example, an average particle size of 0.3 to 1 μm) by wet pulverization with a ball mill to obtain a mixed powder A.
≪Process B≫
As shown in FIG. 2 as " Step of producing Al 2 O 3 particles containing Ti compound particles (step B)", Ti compound powder (this powder is mainly used in the final cBN sintered body, Al 2 O 3 is a powder for forming a Ti compound particles contained in the particle, for example, wet milling the TiN powder) in a ball mill.
Then, the metal Al powder is additionally added, and the Ti compound powder and the metal Al powder are mixed by a ball mill to obtain a slurry solution.
The obtained slurry solution is taken out, dried, molded, and vacuum sintered in a vacuum atmosphere of 1 Pa or less in a temperature range of 800-1200 ° C. (for example, 1000 ° C.) for a predetermined time (for example, 30 minutes).
This sintered body is crushed again with a ball mill or the like and then classified, and only powder having a diameter of 10% or less (also referred to as “d10”) in the particle size distribution is collected and used as mixed powder B.
≪Process C≫
As shown as "step C" in FIG. 2, a Ti compound is contained in the mixed powder A prepared in step A, the mixed powder B prepared in step B, and cBN particles which are the hard phase components of the cBN sintered body. The Al 2 O 3 particles were mixed by an ultrasonic method so as not to destroy the Al 2 O 3 particles (the conventional ball mill method destroys the Al 2 O 3 particles containing a Ti compound), dried, and then, for example, 3 to 3 to A cBN sintered body having the bonded phase structure of the present invention can be formed by high-pressure high-temperature sintering for a predetermined time under a pressure of 8 GPa and a sintering condition in a temperature range of 1000 to 1800 ° C.
Here, the mixing conditions by the ultrasonic method are, for example, mixing at a slurry concentration of 7 wt% with an output of 180 W for 15 minutes at intervals of 15 seconds every 30 seconds.

なお、先行技術文献として挙げた前記非特許文献1においては、セラミックスのマトリックス粒内にナノサイズのセラミックス粒子を分散させた複合セラミックス粒子(ナノコンポジット)を、例えば、化学蒸着法で作製することにより、セラミックスの靱性を向上させる技術が提案されているが、このような複合セラミックス粒子(ナノコンポジット)自体を原料粉末として用い、従来の製造法(例えば、図1に示す作製工程からなる製造法)でcBN焼結体を作製した場合には、複合セラミックス粒子と結合相形成用粉末(例えば、TiN粉末、TiAl粉末、Al粉末等)とcBN粒子をボールミルで混合する際、複合セラミックス粒子が破壊されてしまうため、複合セラミックス粒子のマトリックス粒内にナノサイズのセラミックス粒子を内包した状態を保ったままのcBN焼結体を作製することは事実上困難であった。
そのため、前記非特許文献1に示される複合セラミックス粒子(ナノコンポジット)を用いたとしても、従来のcBN焼結体の製造法では、cBN焼結体の靱性を向上させることはできなかった。
In the non-patent document 1 mentioned as a prior art document, composite ceramic particles (nanocomposite) in which nano-sized ceramic particles are dispersed in a ceramic matrix grain are produced, for example, by a chemical evaporation method. , A technique for improving the toughness of ceramics has been proposed, but a conventional manufacturing method (for example, a manufacturing method including the manufacturing process shown in FIG. 1) using such composite ceramic particles (nanocomposite) itself as a raw material powder). When the cBN sintered body is produced in the above case, when the composite ceramic particles, the powder for forming a bonded phase (for example, TiN powder, TiAl 3 powder, Al 2 O 3 powder, etc.) and the cBN particles are mixed with a ball mill, the composite ceramics are used. Since the particles are destroyed, it is practically difficult to prepare a cBN sintered body in which nano-sized ceramic particles are encapsulated in the matrix grains of the composite ceramic particles.
Therefore, even if the composite ceramic particles (nanocomposite) shown in Non-Patent Document 1 are used, the toughness of the cBN sintered body cannot be improved by the conventional method for producing the cBN sintered body.

しかし、本発明では、図2に示す工程Bにおいて、Ti化合物粒子を粒内に内包したAl粒子からなる複合セラミックス粒子を、混合粉末Bとして別工程で作製し、工程Cにおいて、(工程Aで作製した)混合粉末Aと前記混合粉末BとcBN粒子を超音波法で混合した後、高圧高温焼結することによって、結合相内にAl粒子が存在し、しかも、該Al粒子として、Ti化合物粒子を内包するAl粒子が少なくとも分散して存在する結合相組織を備えたcBN焼結体を作製することができる。
そして、このような結合相組織を備えたcBN焼結体は、硬度、強度、耐熱性にすぐれるとともに、すぐれた靱性を有する。
However, in the present invention, in step B shown in FIG. 2, composite ceramic particles composed of Al 2 O 3 particles containing Ti compound particles in the particles are produced as mixed powder B in a separate step, and in step C, ( Al 2 O 3 particles are present in the bonded phase by mixing the mixed powder A (produced in step A), the mixed powder B, and the cBN particles by an ultrasonic method and then sintering at high pressure and high temperature. As the Al 2 O 3 particles, a cBN sintered body having a bonded phase structure in which Al 2 O 3 particles containing Ti compound particles are present at least dispersed can be produced.
The cBN sintered body having such a bonded phase structure is excellent in hardness, strength and heat resistance, and also has excellent toughness.

したがって、切削工具の切れ刃を、硬度、強度、耐熱性及び靱性にすぐれる前記本発明のcBN焼結体で構成した場合には、高負荷が作用する合金鋼等の断続切削加工等においても、チッピング、欠損等の異常損傷の発生を抑制することができ、その結果、長期の使用にわたってすぐれた切削性能を発揮する切削工具を提供することができる。
本発明のcBN焼結体を切削工具材料として用いる場合には、例えば、cBN焼結体をWC基超硬合金製インサート本体のろう付け部(コーナー部)にろう付けし、必要に応じ、研磨加工、ホーニング加工を施すことにより、cBN焼結体を切れ刃とする所望のインサート形状をもった切削工具を作製することができる。
Therefore, when the cutting edge of the cutting tool is composed of the cBN sintered body of the present invention having excellent hardness, strength, heat resistance and toughness, even in intermittent cutting of alloy steel or the like on which a high load acts. It is possible to suppress the occurrence of abnormal damage such as chipping and chipping, and as a result, it is possible to provide a cutting tool that exhibits excellent cutting performance over a long period of use.
When the cBN sintered body of the present invention is used as a cutting tool material, for example, the cBN sintered body is brazed to the brazed portion (corner portion) of the WC-based cemented carbide insert body and polished as necessary. By performing processing and honing processing, it is possible to produce a cutting tool having a desired insert shape using a cBN sintered body as a cutting edge.

本発明のcBN焼結体の結合相に分散して存在するAl粒子に、Ti化合物粒子が内包されているか否か、また、Ti化合物粒子を内包しているAl粒子の体積が、結合相の全体積に占める体積割合、さらに、Al粒子に内包されているTi化合物粒子の平均体積割合は、次のようにして求めることができる。
cBN焼結体の断面を試料厚みが100nm以下になるように研磨し、cBN焼結体の結合相領域をTEMにより観察する。ここで試料厚みを100nm以下にするのはTEM観察時に粒子が重なっていると内包された粒子か重なっただけの粒子か判断できなくなるからである。
観察倍率は、観察視野の対角線長が、求めたAl粒子の平均粒径の10倍になるように調整し(観察倍率1)、Ti化合物粒子を内包しているAl粒子の結合相に対する含有量を測定する。Al粒子の平均粒径を求めるにあたり、Al粒子が少なくとも10個観察できる視野よりAl粒子の粒径を算出し、その平均値とする。観察倍率1の観察倍率ではAl粒子にTi化合物粒子が内包されているか正確に特定できないため、観察倍率をAl粒子の外接円の直径が観察視野の対角線長の1/4倍以上になるように調整した視野(観察倍率2)において、Al粒子にTi化合物粒子が内包されているかの特定と内包された粒子の含有量の測定を行う。
TEM観察(図3(a)参照)ではTi,Al,O,Nの元素マッピングを行い、2値化処理して得られたマッピング像(図3(b)〜(e)参照)のTiとN、AlとOを重ね合わせて重なった部分をそれぞれTiNとAlとする(図4参照)。Al粒子に内包されたTi化合物粒子においては、観察倍率2の重ね合わせた像から、Alの連続している領域をAl粒子であるとして、該Al粒子の境界に接しておらず、かつ、Al粒子の境界内に存在するTi化合物粒子を特定し、これを、Al粒子に内包されたTi化合物粒子であると特定する。また、2値化処理した像から前記cBN粒子の体積を求めた測定方法と同様な測定方法で、Al粒子とTi化合物の含有量を測定し、観察倍率1の視野内のAl粒子に内包されているTi化合物粒子の含有量を算出する。Ti化合物粒子を内包しているAl粒子の結合相に対する含有量は、観察倍率1を用いて、前記2値化処理した像からTi化合物粒子を内包しているAl粒子のみを抽出し、前記cBN粒子の体積を求めた測定方法と同様な測定方法で、含有量を算出する。
2値化処理には画像処理ソフト『imageJ』を用いて、元素がある領域を黒として2値化処理を行った。また2値化処理した画像の重ね合わせ画像は、例えば、TiとNの画像を重ねる場合、Nの画像の白と黒の領域を反転させ、Tiの画像からNの画像を引くことで得られる。
Whether or not Ti compound particles are included in the Al 2 O 3 particles dispersed in the bonded phase of the cBN sintered body of the present invention, and whether or not the Al 2 O 3 particles containing Ti compound particles are included. The volume ratio of the volume to the total volume of the bonded phase, and the average volume ratio of the Ti compound particles contained in the Al 2 O 3 particles can be determined as follows.
The cross section of the cBN sintered body is polished so that the sample thickness is 100 nm or less, and the bonded phase region of the cBN sintered body is observed by TEM. Here, the reason why the sample thickness is set to 100 nm or less is that if the particles are overlapped during TEM observation, it cannot be determined whether the particles are contained particles or particles that are just overlapped.
The observation magnification is adjusted so that the diagonal length of the observation field is 10 times the average particle size of the obtained Al 2 O 3 particles (observation magnification 1), and the Al 2 O 3 particles containing Ti compound particles are contained. The content of the particles with respect to the bound phase is measured. Upon obtaining the average particle size of the Al 2 O 3 particles, Al 2 O 3 particles calculates the particle size of Al 2 O 3 particles from the field of view that can be at least 10 observations, and its average value. Since it is not possible to accurately identify whether the Ti compound particles are contained in the Al 2 O 3 particles at the observation magnification of 1 observation magnification, the diameter of the circumscribing circle of the Al 2 O 3 particles is 1/4 of the diagonal length of the observation field. In the field of view adjusted to be more than double (observation magnification 2), it is specified whether the Ti compound particles are contained in the Al 2 O 3 particles, and the content of the contained particles is measured.
In the TEM observation (see FIG. 3 (a)), elemental mapping of Ti, Al, O, and N is performed, and the mapping image obtained by binarization (see FIGS. 3 (b) to (e)) and Ti. The overlapping portions of N, Al and O are designated as TiN and Al 2 O 3 (see FIG. 4). In Al 2 O 3 particles encapsulated the Ti compound particles, the superimposed observation magnification 2 image, a region that is continuous for Al 2 O 3 is Al 2 O 3 particles, the Al 2 O 3 The Ti compound particles that are not in contact with the boundary of the particles and are present within the boundary of the Al 2 O 3 particles are specified, and this is specified as the Ti compound particles contained in the Al 2 O 3 particles. Further, in the binarization processing the measuring method to determine the volume of the cBN particles from an image similar to the measuring method, Al 2 O 3 content of particles and Ti compound was measured, Al 2 in the observation magnification 1 field O 3 calculates the amount of Ti compound particles are contained in the particles. Content relative binding phase of Al 2 O 3 particles of the enclosing Ti compound particles, observation magnification 1 with only Al 2 O 3 particles of the enclosing Ti compound particles from said binarizing the image Is extracted, and the content is calculated by the same measuring method as the measuring method for determining the volume of the cBN particles.
For the binarization process, the image processing software "imageJ" was used, and the binarization process was performed with the region containing the element as black. Further, the superposed image of the binarized image can be obtained by, for example, when superimposing the Ti and N images, inverting the white and black regions of the N image and subtracting the N image from the Ti image. ..

本発明のcBN焼結体は、結合相にAl粒子を含み、しかも、該Al粒子のうちで、Ti化合物粒子を内包するAl粒子が存在する結合相組織を有し、好ましくは、cBN焼結体の結合相の全体積に対して、前記Ti化合物粒子を内包するAl粒子の含有量が5体積%以上50体積%以下であり、また、Ti化合物粒子を内包するAl粒子に対するAl粒子に内包されるTi化合物粒子の含有量は、好ましくは、3体積%以上25体積%以下であることから、硬度、強度、耐熱性とともに靱性にもすぐれる。
したがって、切削工具の切れ刃部を、本発明のcBN焼結体で構成した場合には、高負荷が作用する合金鋼等の断続切削加工等において、チッピング、欠損等の異常損傷の発生を抑制することができ、その結果、長期の使用にわたってすぐれた切削性能を発揮する。
CBN sintered body of the present invention comprises Al 2 O 3 particles to binder phase, moreover, among the Al 2 O 3 particles, a binder phase tissue Al 2 O 3 particles containing the Ti compound particles are present The content of the Al 2 O 3 particles containing the Ti compound particles is 5% by volume or more and 50% by volume or less with respect to the total volume of the bonded phases of the cBN sintered body, and Ti the content of the compound particles Ti compound particles contained in Al 2 O 3 particles to Al 2 O 3 particles containing a preferably, since it is 3 vol% to 25 vol%, the hardness, strength, heat resistance It also has excellent toughness.
Therefore, when the cutting edge portion of the cutting tool is made of the cBN sintered body of the present invention, the occurrence of abnormal damage such as chipping and chipping is suppressed in intermittent cutting of alloy steel or the like on which a high load acts. As a result, it exhibits excellent cutting performance over a long period of use.

従来法によるcBN焼結体の作製工程の一例を示す。An example of the manufacturing process of the cBN sintered body by the conventional method is shown. 本発明によるcBN焼結体の作製工程の一例を示す。An example of the manufacturing process of the cBN sintered body by this invention is shown. (a)は、本発明cBN焼結体のTEM像(観察倍率2)の一例を示し、(b)〜(e)は、それぞれ、Al、N、O、Tiについての2値化処理後のマッピング像を示す。(A) shows an example of a TEM image (observation magnification 2) of the cBN sintered body of the present invention, and (b) to (e) are after binarization treatment for Al, N, O, and Ti, respectively. The mapping image is shown. 図3(b)〜(e)の2値化処理後のマッピング像の重ね合わせによって求めた「Ti化合物粒子を内包するAl粒子」と「Al粒子に内包されたTi化合物粒子」を示す。 "Al 2 O 3 particles containing Ti compound particles" and " Ti compound contained in Al 2 O 3 particles" obtained by superimposing the mapping images after the binarization treatment of FIGS. 3 (b) to 3 (e). Indicates "particle".

以下に、本発明のcBN焼結体を実施例に基づいて説明する。 Hereinafter, the cBN sintered body of the present invention will be described based on examples.

以下に示す工程A〜Cによって、本発明のcBN焼結体を作製した。
≪工程A≫
cBN焼結体の結合相の原料粉末として、5〜50μmの範囲内の平均粒径を有するTiN粉末、金属Al粉末、Al粉末を用意し、これらの原料粉末をボールミル中で湿式混合し、乾燥した後、成形体を作製した。
この成形体を、1Pa以下の真空中で、1000℃で30分間保持して真空焼結した。
ついで、この焼結体を、ボールミル中で湿式粉砕し、乾燥することにより、平均粒径
0.3〜0.9μmの混合粉末Aを作製した(図2の「工程A」参照)。
なお、上記工程Aおよび後記する工程Bにおけるボールミルでの混合あるいは粉砕は、超硬合金製ポットに、超硬合金製ボールと有機溶剤とともに被処理物を封入して混合あるいは粉砕を行った。
≪工程B≫
上記工程Aとは別工程の工程Bで、次のとおり、原料粉末Bを作製した。
Ti化合物粉末としてTiN粉末および金属Al粉末を用意し、まず、Ti化合物粉末を、ボールミル中で湿式粉砕した。
ついで、ボールミル内へ金属Al粉末を投入し、Ti化合物粉末と金属Al粉末を湿式混合し、スラリー溶液を採取し、これを乾燥した後、成形体を作製した。
ついで、この成形体を1Pa以下の真空中で、1000℃で30分間保持する真空焼結を行った。
ついで、この焼結体を、ボールミル中で湿式粉砕し、乾燥することにより、混合粉末を作製し、ついで、遠心分離を行い、粒径が10%径以下の粉末を採取し、これを混合粉末Bとした(図2の「工程B」参照)。
≪工程C≫
工程Aで作製した前記混合粉末Aと、工程Bで作製した前記混合粉末Bと、平均粒径3μmのcBN粒子を、cBN含有量が50vol%になるように配合し、例えば、スラリー濃度7wt%で出力180Wにより30秒ごとに15秒のインターバルをおいて15分間混合するという条件の超音波法で混合し、乾燥させ、その後、3〜6GPaの圧力、かつ、1000〜1600℃の温度範囲の焼結条件の1条件である6GPaかつ1500℃で高圧高温焼結することによって、表1に示す本発明のcBN焼結体1〜5(「実施例1〜5」という)を作製した(図2の「工程C」参照)。
The cBN sintered body of the present invention was produced by the steps A to C shown below.
≪Process A≫
As the raw material powder for the bonded phase of the cBN sintered body, TiN powder, metal Al powder, and Al 2 O 3 powder having an average particle size in the range of 5 to 50 μm are prepared, and these raw material powders are wet-mixed in a ball mill. After drying, a molded product was prepared.
This molded product was vacuum sintered by holding it at 1000 ° C. for 30 minutes in a vacuum of 1 Pa or less.
Then, this sintered body was wet-pulverized in a ball mill and dried to prepare a mixed powder A having an average particle size of 0.3 to 0.9 μm (see “Step A” in FIG. 2).
In the mixing or crushing with a ball mill in the above step A and the step B described later, a cemented carbide ball and an object to be treated were sealed together with an organic solvent in a cemented carbide pot for mixing or crushing.
≪Process B≫
The raw material powder B was produced as follows in step B, which is a step different from the above step A.
TiN powder and metallic Al powder were prepared as Ti compound powder, and first, the Ti compound powder was wet-pulverized in a ball mill.
Then, the metal Al powder was put into the ball mill, the Ti compound powder and the metal Al powder were wet-mixed, a slurry solution was collected, dried, and then a molded product was prepared.
Then, vacuum sintering was performed in which the molded product was held at 1000 ° C. for 30 minutes in a vacuum of 1 Pa or less.
Then, this sintered body is wet-pulverized in a ball mill and dried to prepare a mixed powder, and then centrifugation is performed to collect a powder having a particle size of 10% or less, and this is mixed powder. It was designated as B (see "Step B" in FIG. 2).
≪Process C≫
The mixed powder A prepared in step A, the mixed powder B prepared in step B, and cBN particles having an average particle size of 3 μm are blended so that the cBN content is 50 vol%, for example, the slurry concentration is 7 wt%. The mixture is mixed by an ultrasonic method under the condition that the mixture is mixed at an output of 180 W at intervals of 15 seconds every 30 seconds for 15 minutes, dried, and then at a pressure of 3 to 6 GPa and in a temperature range of 1000 to 1600 ° C. The cBN sintered bodies 1 to 5 of the present invention (referred to as "Examples 1 to 5") shown in Table 1 were produced by high-pressure high-temperature sintering at 6 GPa and 1500 ° C., which is one of the sintering conditions (FIG. See "Step C" in 2).

比較のために、以下の従来工程(図1の「工程A」参照)により、比較例のcBN焼結体1〜3(「比較例1〜3」という)を作製した。
まず、cBN焼結体の結合相の原料粉末として、5〜50μmの範囲内の平均粒径を有するTiN粉末、TiC粉末、金属Al粉末、Al粉末を用意し、これらの原料粉末をボールミル中で湿式混合し、乾燥した後、成形体を作製した。
この成形体を、1Pa以下の真空中で、1000℃で30分間保持して真空焼結した。
ついで、この焼結体を、ボールミル中で湿式粉砕し、乾燥することにより、平均粒径0.3〜0.9μmの混合粉末(便宜上、この粉末を「混合粉末A」とよぶ)を作製した。
この混合粉末Aと平均粒径3μmのcBN粒子を、cBN含有量が50vol%になるようにボールミルで混合し、乾燥させ、その後、3〜6GPaの圧力、かつ、1000〜1600℃の温度範囲の焼結条件で高圧高温焼結することによって、表1に示す比較例1〜3を作製した。
即ち、比較例1〜3の作製法は、本発明焼結体1〜5の作製法における前記工程Bを設けていない点、cBN粒子との混合を超音波法ではなくボールミルで行っている点で異なっている。
For comparison, cBN sintered bodies 1 to 3 (referred to as “Comparative Examples 1 to 3”) of Comparative Example were produced by the following conventional steps (see “Step A” in FIG. 1).
First, as the raw material powder for the bonded phase of the cBN sintered body, TiN powder, TiC powder, metal Al powder, and Al 2 O 3 powder having an average particle size in the range of 5 to 50 μm are prepared, and these raw material powders are used. After wet mixing in a ball mill and drying, a molded product was prepared.
This molded product was vacuum sintered by holding it at 1000 ° C. for 30 minutes in a vacuum of 1 Pa or less.
Then, this sintered body was wet-ground in a ball mill and dried to prepare a mixed powder having an average particle size of 0.3 to 0.9 μm (for convenience, this powder is referred to as “mixed powder A”). ..
The mixed powder A and cBN particles having an average particle size of 3 μm are mixed with a ball mill so that the cBN content is 50 vol%, dried, and then at a pressure of 3 to 6 GPa and in a temperature range of 1000 to 1600 ° C. Comparative Examples 1 to 3 shown in Table 1 were produced by high-pressure high-temperature sintering under sintering conditions.
That is, the production methods of Comparative Examples 1 to 3 do not provide the step B in the production methods of the sintered bodies 1 to 5 of the present invention, and the mixing with the cBN particles is performed by a ball mill instead of the ultrasonic method. Is different.

上記で作製した実施例1〜5および比較例1〜3においては、結合相の切削性能への影響を評価しやすくするために、cBN粒子の平均粒径を3μmの一定とし、また、cBN粒子の含有割合は50体積%と少なめにして、結合相の含有割合を高めている。
しかし、cBN粒子の平均粒径および含有割合については、上記に限定されるものではなく、各種の値をとることができる。
なお、cBN焼結体におけるcBN粒子の平均粒径(μm)、cBN粒子の含有割合(vol%)は、次のようにして算出することができる。
cBN粒子の平均粒径については、cBN焼結体の断面組織を走査型電子顕微鏡(SEM)にて観察して、二次電子像を得る。得られた画像内のcBN粒子の部分を画像処理にて抜き出し、画像解析より求めた各粒子の最大長を求め、それを各粒子の直径とし各粒子が理想球であると仮定しての体積を計算する。
少なくとも3画像から求めたcBN粒子の直径の平均値をcBNの平均粒径(μm)として、cBN粒子の体積%を算出する。なお、画像処理に用いる観察領域は、15μm×15μmが好適である。
また、実施例では焼結条件を6GPa1500℃と一定にしているが、焼結条件によって切削性能の優劣は変化しない。
In Examples 1 to 5 and Comparative Examples 1 to 3 prepared above, in order to facilitate the evaluation of the influence of the bonded phase on the cutting performance, the average particle size of the cBN particles is kept constant at 3 μm, and the cBN particles are used. The content ratio of is as small as 50% by volume to increase the content ratio of the bound phase.
However, the average particle size and content ratio of the cBN particles are not limited to the above, and various values can be taken.
The average particle size (μm) of the cBN particles and the content ratio (vol%) of the cBN particles in the cBN sintered body can be calculated as follows.
Regarding the average particle size of the cBN particles, the cross-sectional structure of the cBN sintered body is observed with a scanning electron microscope (SEM) to obtain a secondary electron image. The part of the cBN particles in the obtained image is extracted by image processing, the maximum length of each particle obtained by image analysis is obtained, and this is used as the diameter of each particle, and the volume assuming that each particle is an ideal sphere. To calculate.
The volume% of the cBN particles is calculated by using the average value of the diameters of the cBN particles obtained from at least three images as the average particle size (μm) of the cBN. The observation area used for image processing is preferably 15 μm × 15 μm.
Further, in the embodiment, the sintering condition is set to 6 GPa 1500 ° C., but the superiority or inferiority of the cutting performance does not change depending on the sintering condition.

また、結合相におけるTi化合物粒子を内包するAl粒子の特定、cBN焼結体の結合相に対するTi化合物粒子を内包するAl粒子の含有量の測定、Ti化合物粒子を内包するAl粒子に対する、Al粒子に内包されるTi化合物粒子の含有量の測定、また、cBN焼結体の結合相中に含有されるAl粒子(Ti化合物粒子を内包するものと内包しないものとを含む)の含有量の測定は、次のように行った。
cBN焼結体の断面を試料厚みが100nm以下になるように研磨し、cBN焼結体の結合相領域をTEMにより観察した。ここで試料厚みを100nm以下にしたのはTEM観察時に粒子が重なっていると内包した粒子か重なっただけの粒子か判断できなくなるからである。
観察倍率は、観察視野の対角線長が、求めたAl粒子の平均粒径の10倍になるように調整し(観察倍率1)、Ti化合物粒子を内包しているAl粒子の結合相に対する含有量を測定する。ただし、この観察倍率1の観察倍率ではAl粒子にTi化合物粒子が内包されているか正確に特定できないため、観察倍率をAl粒子の外接円の直径が観察視野の対角線長の1/4倍以上になるように調整した視野(観察倍率2)において、Al粒子にTi化合物粒子が内包されているかの特定と内包された粒子の含有量の測定を行う。
TEM観察ではTi,Al,O,Nの元素マッピングを行い、2値化処理して得られたマッピング像のTiとN、AlとOを重ね合わせて重なった部分をそれぞれTiNとAlとする。Al粒子に内包されたTi化合物粒子においては、観察倍率2の重ね合わせた像から、Alの連続している領域をAl粒子であるとして、該Al粒子の境界に接しておらず、かつ、Al粒子の境界内に存在するTi化合物粒子を特定し、これを、Al粒子に内包されたTi化合物粒子であると特定する。また、2値化処理した像から前記cBN粒子の体積を求めた測定方法と同様な測定方法で、Al粒子とTi化合物の含有量を測定し、観察倍率1の視野内のAl粒子に内包されているTi化合物粒子の含有量を算出する。Ti化合物粒子を内包しているAl粒子の結合相に対する含有量は、観察倍率1を用いて、前記2値化処理した像からTi化合物粒子を内包しているAl粒子のみを抽出し、前記cBN粒子の体積を求めた測定方法と同様な測定方法で、含有量を算出する。
表1に、これらの値を示す。
Further, specific Al 2 O 3 particles containing the Ti compound particles in the binding phase, measurement of the content of Al 2 O 3 particles containing the Ti compound particles to the binder phase of the cBN sintered body, containing the Ti compound particles for Al 2 O 3 particles, measurement of the content of the Ti compound particles contained in the Al 2 O 3 particles, also containing the Al 2 O 3 particles (Ti compound particles contained in the binder phase of the cBN sintered body The content of (including those with and without inclusion) was measured as follows.
The cross section of the cBN sintered body was polished so that the sample thickness was 100 nm or less, and the bonded phase region of the cBN sintered body was observed by TEM. Here, the sample thickness is set to 100 nm or less because if the particles are overlapped during TEM observation, it cannot be determined whether the particles are contained particles or particles that are just overlapped.
The observation magnification is adjusted so that the diagonal length of the observation field is 10 times the average particle size of the obtained Al 2 O 3 particles (observation magnification 1), and the Al 2 O 3 particles containing Ti compound particles are contained. The content of the compound with respect to the bound phase is measured. However, since it is not possible to accurately identify whether the Ti compound particles are contained in the Al 2 O 3 particles at the observation magnification of 1 observation magnification, the diameter of the circumscribing circle of the Al 2 O 3 particles is the diagonal length of the observation field. In a visual field adjusted to 1/4 times or more (observation magnification 2), it is specified whether or not Ti compound particles are contained in Al 2 O 3 particles, and the content of the contained particles is measured.
In TEM observation, elemental mapping of Ti, Al, O, and N is performed, and the overlapping portions of Ti and N, and Al and O of the mapping image obtained by binarization are overlapped with TiN and Al 2 O 3, respectively. And. In Al 2 O 3 particles encapsulated the Ti compound particles, the superimposed observation magnification 2 image, a region that is continuous for Al 2 O 3 is Al 2 O 3 particles, the Al 2 O 3 The Ti compound particles that are not in contact with the boundary of the particles and are present within the boundary of the Al 2 O 3 particles are specified, and this is specified as the Ti compound particles contained in the Al 2 O 3 particles. Further, in the binarization processing the measuring method to determine the volume of the cBN particles from an image similar to the measuring method, Al 2 O 3 content of particles and Ti compound was measured, Al 2 in the observation magnification 1 field O 3 calculates the amount of Ti compound particles are contained in the particles. Content relative binding phase of Al 2 O 3 particles of the enclosing Ti compound particles, observation magnification 1 with only Al 2 O 3 particles of the enclosing Ti compound particles from said binarizing the image Is extracted, and the content is calculated by the same measuring method as the measuring method for determining the volume of the cBN particles.
Table 1 shows these values.

ついで、前記実施例1〜5および比較例1〜3の焼結体上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて分割し、さらに、Co:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120408の形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、さらに上下面および外周研磨、ホーニング加工を施すことによりISO規格CNGA120408のインサート形状をもった本発明のcBN焼結体切削工具1〜5および比較例のcBN焼結体切削工具1〜3をそれぞれ作製した。 Then, the upper and lower surfaces of the sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 3 were polished with a diamond grindstone, divided by a wire electric discharge machine, and further, Co: 5% by mass and TaC: 5 mass. %, WC: Cu: 26%, Ti: 5%, Ag: by mass% on the brazed part (corner part) of the WC-based cemented carbide insert body having the remaining composition and the shape of ISO standard CNGA120408. The cBN sintered body cutting tool 1 of the present invention having an insert shape of ISO standard CNGA120408 by brazing using an Ag alloy brazing material having the remaining composition, and further performing upper and lower surface and outer circumference polishing and honing processing. ~ 5 and cBN sintered body cutting tools 1 to 3 of the comparative example were prepared, respectively.

つぎに、前記各種の切削工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、各工具について、以下に示す切削条件で湿式断続切削加工試験を実施し、cBN焼結体の靱性の良否を評価した。
切削条件:
被削材:JIS・SCr420の(HRC58−62)丸棒(ただし、被削材の軸方向に等間隔で2本のスリットあり)
切削速度: 200 m/min.、
送り量:0.05rev/mm、
切込量:0.10mm
条件:湿式
上記の湿式断続切削加工試験において、切削工具の切れ刃がチッピングあるいは欠損に至るまでの断続回数(衝撃回数)を工具寿命とし、最大の断続回数(衝撃回数)は5500回までの切削加工試験を実施した。
なお、断続回数(衝撃回数)100回毎に刃先を観察し、刃先のチッピング発生の有無、欠損発生の有無を観察した。
本発明のcBN焼結体切削工具1〜5および比較例のcBN焼結体切削工具1〜3の切削試験結果を、表1の実施例1〜5および比較例1〜3の欄に、それぞれ示す。
Next, with all of the above-mentioned various cutting tools screwed to the tip of the tool steel cutting tool with a fixing jig, each tool was subjected to a wet intermittent cutting test under the following cutting conditions. The quality of the toughness of the cBN sintered body was evaluated.
Cutting conditions:
Work material: JIS / SCr420 (HRC58-62) round bar (however, there are two slits at equal intervals in the axial direction of the work material)
Cutting speed: 200 m / min. ,
Feed amount: 0.05 rev / mm,
Cut amount: 0.10 mm
Condition: Wet In the above wet intermittent cutting test, the tool life is the number of interruptions (impacts) until the cutting edge of the cutting tool chips or breaks, and the maximum number of interruptions (impacts) is 5500. A processing test was carried out.
The cutting edge was observed every 100 times of interruption (number of impacts), and the presence or absence of chipping of the cutting edge and the presence or absence of defects were observed.
The cutting test results of the cBN sintered body cutting tools 1 to 5 of the present invention and the cBN sintered body cutting tools 1 to 3 of the comparative example are shown in the columns of Examples 1 to 5 and Comparative Examples 1 to 3 in Table 1, respectively. show.

Figure 0006933017
Figure 0006933017

表1に示されるように、本発明のcBN焼結体切削工具1〜5はいずれも、切れ刃を構成するcBN焼結体の靱性に優れるため、チッピング、欠損等の異常損傷を発生することなく、長期の使用にわたってすぐれた切削性能を発揮する。
また、実施例1、5と比較例1との比較、実施例2、3と比較例2との比較、さらに、実施例4と比較例3との比較からも明らかなように、焼結体中のAl粒子の含有量が同程度であっても、本発明では、Al粒子にTi化合物粒子が内包されていることによって、切削性能が格段に向上していることがわかる。
As shown in Table 1, all of the cBN sintered body cutting tools 1 to 5 of the present invention have excellent toughness of the cBN sintered body constituting the cutting edge, so that abnormal damage such as chipping and chipping occurs. Demonstrates excellent cutting performance over long-term use.
Further, as is clear from the comparison between Examples 1 and 5 and Comparative Example 1, the comparison between Examples 2 and 3 and Comparative Example 2, and the comparison between Example 4 and Comparative Example 3, the sintered body Even if the content of the Al 2 O 3 particles in the particle is about the same, in the present invention, the cutting performance is remarkably improved by containing the Ti compound particles in the Al 2 O 3 particles. Recognize.

これに対して、比較例のcBN焼結体切削工具1〜3においては、切れ刃を構成するcBN焼結体の結合相中に存在するAl粒子にTi化合物粒子が内包されていないため、cBN焼結体の靱性が十分でなく、その結果、チッピング、欠損等の異常損傷の発生により、短期間で寿命に至ることが明らかである。 On the other hand, in the cBN sintered body cutting tools 1 to 3 of the comparative example, the Ti compound particles are not included in the Al 2 O 3 particles existing in the bonding phase of the cBN sintered body constituting the cutting edge. Therefore, it is clear that the toughness of the cBN sintered body is not sufficient, and as a result, the life is reached in a short period of time due to the occurrence of abnormal damage such as chipping and chipping.

上述のように、この発明のcBN焼結体は、硬度、強度、耐熱性とともに靱性にもすぐれる。したがって、例えば、切れ刃に高負荷が作用するcBN製切削加工用工具として用いた場合に、チッピング、欠損等の耐異常損傷性にすぐれ、長期の使用にわたってすぐれた切削性能を発揮する。
As described above, the cBN sintered body of the present invention is excellent in toughness as well as hardness, strength and heat resistance. Therefore, for example, when used as a cBN cutting tool in which a high load acts on the cutting edge, it has excellent resistance to abnormal damage such as chipping and chipping, and exhibits excellent cutting performance over a long period of use.

Claims (3)

立方晶窒化ほう素粒子と結合相からなる立方晶窒化ほう素基焼結体において、前記立方晶窒化ほう素粒子の含有量は、前記立方晶窒化ほう素基焼結体の40体積%以上85体積%以下であり、前記結合相はAl粒子を含み、しかも、該Al粒子のうちで、Ti粒子を内包するAl粒子が存在し、前記TiN粒子を内包するAl 粒子の含有量は、前記結合相の5体積%以上50体積%以下である結合相組織を有することを特徴とする立方晶窒化ほう素基焼結体。 In the cubic nitrided boron-based sintered body composed of the cubic boron nitride particles and the bonded phase, the content of the cubic nitrided boron particles is 40% by volume or more of 85% by volume or more of the cubic nitrided boron-based sintered body. or less% by volume, said binder phase comprises Al 2 O 3 particles, moreover, among the Al 2 O 3 particles, there are Al 2 O 3 particles containing the Ti N particles, containing the TiN particles the content of Al 2 O 3 particles, cubic boron nitride containing groups sintered body characterized by having a 5 vol% to 50 vol% der Ru binder phase structure of the binder phase. 前記Ti粒子を内包するAl粒子に対する、Al粒子に内包されるTi粒子の含有量は、3体積%以上25体積%以下であることを特徴とする請求項1記載の立方晶窒化ほう素基焼結体。 For Al 2 O 3 particles containing the Ti N particles, the content of Ti N particles contained in Al 2 O 3 particles to claim 1, characterized in that 25% by volume or less 3% or more by volume The described cubic boron nitride based sintered body. 切削工具の切れ刃が、請求項1または2に記載の立方晶窒化ほう素基焼結体から構成されていることを特徴とする立方晶窒化ほう素基焼結体製切削工具。 A cutting tool made of a cubic boron nitride-based sintered body, wherein the cutting edge of the cutting tool is composed of the cubic boron nitride-based sintered body according to claim 1 or 2.
JP2017127028A 2017-06-29 2017-06-29 Cubic boron nitride base sintered body and cutting tool Active JP6933017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017127028A JP6933017B2 (en) 2017-06-29 2017-06-29 Cubic boron nitride base sintered body and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017127028A JP6933017B2 (en) 2017-06-29 2017-06-29 Cubic boron nitride base sintered body and cutting tool

Publications (2)

Publication Number Publication Date
JP2019011206A JP2019011206A (en) 2019-01-24
JP6933017B2 true JP6933017B2 (en) 2021-09-08

Family

ID=65227267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127028A Active JP6933017B2 (en) 2017-06-29 2017-06-29 Cubic boron nitride base sintered body and cutting tool

Country Status (1)

Country Link
JP (1) JP6933017B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056495A1 (en) * 2003-12-03 2005-06-23 Diamond Innovations, Inc. Cubic boron nitride sintered body and method for making the same
JP2007126325A (en) * 2005-11-02 2007-05-24 Tdk Corp Method for producing powdery mixture and method for producing ceramic sintered compact
KR101386763B1 (en) * 2007-01-30 2014-04-18 스미토모덴키고교가부시키가이샤 Composite sintered body
JP5988164B2 (en) * 2013-01-31 2016-09-07 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride based sintered material
JP6082650B2 (en) * 2013-04-26 2017-02-15 株式会社タンガロイ Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP6637664B2 (en) * 2014-03-28 2020-01-29 三菱マテリアル株式会社 Cubic boron nitride sintered compact cutting tool
JP6365228B2 (en) * 2014-10-23 2018-08-01 住友電気工業株式会社 Sintered body

Also Published As

Publication number Publication date
JP2019011206A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6637664B2 (en) Cubic boron nitride sintered compact cutting tool
JP5126702B1 (en) Cutting tool made of cubic boron nitride based sintered material
JP6853951B2 (en) cBN sintered body and cutting tool
EP3000547B1 (en) Surface-coated boron nitride sintered compact tool
JP2021151943A (en) cBN sintered body and cutting tool
WO2022176569A1 (en) Cbn sintered body
JP6198142B2 (en) Cutting tool made of cubic boron nitride super high pressure sintered material
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP6933017B2 (en) Cubic boron nitride base sintered body and cutting tool
WO2022168655A1 (en) Sintered cbn
CN111801304B (en) cBN sintered body and cutting tool
JP7096977B2 (en) cBN sintered body and cutting tool
JP7161670B2 (en) Cubic boron nitride-based sintered body and cutting tool
JP2014233767A (en) Cubic boron nitride sinter body cutting tool excellent in crack resistance
JP7068657B2 (en) Cutting tool made of cubic boron nitride base sintered body
WO2024135429A1 (en) cBN SINTERED COMPACT AND CUTTING TOOL
JP7377463B2 (en) cBN sintered body and cutting tools
WO2024128178A1 (en) Cbn sintered body and cutting tool
WO2020179809A1 (en) cBN SINTERED COMPACT AND CUTTING TOOL
US20240318286A1 (en) cBN SINTERED BODY
US20240102135A1 (en) cBN SINTERED COMPACT
JP6986232B2 (en) Cubic boron nitride base sintered body and cutting tools made of this
JP7137119B2 (en) cBN sintered body and cutting tool
JP2022142894A (en) cBN SINTERED COMPACT
JP2016084245A (en) Sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6933017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150