JP2021151943A - cBN sintered body and cutting tool - Google Patents

cBN sintered body and cutting tool Download PDF

Info

Publication number
JP2021151943A
JP2021151943A JP2020053654A JP2020053654A JP2021151943A JP 2021151943 A JP2021151943 A JP 2021151943A JP 2020053654 A JP2020053654 A JP 2020053654A JP 2020053654 A JP2020053654 A JP 2020053654A JP 2021151943 A JP2021151943 A JP 2021151943A
Authority
JP
Japan
Prior art keywords
phase
region
cbn
sintered body
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020053654A
Other languages
Japanese (ja)
Inventor
亮太 武井
Ryota Takei
亮太 武井
一樹 岡田
Kazuki Okada
一樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020053654A priority Critical patent/JP2021151943A/en
Publication of JP2021151943A publication Critical patent/JP2021151943A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a cubic boron nitride (cBN) sintered body and a cutting tool having crack propagation resistance and stability against thermal loads even in intermittent cutting process with depth of cut exceeding 0.1 mm.SOLUTION: A cBN sintered body and a cutting tool comprising 40 to 80 area% of cBN, and a binding phase comprising α and β phases, wherein the α phase is (Ti1-xVx) (C1-yNy) with an average composition of x=0.30-0.70, y=0.00-0.50, and 70-97 area% in the bound phase, and the β phase is a type of Al oxide, nitride, or boride with an average grain size of 0.05-0.40 μm, and 3-20 area% in the binder phase; and wherein the alpha phase has an A region and a B region, and the A region is (Ti1-xAVxA)(C1-yANyA), in which xA=0.10-0.30 and yA=0.00-0.50, and the B region is (Ti1-xBVxB)(C1-yBNyB) in which xB=0.70-0.90 and yB=0.00-0.50, and the sum of the A and B regions is more than 50 area% percent of the α phase.SELECTED DRAWING: Figure 1

Description

本発明は、立方晶窒化硼素(以下、cBNということがある)基焼結体およびそれを用いた切削工具に関するものである。 The present invention relates to a cubic boron nitride (hereinafter, may be referred to as cBN) -based sintered body and a cutting tool using the same.

従来から、cBN焼結体は切削工具材料として広く用いられている。そして、硬質分散相となるcBNの他にTi、V等を含有させるcBN焼結体について検討がなされている。 Conventionally, the cBN sintered body has been widely used as a cutting tool material. Then, a cBN sintered body containing Ti, V and the like in addition to cBN which is a hard dispersion phase has been studied.

例えば、特許文献1には、平均粒径:2〜5μmのチタン炭化物、チタン窒化物、チタン炭窒化物、チタン・バナジウム炭化物、チタン・バナジウム炭窒化物のうちの一種または二種以上からなる硬質分散相:10〜30容量%を含む切削工具が記載され、この切削工具により鋼や鋳鉄等の鉄系部材の切削を行った際に、表面粗さが1.6S以下の優れた表面仕上りとなり、しかも長手方向に生じるテーパーも極めて小さくなるとされている。 For example, Patent Document 1 describes a hard material consisting of one or more of titanium carbide, titanium nitride, titanium carbonitride, titanium / vanadium carbide, and titanium / vanadium carbonitride having an average particle size of 2 to 5 μm. A cutting tool containing 10 to 30% by volume of dispersed phase is described, and when an iron-based member such as steel or cast iron is cut with this cutting tool, an excellent surface finish having a surface roughness of 1.6 S or less is obtained. Moreover, it is said that the taper generated in the longitudinal direction is also extremely small.

また、例えば、特許文献2には、(Ti1−x)(C1−y)(x:0.1〜0.4、y:0.1〜0.5)(以下、A成分という):10〜40容量%、Tiの炭化物、窒化物、および炭窒化物の内の1種または2種以上(以下、B成分という):2〜10容量%、Vの炭化物、窒化物、および炭窒化物の内の1種または2種以上(以下、C成分という):2〜10容量%、ただし、B成分+C成分:6〜20容量%、A成分/B成分+C成分=1.5〜7となるように含有し、残りがcBNからなるcBN基焼結体で構成された高強度cBN基焼結体製切削工具が記載され、この切削工具は、焼き入れ鋼を切り込み深さ:0.1mm以下の微小切り込み高速断続切削を行うことができるとされている。 Further, for example, in Patent Document 2, (Ti 1-x V x ) (C 1-y N y ) (x: 0.1-0.4, y: 0.1-0.5) (hereinafter, (A component): 10 to 40% by volume, one or more of Ti carbides, nitrides, and carbonitrides (hereinafter referred to as B component): 2 to 10% by volume, V carbides, nitrides One or more of the material and the carbide (hereinafter referred to as C component): 2 to 10% by volume, but B component + C component: 6 to 20% by volume, A component / B component + C component = A cutting tool made of a high-strength cBN-based sintered body composed of a cBN-based sintered body containing 1.5 to 7 and the rest consisting of cBN is described, and this cutting tool cuts hardened steel. Depth: It is said that high-speed intermittent cutting with a fine cut of 0.1 mm or less can be performed.

さらに、例えば、特許文献3には、cBN基焼結体で構成された切削工具において、結合相にV、Nb、Taの中の少なくとも1種とTiとの複合窒化物を含有させると耐欠損性、耐チッピング性が改善されること、さらに、V、Nb、Taの窒化物あるいは金属を添加し、焼結時にcBNと反応させてVB、NbB、TaBの中の少なくとも1種の斜方晶硼化物を含有させることによって、熱的安定性が増大して耐摩耗性と共に耐チッピング性が向上するとされている。 Further, for example, Patent Document 3 states that in a cutting tool composed of a cBN-based sintered body, when the bonding phase contains a composite nitride of at least one of V, Nb, and Ta and Ti, it is resistant to fracture. Improved properties and chipping resistance, and added V, Nb, Ta nitride or metal and reacting with cBN at the time of sintering to at least one orbital crystal in VB, NbB, TaB. It is said that the inclusion of boride increases thermal stability and improves wear resistance as well as chipping resistance.

特許第2767890号公報Japanese Patent No. 2767890 特許第3489297号公報Japanese Patent No. 3489297 特許第4830571号公報Japanese Patent No. 4830571

本発明者は、これら特許文献に記載された切削工具について検討した結果、以下の事項を知見した。 As a result of examining the cutting tools described in these patent documents, the present inventor has found the following matters.

特許文献1に記載された切削工具は、被削材の表面仕上り、また、切削加工時に円柱体の長手方向にテーパーがつくという問題点の改善を図ったものであるが、cBN基焼結体を構成する粒子の粒径(特に、cBN以外の粒子)が大きいことから、断続成分を含む切削加工や不安定な切削加工(例えば、被削材の形状が細長いもの、厚みの薄いものに対する切削加工)を行う際に刃先の欠損やチッピングが生じることがある。 The cutting tool described in Patent Document 1 is intended to improve the surface finish of the work material and the problem that the columnar body is tapered in the longitudinal direction during cutting, but is a cBN-based sintered body. Since the particle size (particularly particles other than cBN) of the particles constituting the above is large, cutting work containing intermittent components or unstable cutting work (for example, cutting for a work material having an elongated shape or a thin work material) Cutting edge may be chipped or chipped when performing processing).

特許文献2に記載された切削工具は、Tiの炭化物、窒化物、炭窒化物、およびVの炭化物、窒化物、炭窒化物を含有させることが示されているが、これらはTiとVの複合炭化物または複合炭窒化物に比べ高温強度に劣り、切削工具として使用した際の切削熱によってこれら成分を起点に破壊が生じるおそれがある。また、切り込み深さ0.1mm以下の微小切り込み断続切削に関して切削工具の欠損が生じないという知見であるが、切り込み深さが0.1mmを超える場合の断続切削については言及がなく、改善の余地がある。 The cutting tools described in Patent Document 2 are shown to contain carbides, nitrides, carbonitrides of Ti, and carbides, nitrides, carbonitrides of V, which are of Ti and V. It is inferior in high-temperature strength to composite carbides or composite carbide nitrides, and there is a risk of destruction starting from these components due to the cutting heat when used as a cutting tool. In addition, it is a finding that the cutting tool is not chipped for minute cutting intermittent cutting with a cutting depth of 0.1 mm or less, but there is no mention of intermittent cutting when the cutting depth exceeds 0.1 mm, and there is room for improvement. There is.

特許文献3に記載された切削工具は、V、Nb、Taの中の少なくとも1種の斜方晶硼化物を含有させることが示されているが、これらはV、Nb、Taの炭化物あるいは炭窒化物に比べ熱的安定性が十分でなく、切削工具として使用した際の切削熱によってcBN基焼結体の靭性が低下するおそれがある。 The cutting tool described in Patent Document 3 has been shown to contain at least one orthocrystalline boronide among V, Nb and Ta, which are carbides or charcoal of V, Nb and Ta. The thermal stability is not sufficient as compared with nitrides, and the toughness of the cBN-based sintered body may decrease due to the cutting heat when used as a cutting tool.

本発明はこのような状況を鑑みてなされたものであって、切り込み深さが0.1mmを超える断続切削加工であっても、十分な耐クラック伝播性を有し、切削加工時の熱的負荷に対する安定性の高いcBN焼結体、および、刃先の耐摩耗性や耐チッピング性、耐欠損性に優れる切削工具を提供することを目的とする。 The present invention has been made in view of such a situation, and has sufficient crack propagation resistance even in intermittent cutting with a cutting depth of more than 0.1 mm, and is thermally resistant to cutting. It is an object of the present invention to provide a cBN sintered body having high stability against a load and a cutting tool having excellent wear resistance, chipping resistance and fracture resistance of a cutting edge.

本発明者は、cBN焼結体およびCBN切削工具について、前記課題を解決すべく鋭意検討を行った。その結果、TiとVとの複合炭化物または複合炭窒化物の濃度の異なる2つの領域が結合相中に所定割合で存在し、さらに、結合相中には、所定の平均粒径を有するAlの酸化物、窒化物、硼化物の少なくとも一種が所定割合で存在すると、優れた高温強度・高温硬度や十分な耐クラック伝播性が発現し、切削加工時の熱的負荷に対する安定性の高いcBN焼結体を得ることができ、このcBN焼結体を用いれば、刃先の耐摩耗性や耐チッピング性に優れる切削工具を得ることができるという新規な知見を得た。 The present inventor has diligently studied the cBN sintered body and the CBN cutting tool in order to solve the above problems. As a result, two regions having different concentrations of the composite carbide or composite carbonitride of Ti and V are present in the bonded phase in a predetermined ratio, and further, Al having a predetermined average particle size is present in the bonded phase. When at least one of oxides, nitrides, and borides is present in a predetermined ratio, excellent high-temperature strength / high-temperature hardness and sufficient crack propagation resistance are exhibited, and cBN firing with high stability against a thermal load during cutting is performed. We have obtained a new finding that a body can be obtained, and if this cBN sintered body is used, a cutting tool having excellent wear resistance and chipping resistance of the cutting edge can be obtained.

本発明は、この知見に基づくもので以下のとおりのものである。
「(1)立方晶窒化硼素と結合相を有するcBN焼結体であって、
前記cBN焼結体の断面において、
前記立方晶窒化硼素は40〜80面積%を占め、
前記結合相はα相とβ相を有し、
前記α相は、その組成を組成式:(Ti1−x)(C1−y)で表したとき、その平均組成は、x=0.30〜0.70、y=0.00〜0.50であり、前記結合相中に70〜97面積%で存在し、
前記β相は、平均粒径が0.05〜0.40μmのAlの酸化物、窒化物、硼化物の少なくとも一種であって、前記結合相中に3〜20面積%で存在し、
さらに、前記α相は、A領域とB領域を有し、
前記A領域は、その組成を組成式:(Ti1−xAxA)(C1−yAyA)で表したとき、xA=0.10〜0.30、yA=0.00〜0.50であり、
前記B領域は、その組成を組成式:(Ti1−xBxB)(C1−yByB)で表したとき、xB=0.70〜0.90、yB=0.00〜0.50であり、
前記A領域と前記B領域がそれぞれ前記α相に対して占める割合の和が50面積%以上である、
ことを特徴とするcBN焼結体。
(2)前記α相のVの平均組成xと前記A領域のVの含有割合xAの平均値xAavgとの差をx−xAavgとし、
前記α相のVの平均組成xと前記B領域のVの含有割合xBの平均値xBavgとの差をxBavg−xとするとき、
|(x−xAavg)−(xBavg−x)|が0.20以下である、
ことを特徴とする前記(1)に記載のcBN焼結体。
(3)前記(1)または(2)に記載のcBN焼結体を工具基体とする切削工具。」
The present invention is based on this finding and is as follows.
"(1) A cBN sintered body having a bonding phase with cubic boron nitride,
In the cross section of the cBN sintered body,
The cubic boron nitride occupies 40 to 80 area%.
The binding phase has an α phase and a β phase, and has an α phase and a β phase.
When the composition of the α phase is represented by the composition formula: (Ti 1-x V x ) (C 1-y N y ), the average composition thereof is x = 0.30 to 0.70, y = 0. It is .00 to 0.50 and is present in the bonded phase in an area% of 70 to 97.
The β phase is at least one of an oxide, nitride, and boride of Al having an average particle size of 0.05 to 0.40 μm, and is present in the bonded phase in an area of 3 to 20 area%.
Further, the α phase has an A region and a B region, and has an A region and a B region.
When the composition of the A region is represented by the composition formula: (Ti 1-xA V xA ) (C 1-yA N yA ), xA = 0.10 to 0.30, yA = 0.00 to 0. 50
When the composition of the B region is represented by the composition formula: (Ti 1-xB V xB ) (C 1-yB N yB ), xB = 0.70 to 0.90, yB = 0.00 to 0. 50
The sum of the ratios of the A region and the B region to the α phase is 50 area% or more.
A cBN sintered body characterized in that.
(2) The difference between the average composition x of V in the α phase and the average value xA avg of the V content ratio xA in the A region is defined as x-xA avg .
When the difference between the average composition x of V in the α phase and the average value xB avg of the V content ratio xB in the B region is xB avg −x,
| (X-xA avg )-(xB avg- x) | is 0.20 or less.
The cBN sintered body according to (1) above.
(3) A cutting tool using the cBN sintered body according to (1) or (2) as a tool base. "

本発明のcBN焼結体は、切り込み深さが0.1mmを超える断続切削加工であっても、十分な耐クラック伝播性を有し、切削加工時の熱的負荷に対する安定性が高く、また、このcBN焼結体を工具基体とした切削工具は、刃先の耐摩耗性や耐チッピング性に優れる。 The cBN sintered body of the present invention has sufficient crack propagation resistance even in intermittent cutting with a cutting depth of more than 0.1 mm, is highly stable against a thermal load during cutting, and is also stable. A cutting tool using this cBN sintered body as a tool base is excellent in abrasion resistance and chipping resistance of the cutting edge.

本発明cBN焼結体の焼結組織の一例を示す模式図であり、各組織の形状、寸法は実際の組織に則したものではない。It is a schematic diagram which shows an example of the sintered structure of the cBN sintered body of this invention, and the shape and size of each structure do not conform to the actual structure.

以下、本発明を詳細に説明する。なお、本明細書において、数値範囲を「M〜N」(M、Nは共に数値)を用いて表現する場合、その範囲は上限(N)および下限(M)の数値を含むものである。また、上限と下限の単位は同じである。また、数値は測定上の公差を含んでいる。 Hereinafter, the present invention will be described in detail. In the present specification, when the numerical range is expressed using "M to N" (both M and N are numerical values), the range includes the numerical values of the upper limit (N) and the lower limit (M). Moreover, the unit of the upper limit and the lower limit is the same. In addition, the numerical values include measurement tolerances.

本発明のcBN焼結体は、図1に模式的に示す組織を有している。すなわち、この組織は、cBN粒子1と、α相2、6、7、β相3を含む結合相を有しており、α相は領域Aと領域Bを有している。以下、これらについて説明する。 The cBN sintered body of the present invention has the structure schematically shown in FIG. That is, this structure has a binding phase containing cBN particles 1, α-phases 2, 6, 7, and β-phase 3, and the α-phase has a region A and a region B. These will be described below.

立方晶窒化硼素(cBN)粒子の面積割合:
cBN焼結体の任意の断面において、cBN粒子は、40〜80面積%を占めることが好ましい。この範囲にあるとき、チッピングが抑制され、耐欠損性が向上する。
cBN粒子の面積割合は、後述する走査型電子顕微鏡による組織観察で得た二次電子画像から、cBN粒子の部分を画像処理にて抜き出し、その部分が1観察領域に占める面積割合を求める。これを3観察領域(3画像)に対して行い、その平均値をcBN粒子の面積割合とする。
Area ratio of cubic boron nitride (cBN) particles:
In any cross section of the cBN sintered body, the cBN particles preferably occupy 40-80 area%. When in this range, chipping is suppressed and fracture resistance is improved.
For the area ratio of the cBN particles, a portion of the cBN particles is extracted by image processing from the secondary electron image obtained by observing the structure with a scanning electron microscope described later, and the area ratio of the portion occupying one observation region is determined. This is performed for 3 observation regions (3 images), and the average value is taken as the area ratio of the cBN particles.

cBN粒子の平均粒径:
本発明で用いる硬質分散相であるcBN粒子の平均粒径は、特に限定されるものではないが、0.2〜8.0μmの範囲であることが好ましい。
cBN粒子によりcBN焼結体の耐欠損性を高めることができる。このとき、cBN焼結体中に分散するcBN粒子の平均粒径が0.2〜8.0μmであれば、切削工具としての使用中に工具表面のcBN粒子が脱落して生じる刃先の凹凸形状を起点とする欠損、チッピングを抑制し、さらに、切削工具としての使用中に刃先に加わる応力により生じるcBN粒子とセラミックス結合相との界面から進展するクラックの伝播、あるいはcBN粒子が割れて進展するクラックの伝播を抑制し、より優れた耐欠損性を有することができる。
Average particle size of cBN particles:
The average particle size of the cBN particles, which is the hard dispersion phase used in the present invention, is not particularly limited, but is preferably in the range of 0.2 to 8.0 μm.
The cBN particles can enhance the fracture resistance of the cBN sintered body. At this time, if the average particle size of the cBN particles dispersed in the cBN sintered body is 0.2 to 8.0 μm, the uneven shape of the cutting edge caused by the cBN particles on the tool surface falling off during use as a cutting tool. Defects and chipping starting from It can suppress the propagation of cracks and have better fracture resistance.

ここで、cBN粒子の平均粒径は、以下のとおりにして求めることができる。
cBN焼結体の任意の断面を鏡面加工し、前記鏡面加工面に対して走査型電子顕微鏡(Scanning Electron Microscope:SEM)による組織観察を実施し、二次電子画像を得る。次に、得られた画像内のcBN粒子の部分を画像処理にて抜き出し、画像解析より求めた各粒子の最大長を基に平均粒径を算出する。
Here, the average particle size of the cBN particles can be determined as follows.
An arbitrary cross section of the cBN sintered body is mirror-processed, and the mirror-surfaced surface is subjected to microstructure observation with a scanning electron microscope (SEM) to obtain a secondary electron image. Next, the portion of the cBN particles in the obtained image is extracted by image processing, and the average particle size is calculated based on the maximum length of each particle obtained by image analysis.

画像内のcBN粒子の部分を画像処理にて抜き出すに当たり、cBN粒子と結合相とを明確に判断するため、画像は0を黒、255を白の256階調のモノクロで表示し、cBN粒子部分の画素値と結合相部分の画素値の比が2以上となる画素値の像を用いてcBN粒子が黒となるように2値化処理を行う。 When extracting the cBN particle part in the image by image processing, in order to clearly judge the cBN particle and the bonding phase, the image displays 0 in black and 255 in white with 256 gradations in monochrome, and the cBN particle part. The binarization process is performed so that the cBN particles become black using the image of the pixel value in which the ratio of the pixel value of the above to the pixel value of the coupling phase portion is 2 or more.

ここで、cBN粒子部分や結合相部分の画素値を求めるための領域として、0.5μm×0.5μm程度の領域を選択し、少なくとも同一画像領域内から異なる3箇所より求めた平均の値をそれぞれのコントラストとすることが好ましい。 Here, as a region for obtaining the pixel values of the cBN particle portion and the coupled phase portion, a region of about 0.5 μm × 0.5 μm is selected, and an average value obtained from at least three different locations within the same image region is obtained. It is preferable to use each contrast.

なお、2値化処理後はcBN粒同士が接触していると考えられる部分を切り離すような処理、例えば、ウォーターシェッドを用いて接触していると思われるcBN粒同士を分離する。続いて、画像解析を行う。 After the binarization treatment, a process for separating the portion where the cBN grains are considered to be in contact with each other, for example, a water shed is used to separate the cBN grains which are considered to be in contact with each other. Subsequently, image analysis is performed.

2値化処理後に得られた画像内のcBN粒子にあたる部分(黒の部分)を粒子解析し、求めた最大長を各粒子の最大長とし、それを各粒子の直径とする。最大長を求める粒子解析としては、1つのcBN粒子に対してフェレ径を算出することより得られる2つの長さから大きい長さの値を最大長とし、その値を各粒子の直径とする。各粒子をこの直径を有する理想球体と仮定して、計算より求めた体積を各粒子の体積として累積体積を求める。 The portion (black portion) corresponding to the cBN particles in the image obtained after the binarization process is subjected to particle analysis, and the obtained maximum length is defined as the maximum length of each particle, and this is defined as the diameter of each particle. In the particle analysis for obtaining the maximum length, a value having a length larger than the two lengths obtained by calculating the ferret diameter for one cBN particle is taken as the maximum length, and that value is taken as the diameter of each particle. Assuming that each particle is an ideal sphere having this diameter, the cumulative volume is calculated by using the volume obtained by calculation as the volume of each particle.

この累積体積を基に縦軸を体積百分率[%]、横軸を直径[μm]としてグラフを描画させ、体積百分率が50%のときの直径を当該領域のcBN粒子の平均粒径とする。これを3観察領域(3画像)に対して行い、その平均値をcBNの平均粒径[μm]とする。 Based on this cumulative volume, a graph is drawn with the vertical axis as the volume percentage [%] and the horizontal axis as the diameter [μm], and the diameter when the volume percentage is 50% is defined as the average particle size of the cBN particles in the region. This is performed for 3 observation regions (3 images), and the average value thereof is defined as the average particle size [μm] of cBN.

この粒子解析を行う際には、予めSEMにより分かっているスケールの値を用いて、1ピクセル当たりの長さ(μm)を設定しておく。画像処理に用いる観察領域として、cBN粒子の平均粒径が3μm程度となる場合、15.0μm×15.0μm程度の視野領域が好ましい。 When performing this particle analysis, the length (μm) per pixel is set using the scale value known in advance by SEM. As an observation region used for image processing, when the average particle size of cBN particles is about 3 μm, a visual field region of about 15.0 μm × 15.0 μm is preferable.

結合相:
結合相は、α相とβ相を有している。
Bonding phase:
The binding phase has an α phase and a β phase.

α相:
TiとVの複合炭化物、または複合炭窒化物の組成を、組成式:(Ti1−x)(C1−y)(0.00<x<1.00、0.00≦y<1.00)で表したとき、α相の平均組成は、x=0.30〜0.70、y=0.00〜0.50であり、結合相中に70〜97面積%存在することが好ましい。
xおよびy、ならびに、面積%をこの範囲にすると、切削加工がもたらす高温下においても優れた強度を示し、cBN焼結体の切削加工時の熱的負荷に対する安定性が高くなることで高速切削時の耐チッピング性、耐欠損性が向上する。
α phase:
The composition of the composite carbide of Ti and V or the composite carbonitride can be described by the composition formula: (Ti 1-x V x ) (C 1-y N y ) (0.00 <x <1.00, 0.00 ≦). When represented by y <1.00), the average composition of the α phase is x = 0.30 to 0.70, y = 0.00 to 0.50, and 70 to 97 area% is present in the bound phase. It is preferable to do so.
When x and y and the area% are set in this range, excellent strength is exhibited even under the high temperature brought about by the cutting process, and the stability of the cBN sintered body against a thermal load during the cutting process is increased, so that high-speed cutting is performed. Improves chipping resistance and fracture resistance at the time.

α相は、図1に模式的に示すように、その組成(TiとVの原子比)の異なるものが存在する。すなわち、後述するA領域およびB領域から離れたα相2はTi/Vが約2/3〜3/2であり、A領域近傍のα相6はTi/Vが約3/2〜7/3であり、B領域近傍のα相7はTi/Vが約3/7〜2/3である。 As schematically shown in FIG. 1, there are α phases having different compositions (atomic ratios of Ti and V). That is, the α phase 2 away from the A region and the B region, which will be described later, has a Ti / V of about 2/3 to 3/2, and the α phase 6 near the A region has a Ti / V of about 3/2 to 7 /. It is 3, and the α phase 7 in the vicinity of the B region has a Ti / V of about 3/4 to 2/3.

β相:
β相は、平均粒径が0.05〜0.40μmのAlの酸化物、窒化物、硼化物の少なくとも一種であって、結合相中に3〜20面積%存在することが好ましい。
平均粒径を0.05〜0.40μmとする理由は、この粒径範囲であれば、結合相中を伝播するクラックの進展を抑制でき、切削加工時に刃先に大きな衝撃が加わる断続切削加工や高負荷な切削条件において、耐摩耗性を損なわずに優れた耐チッピング性を示すためである。
また、β相は結合相中に3〜20面積%存在することにより、耐クラック伝播性を示し、切削工具として使用した際に優れた耐欠損性を示す。
β phase:
The β phase is at least one of an oxide, nitride, and boride of Al having an average particle size of 0.05 to 0.40 μm, and is preferably present in the bonded phase in an area of 3 to 20 area%.
The reason for setting the average particle size to 0.05 to 0.40 μm is that within this particle size range, the growth of cracks propagating in the bonded phase can be suppressed, and intermittent cutting, in which a large impact is applied to the cutting edge during cutting, This is because it exhibits excellent chipping resistance without impairing wear resistance under high-load cutting conditions.
Further, the β phase is present in 3 to 20 area% in the bonded phase, so that it exhibits crack propagation resistance and excellent fracture resistance when used as a cutting tool.

A領域とB領域:
α相は、Vの濃度が低い(Tiの濃度が高い)A領域と、Vの濃度が高い(Tiの濃度が低い)B領域を有することが好ましい。このようなV濃度の異なる2つの領域(A領域とB領域)を有することで、切削加工時の熱的負荷のある状況下において、結合相の塑性変形を抑制し、その結果cBN焼結体の硬度、靭性の低下を抑制するという作用を発揮でき、優れた耐摩耗性、耐欠損性を切削工具に与える。
Area A and Area B:
The α phase preferably has an A region having a low V concentration (high Ti concentration) and a B region having a high V concentration (low Ti concentration). By having two regions (A region and B region) with different V concentrations, plastic deformation of the coupling phase is suppressed under the condition of thermal load during cutting, and as a result, the cBN sintered body is formed. It can exert the effect of suppressing the decrease in hardness and toughness of the cutting tool, and gives the cutting tool excellent wear resistance and fracture resistance.

ここで、A領域の組成は、組成式:(Ti1−xAxA)(C1−yAyA)で表したとき、xA=0.10〜0.30、yA=0.00〜0.50であり、かつ、B領域の組成は、組成式:(Ti1−xBxB)(C1−yByB)で表したとき、xB=0.70〜0.90、yB=0.00〜0.50であって、かつ、A領域とB領域がそれぞれα相に対して占める割合の和が50面積%以上であれば、前述の作用を確実に発揮することができる。 Here, the composition of the A region is expressed by the composition formula: (Ti 1-xA V xA ) (C 1-yA N yA ), xA = 0.10 to 0.30, yA = 0.00 to 0. .50 and the composition of the B region is xB = 0.70 to 0.90, yB = 0 when expressed by the composition formula: (Ti 1-xB V xB ) (C 1-yB N yB). When the sum of the ratios of the A region and the B region to the α phase is 50 area% or more, the above-mentioned effect can be surely exhibited.

A領域、B領域のV濃度とα相の平均V濃度:
α相のVの平均組成xとA領域のVの含有割合xAの平均値xAavgとの差をx−xAavgとし、α相のVの平均組成xとB領域のVの含有割合xBの平均値xBavgとの差をxBavg−xとするとき、|(x−xAavg)−(xBavg−x)|が0.20以下であることがより好ましい。
その理由は、|(x−xAavg)−(xBavg−x)|が小さいことで、A領域とB領域によるV濃度の繰り返しの変化がより明確になり、また同時にA領域とB領域の面積割合の偏りも小さくなり、結果として高温下における塑性変形抑制効果が高まり、より一層確実に前述の作用を発揮することができるためである。
V concentration in A region and B region and average V concentration in α phase:
The difference between the average composition x of V in the α phase and the average value xA avg of the V content in the A region xA is defined as x-xA avg, and the average composition x of V in the α phase and the V content ratio xB in the B region When the difference from the average value xB avg is xB avg −x, it is more preferable that | (x−xA avg ) − (xB avg −x) | is 0.20 or less.
The reason is that | (x-xA avg )-(xB avg- x) | is small, so that the repeated change of V concentration between the A region and the B region becomes clearer, and at the same time, the A region and the B region This is because the bias of the area ratio is also reduced, and as a result, the effect of suppressing plastic deformation at high temperature is enhanced, and the above-mentioned effect can be exhibited even more reliably.

結合相の組成、面積%の決定法:
cBN焼結体の任意の断面を鏡面加工し、前記鏡面加工面に対して、例えば、cBN含有量が65体積%程度、平均粒径3μm程度となる場合、5.0μm×3.0μm程度の領域を選択し、観察領域とするのが好ましい。
Method for determining the composition of the bound phase and the area%:
When an arbitrary cross section of the cBN sintered body is mirror-processed and the cBN content is, for example, about 65% by volume and the average particle size is about 3 μm with respect to the mirror-processed surface, it is about 5.0 μm × 3.0 μm. It is preferable to select a region and use it as an observation region.

断面の組織観察の手段の一つとして、オージェ電子分光(Auger Electron Spectrography:AES)によってB・C・N・O・Ti・V・Al原子のマッピングを行い、BとNのみが重なる部分をcBN粒子と定義し、それ以外の部分を結合相と定義する。
結合相中に占めるα相の割合は、C・Ti・Vが重なる部分をα相と定義し、その面積を結合相の面積で除すことで算出する。β相の割合も同様に、Alと、B・N・Oの少なくとも一つが重なる部分をβ相と定義し、その面積を結合相の面積で除すことで算出する。
As one of the means for observing the structure of the cross section, B, C, N, O, Ti, V, and Al atoms are mapped by Auger electron spectroscopy (AES), and the part where only B and N overlap is cBN. It is defined as a particle, and the other part is defined as a binding phase.
The ratio of the α phase to the bonded phase is calculated by defining the portion where C, Ti, and V overlap as the α phase and dividing the area by the area of the bonded phase. Similarly, the ratio of the β phase is calculated by defining the portion where Al and at least one of B, N, and O overlap as the β phase, and dividing the area by the area of the coupling phase.

α相の平均組成については、マッピングを行った画像上を縦断・横断する等間隔に並ぶ直線を引き、その交点がα相上に来るような点上で組成分析を行い、その平均値をもってα相の平均組成とする。この平均値を算出する際の測定点は最低30点以上とし、またα相上に来る直線の交点すべてにおいて組成分析を行う。 For the average composition of the α phase, draw straight lines that cross and traverse the mapped image at regular intervals, perform composition analysis on the point where the intersection is on the α phase, and use the average value as the α. The average composition of the phases. The measurement points for calculating this average value shall be at least 30 points, and the composition analysis shall be performed at all the intersections of the straight lines coming on the α phase.

A・B領域のVおよびTi濃度については、予めマッピングの結果からVの濃い部分(Tiの薄い部分)・Vの薄い部分(Tiの濃い部分)をチェックし、その周辺部分を含めるように、かつ、濃い部分・薄い部分のおおよその中心部を通るような等角度の放射状の線上において最低4本分の線分析を行い、A・Bそれぞれの条件を満たす部分と満たさない部分の境界部(最低8箇所)を特定し、その境界部分を直線で結んだ範囲をそれぞれA・Bの領域とし、それぞれの面積を求める。これを前記予めチェックした場所すべてに実施し、それぞれの領域がα相に対して占める面積の割合の合計を算出する。 Regarding the V and Ti concentrations in the A and B regions, check the V-dark part (Ti-light part) and V-light part (Ti-rich part) from the mapping results in advance, and include the peripheral parts. In addition, at least four line analyzes are performed on equiangular radial lines that pass through the approximate center of the dark and light parts, and the boundary between the parts that satisfy the conditions of A and B and the parts that do not meet the conditions ( (At least 8 points) are specified, and the areas connecting the boundary portions with straight lines are defined as the areas A and B, respectively, and the respective areas are obtained. This is carried out at all the locations checked in advance, and the total ratio of the area occupied by each region to the α phase is calculated.

A領域のV濃度xA、B領域のV濃度xBについては、前記の方法で画定した各領域について、画像処理により当該箇所を二値化で黒く塗りつぶした後、モーメントのつり合いから二値化した領域のそれぞれの重心位置を求め、その重心位置の組成におけるV濃度をxA、xBとする。A領域のN濃度yA、B領域のN濃度yBについても同様に、各領域の重心位置の組成より決定する。なお、二値化する際は、A領域、B領域を別々に実施する。また、モーメントのつり合いを考える際、二値化して黒く塗りつぶした領域は二次元剛体とし、その密度は均一なものとして扱う。 Regarding the V concentration xA in the A region and the V concentration xB in the B region, each region defined by the above method is binarized by image processing and then binarized from the balance of moments. The position of the center of gravity of each of the above is obtained, and the V concentration in the composition of the position of the center of gravity is defined as xA and xB. Similarly, the N concentration yA in the A region and the N concentration yB in the B region are determined from the composition of the position of the center of gravity of each region. When binarizing, the A region and the B region are separately implemented. Also, when considering the balance of moments, the region that is binarized and painted black is treated as a two-dimensional rigid body, and its density is treated as uniform.

β相の平均粒径については、前述の方法で定義した部分に対して画像処理を行い二値化することで黒く塗りつぶした後、前述のcBN粒子の平均粒子径を求めたときと同様の処理を行って、各粒子のフェレ径を粒径として平均を求めることで算出する。 The average particle size of the β phase is the same as when the average particle size of the cBN particles described above was obtained after the part defined by the above method was image-processed and binarized to fill it with black. Is performed, and the average is calculated by using the ferret diameter of each particle as the particle size.

製造方法:
硬質分散相の原料粉末としてcBN粉末を、また、結合相の原料粉末として、α相の原料粉末(例えば、TiC粉末、TiN粉末、TiCN粉末、VC粉末、VN粉末)、β相の原料粉末(例えば、TiAl粉末、Al粉末、AlN粉末)、および、その他の原料粉末(例えば、WC粉末、TaC粉末、NbC粉末)を準備する。
Production method:
The cBN powder as the raw material powder for the hard dispersed phase, the raw material powder for the α phase (for example, TiC powder, TiN powder, TiCN powder, VC powder, VN powder) and the raw material powder for the β phase (for example, TiC powder, TiN powder, TiCN powder, VC powder, VN powder) as the raw material powder for the bonded phase. for example, TiAl 3 powder, Al 2 O 3 powder, AlN powder), and other raw material powder (e.g., WC powder, TaC powder, preparing a NbC powder).

次に、α相原料粉末を所定の割合で配合し、質量で比較したとき、TiがVより多くなる原料と、VがTiより多くなる原料を得て、これら配合原料をそれぞれ用いて成形体を作製し、真空雰囲気中で熱処理した後に粉砕し、篩い分けして、2種類の混合熱処理済原料粉末を得る。 Next, when the α-phase raw material powder was blended in a predetermined ratio and compared by mass, a raw material having Ti more than V and a raw material having V more than Ti were obtained, and these blended raw materials were used to obtain a molded product. Is prepared, heat-treated in a vacuum atmosphere, crushed, and sieved to obtain two types of mixed heat-treated raw material powders.

続いて、この2種類の混合熱処理済原料粉末と、β相の原料粉末と、必要に応じて他の原料粉末を、アセトンと共にボールミルによって粉砕・混合し、さらに、硬質分散相の原料を加えて混合し、焼結体原料粉末を得る。
そして、この焼結体原料粉末を成形し、仮焼結、本焼結して、cBN焼結体を作製する。
Subsequently, these two types of mixed heat-treated raw material powders, β-phase raw material powders, and other raw material powders, if necessary, are pulverized and mixed with acetone by a ball mill, and further, a hard dispersed phase raw material is added. Mix to obtain sintered raw material powder.
Then, this sintered body raw material powder is molded, temporarily sintered, and main-sintered to prepare a cBN sintered body.

次に、実施例について説明する。本発明は、実施例に限定されるものではない。 Next, an example will be described. The present invention is not limited to the examples.

(1)原料の準備
以下の原料を準備した。
(1−1)硬質分散相:平均粒径が0.5〜8.0μmのcBN粉末
(1−2)結合相
(1−2−1)α相:それぞれの平均粒径が0.3〜2.5μmのTiC粉末、TiN粉末、TiCN粉末、VC粉末、VN粉末
(1−2−2)β相:それぞれの平均粒径が0.3〜3.0μmのTiAl粉末、Al粉末、AlN粉末
(1−2−3)その他:それぞれの平均粒径が0.3〜3.0μmのWC粉末、TaC粉末、NbC粉末
(1) Preparation of raw materials The following raw materials were prepared.
(1-1) Hard dispersed phase: cBN powder with an average particle size of 0.5 to 8.0 μm (1-2) Bonded phase (1-2-1) α phase: Each average particle size is 0.3 to 2.5 μm TiC powder, TiN powder, TiCN powder, VC powder, VN powder (1-2-2) β phase: TiAl 3 powder, Al 2 O 3 having an average particle size of 0.3 to 3.0 μm, respectively. Powder, AlN powder (1-2-3) Others: WC powder, TaC powder, NbC powder with an average particle size of 0.3 to 3.0 μm, respectively.

(2)原料の調整と混合
(2−1)α相原料の調整
前記(1−2−1)のα相原料を、表1に示す所定の割合(各成分の質量比)、すなわち、質量で比較してTiがVより多くなる原料(Ti rich α相原料)とVがTiより多くなる原料(V rich α相原料)として表示された割合で配合し、この2種類の配合原料を、成形圧:1MPaで直径:50mm×厚さ:3.0mmの寸法にプレス成形し、作製した成形体を、圧力:1Pa以下の真空雰囲気中、1600℃に保持して熱処理した。その後、摩砕と圧縮による粉砕を行い、目開き45μmの篩で篩分し、篩を通過した2種類の混合熱処理済原料粉末を得た。
(2) Preparation and mixing of raw materials (2-1) Adjustment of α-phase raw materials The α-phase raw materials of (1-2-1) above are mixed in a predetermined ratio (mass ratio of each component) shown in Table 1, that is, mass. Compared in The molded product was press-molded at a molding pressure of 1 MPa to a size of diameter: 50 mm × thickness: 3.0 mm, and the produced molded product was heat-treated while being held at 1600 ° C. in a vacuum atmosphere at a pressure of 1 Pa or less. Then, it was pulverized by grinding and compression, and sieved with a sieve having a mesh size of 45 μm to obtain two kinds of mixed heat-treated raw material powders that passed through the sieve.

(2−2)調整されたα相原料、β相原料、その他の原料の粉砕と混合
(2−1)で調整した混合熱処理済原料粉末(Ti rich α相原料、V rich α相原料)、および、β相原料、その他の原料を、表2に記載した割合で、超硬合金で内張りされたボールミル容器内に超硬合金製ボールとアセトンと共に充填し、蓋をした後にボールミルによる粉砕と混合を行った。
(2-2) Crushing and mixing of prepared α-phase raw material, β-phase raw material, and other raw materials (2-1) Mixed and heat-treated raw material powder (Tirich α-phase raw material, V-rich α-phase raw material), Then, the β-phase raw material and other raw materials are filled in a ball mill container lined with cemented carbide together with cemented carbide balls and acetone at the ratios shown in Table 2, covered with a lid, and then mixed with crushing by a ball mill. Was done.

(2−3)硬質分散相原料との混合
(2−2)で粉砕と混合を行った原料に、焼結後のcBN粒子の含有割合が40〜80体積%となるようにcBN粉末を添加し、さらにボールミル混合し、混合したスラリーを乾燥させて超硬合金製ボールと混合後の粉末を分離し、焼結体原料粉末を得た。
(2-3) Mixing with hard dispersed phase raw material cBN powder is added to the raw material pulverized and mixed in (2-2) so that the content ratio of cBN particles after sintering is 40 to 80% by volume. Then, the mixture was further mixed with a ball mill, and the mixed slurry was dried to separate the cemented carbide balls and the mixed powder to obtain a sintered raw material powder.

(3)焼結
(2−3)で得た焼結体原料粉末を成形圧:1MPaで直径:50mm×厚さ:1.5mmの寸法にプレス成形し成形体を得た。この成形体を圧力:1Pa以下の真空雰囲気中、1000℃まで昇温し保持した後、750℃まで降温してさらに保持することで仮焼結した。その後、超高圧焼結装置に装入して、圧力:5.5GPa、温度:1400℃で焼結することにより、表3および4に示す実施例のcBN焼結体1〜21(実施例焼結体1〜21という)を作製した。
(3) Sintering The sintered raw material powder obtained in (2-3) was press-molded at a molding pressure of 1 MPa to a size of diameter: 50 mm × thickness: 1.5 mm to obtain a molded product. This molded product was temporarily sintered by raising the temperature to 1000 ° C. and holding it in a vacuum atmosphere of a pressure of 1 Pa or less, and then lowering the temperature to 750 ° C. and further holding the molded product. Then, it is charged into an ultra-high pressure sintering apparatus and sintered at a pressure of 5.5 GPa and a temperature of 1400 ° C., whereby the cBN sintered bodies 1 to 21 of Examples shown in Tables 3 and 4 (Example Baking). Bounds 1 to 21) were prepared.

なお、前記焼結に至るまでの各工程では、原料粉末の酸化を防止することが好ましく、具体的には非酸化性の保護雰囲気中での取り扱いを実施した。 In each step up to the sintering, it is preferable to prevent the raw material powder from being oxidized, and specifically, the raw material powder is handled in a non-oxidizing protective atmosphere.

比較のため、実施例と同じ原料粉末を準備し、実施例に倣って表5および6に示すように、原料の調整と混合を行い、さらに、焼結を経て、本発明に規定する事項を満足しない表7および8に示す比較例焼結体1〜15を作成した。 For comparison, the same raw material powder as in the examples was prepared, and as shown in Tables 5 and 6, the raw materials were prepared and mixed according to the examples, and further subjected to sintering, and the matters specified in the present invention were obtained. Comparative Examples Sintered 1 to 15 shown in Tables 7 and 8 which are not satisfied were prepared.

次に、前記で作製した実施例焼結体1〜21、比較例焼結体1〜15を、ワイヤー放電加工機で所定寸法に切断した。そして、ISO規格CNGA120408のインサート形状をもったWC基超硬合金(組成は、Co:5質量%、TaC:5質量%、WC:残り)製インサート本体のろう付け部(コーナー部)にろう材(Cu:26質量%、Ti:5質量%、Ag:残り、からなる組成を有するAg合金)を用いてろう付けし、上下面および外周研磨、ホーニング処理を施すことにより、ISO規格CNGA120408のインサート形状をもつ実施例のcBN基超高圧焼結体切削工具(実施例工具という)1〜21、および、比較例のcBN基超高圧焼結体切削工具(比較例工具という)1〜15を製造した。 Next, the example sintered bodies 1 to 21 and the comparative example sintered bodies 1 to 15 produced above were cut into predetermined dimensions by a wire electric discharge machine. Then, a brazing material is applied to the brazed portion (corner portion) of the insert body made of a WC-based cemented carbide (composition: Co: 5% by mass, TaC: 5% by mass, WC: remaining) having an insert shape of ISO standard CNGA120408. Insert of ISO standard CNGA120408 by brazing with (Cu: 26% by mass, Ti: 5% by mass, Ag: remaining, Ag alloy having a composition), polishing the upper and lower surfaces and the outer circumference, and performing honing treatment. Manufactures cBN-based ultra-high pressure sintered body cutting tools (referred to as Example tools) 1 to 21 of Examples having a shape, and cBN-based ultra-high pressure sintered body cutting tools (referred to as Comparative Example tools) 1 to 15 of Comparative Examples. bottom.

Figure 2021151943
Figure 2021151943

Figure 2021151943
Figure 2021151943

Figure 2021151943
Figure 2021151943

Figure 2021151943
Figure 2021151943

Figure 2021151943
Figure 2021151943

Figure 2021151943
Figure 2021151943

Figure 2021151943
Figure 2021151943

Figure 2021151943
Figure 2021151943

次いで、実施例工具1〜21と比較例工具1〜15に対して、以下の切削条件で切削加工を実施し、工具寿命に至るまでの断続回数を測定した。 Next, cutting was performed on the tools 1 to 21 of the example and the tools 1 to 15 of the comparative examples under the following cutting conditions, and the number of interruptions until the tool life was reached was measured.

被削材:浸炭焼き入れ鋼(JIS・SCM415、硬さ:HRC58〜62)の長さ方向等間隔8本縦溝入り丸棒
切削速度:180m/min
切り込み:0.2mm
送り:0.1mm/rev
で、高硬度鋼の乾式切削加工試験を実施した。
Work Material: Carburized Hardened Steel (JIS / SCM415, Hardness: HRC58-62) Equally spaced in the length direction 8 vertical grooved round bars Cutting speed: 180 m / min
Notch: 0.2 mm
Feed: 0.1 mm / rev
Therefore, a dry cutting test of high hardness steel was carried out.

各工具の刃先がチッピングあるいは欠損に至るまで、または刃先逃げ面部分の最大摩耗量が150μmに至るまでの断続回数を工具寿命とし、断続回数500回毎に刃先を観察し、刃先の欠損やチッピングの有無と摩耗量を確認した。
表9に、上記切削加工試験の結果を示す。
The tool life is defined as the number of interruptions until the cutting edge of each tool reaches chipping or chipping, or the maximum amount of wear on the flank surface of the cutting edge reaches 150 μm. The presence or absence of wear and the amount of wear were confirmed.
Table 9 shows the results of the above cutting test.

Figure 2021151943
Figure 2021151943

表9に示される結果から、切り込み深さが0.1mmを超える断続切削加工において、実施例工具は、比較例工具に比して、その焼結体が熱的負荷に対して安定性が高く、十分な耐クラック伝播性を有し、耐摩耗性や耐チッピング性、耐欠損性に優れることは明らかである。 From the results shown in Table 9, in the intermittent cutting process in which the cutting depth exceeds 0.1 mm, the sintered body of the example tool is more stable against thermal load than the comparative example tool. It is clear that it has sufficient crack propagation resistance and is excellent in abrasion resistance, chipping resistance, and chipping resistance.

本発明のcBN焼結体は、切削工具の工具基体として用いると、十分な耐クラック伝播性を有し、耐摩耗性や耐チッピング性、耐欠損性に優れ、工具寿命の延命化が図られるものであることから、切削加工装置の高性能化、ならびに切削加工の省力化および省エネ化、低コスト化に十分満足に対応できるものである。 When the cBN sintered body of the present invention is used as a tool base for a cutting tool, it has sufficient crack propagation resistance, is excellent in abrasion resistance, chipping resistance, and chipping resistance, and can extend the life of the tool. Since it is a thing, it is possible to fully and satisfactorily cope with high performance of the cutting machine, labor saving and energy saving of the cutting process, and cost reduction.

1 cBN
2 α相(Ti/Vが約2/3〜3/2)
3 β相
4 A領域
5 B領域
6 α相(Ti/Vが約3/2〜7/3)
7 α相(Ti/Vが約3/7〜2/3)

1 cBN
2 α phase (Ti / V is about 2/3 to 3/2)
3 β phase 4 A region 5 B region 6 α phase (Ti / V is about 3 / 2-7 / 3)
7 α phase (Ti / V is about 3/7 to 2/3)

Claims (3)

立方晶窒化硼素と結合相を有するcBN焼結体であって、
前記cBN焼結体の断面において、
前記立方晶窒化硼素は40〜80面積%を占め、
前記結合相はα相とβ相を有し、
前記α相は、その組成を組成式:(Ti1−x)(C1−y)で表したとき、その平均組成は、x=0.30〜0.70、y=0.00〜0.50であり、前記結合相中に70〜97面積%で存在し、
前記β相は、平均粒径が0.05〜0.40μmのAlの酸化物、窒化物、硼化物の少なくとも一種であって、前記結合相中に3〜20面積%で存在し、
さらに、前記α相は、A領域とB領域を有し、
前記A領域は、その組成を組成式:(Ti1−xAxA)(C1−yAyA)で表したとき、xA=0.10〜0.30、yA=0.00〜0.50であり、
前記B領域は、その組成を組成式:(Ti1−xBxB)(C1−yByB)で表したとき、xB=0.70〜0.90、yB=0.00〜0.50であり、
前記A領域と前記B領域がそれぞれ前記α相に対して占める割合の和が50面積%以上である、
ことを特徴とするcBN焼結体。
A cBN sintered body having a coupled phase with cubic boron nitride,
In the cross section of the cBN sintered body,
The cubic boron nitride occupies 40 to 80 area%.
The binding phase has an α phase and a β phase, and has an α phase and a β phase.
When the composition of the α phase is represented by the composition formula: (Ti 1-x V x ) (C 1-y N y ), the average composition thereof is x = 0.30 to 0.70, y = 0. It is .00 to 0.50 and is present in the bonded phase in an area% of 70 to 97.
The β phase is at least one of an oxide, nitride, and boride of Al having an average particle size of 0.05 to 0.40 μm, and is present in the bonded phase in an area of 3 to 20 area%.
Further, the α phase has an A region and a B region, and has an A region and a B region.
When the composition of the A region is represented by the composition formula: (Ti 1-xA V xA ) (C 1-yA N yA ), xA = 0.10 to 0.30, yA = 0.00 to 0. 50
When the composition of the B region is represented by the composition formula: (Ti 1-xB V xB ) (C 1-yB N yB ), xB = 0.70 to 0.90, yB = 0.00 to 0. 50
The sum of the ratios of the A region and the B region to the α phase is 50 area% or more.
A cBN sintered body characterized in that.
前記α相のVの平均組成xと前記A領域のVの含有割合xAの平均値xAavgとの差をx−xAavgとし、
前記α相のVの平均組成xと前記B領域のVの含有割合xBの平均値xBavgとの差をxBavg−xとするとき、
|(x−xAavg)−(xBavg−x)|が0.20以下である、
ことを特徴とする請求項1に記載のcBN焼結体。
The difference between the average composition x of V in the α phase and the average value xA avg of the V content ratio xA in the A region is defined as x-xA avg .
When the difference between the average composition x of V in the α phase and the average value xB avg of the V content ratio xB in the B region is xB avg −x,
| (X-xA avg )-(xB avg- x) | is 0.20 or less.
The cBN sintered body according to claim 1.
請求項1または2に記載のcBN焼結体を工具基体とする切削工具。 A cutting tool using the cBN sintered body according to claim 1 or 2 as a tool base.
JP2020053654A 2020-03-25 2020-03-25 cBN sintered body and cutting tool Pending JP2021151943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020053654A JP2021151943A (en) 2020-03-25 2020-03-25 cBN sintered body and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053654A JP2021151943A (en) 2020-03-25 2020-03-25 cBN sintered body and cutting tool

Publications (1)

Publication Number Publication Date
JP2021151943A true JP2021151943A (en) 2021-09-30

Family

ID=77887183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053654A Pending JP2021151943A (en) 2020-03-25 2020-03-25 cBN sintered body and cutting tool

Country Status (1)

Country Link
JP (1) JP2021151943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299214A1 (en) 2022-06-30 2024-01-03 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299214A1 (en) 2022-06-30 2024-01-03 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Similar Documents

Publication Publication Date Title
JP6637664B2 (en) Cubic boron nitride sintered compact cutting tool
CA2785696C (en) Cubic boron nitride sintered body and cubic boron nitride sintered body tool
JP6853951B2 (en) cBN sintered body and cutting tool
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
WO2013039093A1 (en) Cutting tool made of cubic boron nitride-based sintered material
JP5880598B2 (en) Sintered body and cutting tool using the sintered body
JP2009067637A (en) Cubic boron nitride sintered compact and method for producing the same
JP2021151943A (en) cBN sintered body and cutting tool
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP5804448B2 (en) Cubic boron nitride based ultra-high pressure sintered body, cutting tool using this as a tool base, and surface-coated cutting tool
JP2019172477A (en) Cubic boron nitride base sintered compact and cutting tool having cubic boron nitride base sintered compact as base body
JP7096977B2 (en) cBN sintered body and cutting tool
JP7015979B2 (en) cBN sintered body and cutting tool
JP5568822B2 (en) Composite sintered body
JP5499717B2 (en) Sintered body and cutting tool using the sintered body
JP7377463B2 (en) cBN sintered body and cutting tools
JP2020131293A (en) Cutting tool made of cubic crystal boron nitride-based sintered body
JP7137119B2 (en) cBN sintered body and cutting tool
WO2020179809A1 (en) cBN SINTERED COMPACT AND CUTTING TOOL
JP2022142894A (en) cBN SINTERED COMPACT
JP6986232B2 (en) Cubic boron nitride base sintered body and cutting tools made of this
JP6933017B2 (en) Cubic boron nitride base sintered body and cutting tool
JP2022147104A (en) cBN SINTERED BODY AND CUTTING TOOL INCLUDING THE SAME
JPH09301773A (en) Silicon nitride sintered compact for tool
JP2014111542A (en) Sintered compact, and cutting tool using the sintered compact