JP4887588B2 - Dispersion strengthened CBN-based sintered body and method for producing the same - Google Patents

Dispersion strengthened CBN-based sintered body and method for producing the same Download PDF

Info

Publication number
JP4887588B2
JP4887588B2 JP2001272928A JP2001272928A JP4887588B2 JP 4887588 B2 JP4887588 B2 JP 4887588B2 JP 2001272928 A JP2001272928 A JP 2001272928A JP 2001272928 A JP2001272928 A JP 2001272928A JP 4887588 B2 JP4887588 B2 JP 4887588B2
Authority
JP
Japan
Prior art keywords
cbn
binder phase
sintered body
ultrafine
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001272928A
Other languages
Japanese (ja)
Other versions
JP2003081677A (en
Inventor
正樹 小林
政一 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2001272928A priority Critical patent/JP4887588B2/en
Publication of JP2003081677A publication Critical patent/JP2003081677A/en
Application granted granted Critical
Publication of JP4887588B2 publication Critical patent/JP4887588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、切削工具または耐摩耗工具として最適な立方晶窒化ホウ素(CBN)基焼結体およびその製造方法に関し、具体的には、CBN粒子を結合するセラミックス成分中に超微粒のCBN粒子を均一分散させることにより、耐摩耗性と共に耐欠損性,耐チッピング性を大幅に向上させた分散強化CBN基焼結体およびその製造方法に関する。
【0002】
【従来の技術】
CBNは、ダイヤモンドに次ぐ高い硬度と優れた熱伝導性を持ち、しかもダイヤモンドに比べて鉄との親和性が低いという工具材料としての優れた長所を有している。このCBNとセラミックスや金属の結合相とでなるCBN含有焼結体の性能向上についての検討が多数行われており、その内、焼結体の組織構造から提案されている代表的なものとして、特開2000−218411号公報,特開2000−247746号公報,特開2000−44348号公報および特開2000−226263号公報がある。
【0003】
【発明が解決しようとする課題】
特開2000−218411号公報には、平均粒径1μm以下の微粒立方晶窒化硼素30〜90体積%と平均粒径2〜10μmの粗粒立方晶窒化硼素を含有するとともに、残部の結合材の平均粒径が微粒立方晶窒化硼素<結合材<粗粒立方晶窒化硼素とした立方晶窒化硼素質焼結体切削工具が記載されている。また、特開2000−247746号公報には、平均粒径1μm以下の微粒立方晶窒化硼素30〜90体積%と平均粒径2〜10μmの粗粒立方晶窒化硼素を含有するとともに、結合材中にAlNとAl2O3を含み、X線回折測定による周期律表第4a,5a,6a族元素の硼化物,これら元素の非硼化化合物,立方晶窒化硼素のピーク強度比を限定した立方晶窒化硼素質焼結体切削工具が記載されている。
【0004】
さらに、特開2000−44348号公報には、高圧相窒化ホウ素50〜80体積%とチタン化合物(TiC,TiN,TiCN)およびアルミニウムからなる結合相50〜20体積%からなる高硬度焼結体において、高圧相窒化ホウ素が1〜8μmの粗粒子60〜80体積%と0.02〜1μmの微粒子20〜40体積である鋳鉄切削加工用高硬度焼結体が記載されている。
【0005】
これら3件の公報に記載されているCBN基焼結体は、微粒のCBN粒子を配合することによって、切削時に起こるCBN粒子の脱落や結合材の摩耗,脱落による工具摩耗,欠損を防止したものではあるが、微粒CBNの配合量が多いあるいは粒径が結合材より著しく粗大であるために、焼結体の組織中に微粒CBNの凝集体を生じ、却って粒子脱落による摩耗やこの凝集体からの欠損を発生し易いと言う問題がある。
【0006】
次に、特開2000−226263号公報には、4a,5a,6a族金属の炭化物,窒化物,炭窒化物および鉄族金属から選ばれる1種以上の微粒子を被覆した立方晶窒化ホウ素粒子を用いた立方晶窒化ホウ素複合サーメット工具とその製造方法が記載させている。本公報に記載されているCBN焼結体は、CBN粒子近傍での結合材粒子が微細となるために、燒結性の改善、硬さ向上やCBN粒子の脱落防止による寿命改善が図れるものの、結合材の強度や耐摩耗性の改善が不十分なために性能向上が少ないと言う問題がある。
【0007】
本発明は、上述のような問題点を解決したもので、具体的には、超微粒CBNの適量を結合材中に均一分散させ、結合相を微細組織にすると共に結合材自体を分散強化することによって、焼結体の硬さ,強度,靱性を向上させて耐摩耗性,耐欠損性などを大幅に向上させた分散強化CBN基焼結体およびその製造方法の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、CBNと結合相とでなる焼結体の耐摩耗性と耐欠損性の同時向上について検討していたところ、結合相中に超微粒CBNの適量を均一分散させると、燒結中での結合相の粒子成長が抑制されて結合相が均一微粒な組織となると同時に超微粒CBNにより結合相が分散強化されて、強度や靱性が大幅に向上して耐チッピング性や耐欠損性が改善されること、均一微細に分散した超微粒CBNは切削時に脱落し難いために結合相そのものの耐摩耗性が改善されること、結合相を分散強化するには、超微粒CBNと結合材成分とを予め混合して熱処理し、これを粉砕して分散強化結合材の微粉末を得た後、通常粒度のCBN粉と混合して燒結すれば良いと言う知見を得て、本発明を完成するに至ったものである。
【0009】
本発明の分散強化CBN基焼結体は、平均粒子径0.5μm以下の超微粒CBN粒子1〜2体積%と、セラミックス及び/又は鉄族金属を主成とする結合相5〜65体積%と、残りが平均粒子径1〜10μmのCBN粒子と不可避不純物からなるCBN基焼結体において、該超微粒CBN粒子は該結合相中に均一分散しており、該超微粒CBN粒子の該結合相に対する体積割合が0.1〜1.0であることを特徴とするものである。
【0010】
本発明の分散強化CBN基焼結体における超微粒CBN粒子は、平均粒子径が0.5μmを超えて大きくなると結合相中に均一分散され難くなるために分散強化の効果がなく、またその含有量が1体積%未満では分散粒子が少なくて分散強化による耐摩耗性,耐欠損性改善の効果がなく、逆に2体積%を超えて多くなると結合相中に凝集体を生じて摩耗,欠損とも増加する。また、CBN平均粒子径は、0.01μm未満のものを得るには製造上の困難を伴うため、0.01μm以上であることが実用上好ましい。
【0011】
本発明の分散強化CBN基焼結体における超微粒CBN粒子は、結合相中に均一分散しており、具体的には、3個以上の粒子が合体した凝集体を形成しておらず、CBNと結合相との接触面積に対するCBNとCBNとの接触面積の割合が0.5以下のものである。また、結合相に対する体積割合(超微粒CBN量/結合相量)は、0.1未満では超微粒CBNの分散による焼結時での結合相の粒成長抑制効果が少なくて粗大組織となり、また超微粒CBNの分散強化の効果が少ないために耐摩耗性,耐欠損性の改善効果がなく、逆に1.0を超えて大きくなると結合相中に均一分散し難くなって凝集体を生じ、耐摩耗性,耐欠損性とも低下するため、0.1〜1.0に定めた。
【0012】
本発明の分散強化CBN基焼結体における結合相は、具体的には、TiC,TiN,Ti(CN),ZrN,HfC,NbN,TaC,WC,ZrO2,TiB2,MoSi2などの周期律表第4a,5a,6a族元素の炭化物,窒化物,酸化物,ホウ化物,ケイ化物、Al23,AlN,AlB12などのアルミニウムの窒化物,酸化物,ホウ化物、AlCTi2,(TiAl)N,AlBMoなどの複合化合物,相互固溶体、Co,Ni,Feなどの金属,合金およびこれら金属と上記化合物との混合物,複合化合物などを上げることができる。特に、これら結合相の粒度が平均粒径で1μm以下であると、結合相中への超微粒CBN粒子の分散が均一となるので好ましい。また、製造工程での困難性から、0.02μm以上であることが実用上好ましい。
【0013】
本発明の分散強化CBN基焼結体における残りのCBN粒子は、平均粒子径が1μm未満では相対的に結合相量が不足して燒結し難くなり、逆に10μmを超えて大きくなるとCBN粒子同士の接触が強固となるために高圧燒結あるいは結合相の増量が必要となる。
【0014】
本発明の分散強化CBN基焼結体における超微粒CBN粒子は、平均層厚0.01〜0.2μmのホウ化チタン及び/又は窒化チタンのTi化合物により囲繞されていると、結合相との接着強度が高まって超微粒CBNの脱落摩耗が起こり難くなるので好ましい。Ti化合物により囲繞は、超微粒CBN粒子と結合相成分粒子が均一分散した混合粉末を燒結する際に、拡散反応によって超微粒CBN粒子の表面に形成されるものである。Ti化合物層の厚みは、超微粒CBN粒子の径を超えない範囲が好ましい。
【0015】
本発明の分散強化CBN基焼結体は、原材料となる超微粒CBN粉末,結合相形成粉末,通常粒子CBN粉末を混合した後、超高圧燒結しても得られるが、優れた特性,性能を発揮させるには、以下の製造工程,方法が好ましい。
【0016】
すなわち、本発明の分散強化CBN基焼結体の製造方法は、平均粒径0.5μm以下の超微粒CBN粉末と、周期律表第4a,5a,6a族元素の金属,炭化物,窒化物,酸化物,ホウ化物、アルミニウムの金属,酸化物,窒化物,ホウ化物,ケイ化物、及び鉄族金属の中の少なくとも一種以上の結合相形成粉末とを混合粉砕する第1工程、混合粉末を真空中,700℃〜1000℃で熱処理する第2工程、熱処理した混合粉末を微粉砕する第3工程、得られた超微粒CBN分散の結合相粉末と1〜10μmCBN粉末とを混合する第4工程、次いで圧力4〜6GPa,温度1400〜1600℃の超高圧高温下でもって焼結する第5工程からなることを特徴とするものである。
【0017】
本発明の分散強化CBN基焼結体の製造方法における結合相形成粉末は、金属Alと非化学量論組成からなるTiNX,Ti(CN)X(x=0.6〜0.9)とを主成分とする混合粉末、もしくは金属Alと金属Coとを主成分とする混合粉末が好ましい。
【0018】
本発明の分散強化CBN基焼結体の製造方法における第2工程は、結合相成分、例えばTiNとAlを反応させて脆性なTi2AlNなどを生成させ、第3工程での微粉砕による伴う超微粒CBN粒子の結合相中への均一分散を助長するものである。
【0019】
【作用】
本発明の分散強化CBN基焼結体は、結合相中に分散した超微粒CBN粒子が、結合相を微細組織にすると共に分散強化機構により、結合相の硬さ,強度,靱性を向上させて耐摩耗性と耐欠損性,耐チッピング性を同時に改善する作用をし、その製造方法は、超微粒CBN粉末と結合相形成粉末との混合物を熱処理した後に微粉砕することが、結合相中に超微粒CBN粒子が均一微細に分散させる作用をしている。
【0020】
【実施例1】
平均粒径が0.1μmのCBN粉末(UF/CBNと表記),2.0μmのCBN粉末(M/CBNと表記)および5.5μmのCBN粉末(C/CBN)、1.1μmのTiN0.8粉末、0.9μmのAl粉末、0.2μmのAl23粉末,1〜2μmのTiC,HfN,TaC,WC,Coを用いて表1に示す組成に配合し、これを超硬合金製ボールとメタノール溶媒を使用したボールミルでもって48Hrの混合粉砕を行った後、0.1Paの真空中で表1に併記した温度で1.0時間の加熱処理し、次いで表1に併記した時間でもって同様のボールミルによる微粉砕を行って、本発明に使用する結合相用粉末A〜Fを得た。
【0021】
【表1】

Figure 0004887588
【0022】
次に、結合相用粉末A〜Fおよび前述した各原料粉末を表2に示す組成に配合し、これを超硬合金製ボールとメタノール溶媒を使用したボールミルでもって24Hr(但し、比較品は48Hr)の混合とアルゴン中での乾燥して各混合粉末を作製した。これらのプレス成形体を超硬合製の円盤台金上にセットしてカプセルを構成した後、超高圧高温装置を用いて5.5GPaの圧力、1500℃の温度、30分の保持時間の条件でもって焼結し、本発明品1〜7および比較品1〜7を得た。
【0023】
【表2】
Figure 0004887588
【0024】
こうして得た本発明品1〜7および比較品1〜7の各CBN基焼結体を放電加工による切断とダイヤモンドによる研削、ラップ加工して測定用試料を作製した。まず、ヌープ硬さおよびビッカース圧痕法による破壊靱性値の測定結果を表2に併記した。次に、電界放射型分析電顕を用いて、結合相中での超微粒CBNの分散状態、分散量と結合相に対する体積割合、平均粒子径、囲繞されたTi化合物の平均厚みおよび結合相の平均粒子径などを測定した(破面観察からも確認した)。これらの結果を表3に示す。
【0025】
【表3】
Figure 0004887588
【0026】
【実施例2】
実施例1で得られた本発明品1〜および比較品1〜の各焼結体を放電加工による切断、超硬合金製チップ台金へのロー付け、ダイヤモンド砥石による研削加工を経て、切削試験用チップ形状:TNMA160408を作製した。そして、下記条件による切削試験を行い、その結果を表4に示した。
(A)外周連続乾式切削 被削材:SCM415(HRC60.9〜61.7)、切削速度:150m/min、切込み量:0.5mm、送り量:0.1mm/rev、評価基準:平均逃げ面摩耗量VB=0.2mmとなるまたは途中欠損までの切削時間
(B)外周連続湿式切削 被削材:FC30(HB210〜230)、切削速度:500m/min、切込み量:0.5mm、送り量:0.15mm/rev、評価基準:平均逃げ面摩耗量VB=0.2mmになるまたは途中欠損までの切削時間
(C)外周連続湿式切削 被削材:インコネル718、切削速度:120m/min、切込み量:0.3mm、送り量:0.10mm/rev、評価基準:境界摩耗量VN=0.3mmになるまでの切削時間
【0027】
【表4】
Figure 0004887588
[0001]
[Industrial application fields]
The present invention relates to a cubic boron nitride (CBN) -based sintered body that is optimal as a cutting tool or wear-resistant tool, and a method for producing the same. Specifically, ultrafine CBN particles are contained in a ceramic component that binds CBN particles. The present invention relates to a dispersion-strengthened CBN-based sintered body and a method for producing the same, in which wear resistance, chipping resistance, and chipping resistance are greatly improved by uniform dispersion.
[0002]
[Prior art]
CBN has excellent advantages as a tool material that has high hardness next to diamond and excellent thermal conductivity, and has a lower affinity with iron than diamond. Many studies have been made on the performance improvement of the CBN-containing sintered body composed of the CBN and the ceramic or metal binder phase. Among them, as a representative one proposed from the structure of the sintered body, There are JP-A 2000-218411, JP-A 2000-247746, JP-A 2000-44348, and JP-A 2000-226263.
[0003]
[Problems to be solved by the invention]
Japanese Patent Laid-Open No. 2000-218411 contains 30 to 90% by volume of fine cubic boron nitride having an average particle diameter of 1 μm or less and coarse cubic boron nitride having an average particle diameter of 2 to 10 μm, and the remaining binder. A cubic boron nitride sintered body cutting tool having an average particle size of fine cubic boron nitride <binding material <coarse cubic boron nitride is described. Japanese Patent Application Laid-Open No. 2000-247746 contains 30 to 90% by volume of fine cubic boron nitride having an average particle size of 1 μm or less and coarse cubic boron nitride having an average particle size of 2 to 10 μm, Includes boron nitrides of elements 4a, 5a, and 6a of the periodic table by X-ray diffraction measurement, non-borated compounds of these elements, and cubic boron nitride in which the peak intensity ratio of cubic boron nitride is limited An elementary sintered body cutting tool is described.
[0004]
Furthermore, Japanese Patent Application Laid-Open No. 2000-44348 discloses a high-hardness sintered body composed of 50 to 80% by volume of high-pressure phase boron nitride and 50 to 20% by volume of a binder phase composed of a titanium compound (TiC, TiN, TiCN) and aluminum. A high-hardness sintered body for cutting cast iron, in which high-pressure phase boron nitride is 60 to 80% by volume of coarse particles of 1 to 8 μm and fine particles of 20 to 40 μm of 0.02 to 1 μm is described.
[0005]
The CBN-based sintered body described in these three publications prevents fine tool CBN particles from falling off during cutting, tool wear due to dropping, and chipping by combining fine CBN particles. However, since the amount of fine CBN blended is large or the particle size is significantly coarser than that of the binder, fine CBN aggregates are formed in the structure of the sintered body. There is a problem that it is easy to generate defects.
[0006]
Next, JP-A-2000-226263 discloses cubic boron nitride particles coated with one or more fine particles selected from carbides, nitrides, carbonitrides and iron group metals of group 4a, 5a, and 6a metals. The cubic boron nitride composite cermet tool used and its manufacturing method are described. In the CBN sintered body described in this publication, since the binder particles in the vicinity of the CBN particles are fine, the sintering property can be improved, the hardness can be improved, and the life can be improved by preventing the CBN particles from dropping. There is a problem that there is little improvement in performance due to insufficient improvement in material strength and wear resistance.
[0007]
The present invention solves the above-described problems. Specifically, an appropriate amount of ultrafine CBN is uniformly dispersed in the binder, the binder phase is made into a fine structure and the binder itself is dispersed and strengthened. Accordingly, it is an object of the present invention to provide a dispersion-strengthened CBN-based sintered body in which the hardness, strength, and toughness of the sintered body are improved to greatly improve the wear resistance, fracture resistance, and the like, and a method for producing the same.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have been studying simultaneous improvement of wear resistance and fracture resistance of a sintered body composed of CBN and a binder phase. When an appropriate amount of ultrafine CBN is uniformly dispersed in the binder phase, sintering occurs. The grain growth of the binder phase in the inside is suppressed, and the binder phase becomes a uniform fine structure. At the same time, the binder phase is dispersed and strengthened by the ultrafine CBN, and the strength and toughness are greatly improved, and chipping resistance and chipping resistance are improved. In order to improve the wear resistance of the binder phase itself because ultrafine CBN dispersed uniformly and finely does not easily fall off during cutting, and to strengthen the binder phase by dispersion, ultrafine CBN and binder The components are mixed in advance and heat-treated, and the mixture is pulverized to obtain a fine powder of a dispersion strengthened binder. Then, the present invention is obtained by finding that it may be mixed with a CBN powder of a normal particle size and sintered. It has come to be completed.
[0009]
Dispersion strengthened CBN based sintered material of the present invention has an average particle diameter of 0.5μm or less 1-2 8 vol% ultrafine CBN particles and the ceramic and / or binder phase to the iron group metal as principal components 5-65 In a CBN-based sintered body consisting of CBN particles having an average volume of 1 to 10 μm and the inevitable impurities, the ultrafine CBN particles are uniformly dispersed in the binder phase, and the ultrafine CBN particles The volume ratio with respect to the binder phase is 0.1 to 1.0.
[0010]
The ultrafine CBN particles in the dispersion-strengthened CBN-based sintered body of the present invention have no effect of dispersion strengthening because it becomes difficult to uniformly disperse in the binder phase when the average particle diameter is larger than 0.5 μm, and the inclusion thereof the amount the wear resistance due to the dispersion strengthening small dispersed particles is less than 1% by volume, no effect of chipping resistance improvement, caused an aggregate binder phase and increases beyond 2 8% by volume Conversely wear, Increased with deficiency. Moreover, CBN average particle size, since the obtaining of less than 0.01μm difficulties in manufacture, it is practically preferably 0.01μm or more.
[0011]
The ultrafine CBN particles in the dispersion-strengthened CBN-based sintered body of the present invention are uniformly dispersed in the binder phase, and specifically, an aggregate in which three or more particles are combined is not formed, and CBN The ratio of the contact area between CBN and CBN to the contact area between the binder phase and the binder phase is 0.5 or less. Further, if the volume ratio to the binder phase (the amount of ultrafine CBN / the amount of binder phase) is less than 0.1, the effect of suppressing the grain growth of the binder phase at the time of sintering due to the dispersion of the ultrafine CBN is small, resulting in a coarse structure. Since there is little effect of dispersion strengthening of ultrafine CBN, there is no effect of improving wear resistance and chipping resistance. Conversely, when it exceeds 1.0 , it becomes difficult to uniformly disperse in the binder phase, resulting in an aggregate. Since both wear resistance and chipping resistance are lowered, it is set to 0.1 to 1.0.
[0012]
Specifically, the binder phase in the dispersion-strengthened CBN-based sintered body of the present invention is a period such as TiC, TiN, Ti (CN), ZrN, HfC, NbN, TaC, WC, ZrO 2 , TiB 2 , MoSi 2 or the like. Tables 4a, 5a, 6a group carbides, nitrides, oxides, borides, silicides, aluminum nitrides such as Al 2 O 3 , AlN, AlB 12 , oxides, borides, AlCTi 2 , It is possible to increase composite compounds such as (TiAl) N and AlBMo, mutual solid solutions, metals such as Co, Ni and Fe, alloys, mixtures of these metals with the above compounds, composite compounds, and the like. In particular, the average particle size of these binder phases is preferably 1 μm or less because the dispersion of ultrafine CBN particles in the binder phase becomes uniform. Moreover, it is preferable practically that it is 0.02 micrometer or more from the difficulty in a manufacturing process.
[0013]
The remaining CBN particles in the dispersion-strengthened CBN-based sintered body of the present invention are relatively hard to be sintered due to a relatively insufficient amount of the binder phase when the average particle size is less than 1 μm, and conversely, when the particle size exceeds 10 μm, Therefore, it is necessary to increase the amount of high-pressure sintering or bonded phase.
[0014]
When the ultrafine CBN particles in the dispersion strengthened CBN-based sintered body of the present invention are surrounded by a titanium boride and / or titanium nitride Ti compound having an average layer thickness of 0.01 to 0.2 μm, This is preferable because the adhesive strength increases and the falling wear of the ultrafine CBN is less likely to occur. The Ti by the Ti compound is formed on the surface of the ultrafine CBN particles by a diffusion reaction when the mixed powder in which the ultrafine CBN particles and the binder phase component particles are uniformly dispersed is sintered. The thickness of the Ti compound layer is preferably in a range not exceeding the diameter of the ultrafine CBN particles.
[0015]
The dispersion-strengthened CBN-based sintered body of the present invention can be obtained by mixing ultra-fine CBN powder, binder phase forming powder, and normal particle CBN powder as raw materials, and then super-high pressure sintering, but has excellent characteristics and performance. The following manufacturing process and method are preferable for exhibiting the above.
[0016]
That is, the method for producing the dispersion-strengthened CBN-based sintered body of the present invention includes an ultrafine CBN powder having an average particle size of 0.5 μm or less and metals, carbides, nitrides of elements 4a, 5a, and 6a of the periodic table. First step of mixing and pulverizing oxide, boride, aluminum metal, oxide, nitride, boride, silicide, and at least one binder phase forming powder of iron group metal, vacuum the mixed powder Medium, second step of heat treatment at 700 ° C. to 1000 ° C., third step of finely pulverizing the heat-treated mixed powder, fourth step of mixing the obtained binder phase powder of ultrafine CBN dispersion and 1-10 μm CBN powder, Next, it is characterized by comprising a fifth step of sintering under an ultra-high pressure and high temperature of 4 to 6 GPa and a temperature of 1400 to 1600 ° C.
[0017]
The binder phase-forming powder in the method for producing a dispersion-strengthened CBN-based sintered body of the present invention is TiN x , Ti (CN) x (x = 0.6 to 0.9) composed of metal Al and non-stoichiometric composition. A mixed powder containing as a main component, or a mixed powder containing metal Al and metal Co as main components is preferable.
[0018]
The second step in the method for producing a dispersion-strengthened CBN-based sintered body of the present invention involves a binder phase component, for example, TiN and Al reacting to produce brittle Ti 2 AlN and the like by fine grinding in the third step. This facilitates uniform dispersion of the ultrafine CBN particles in the binder phase.
[0019]
[Action]
In the dispersion strengthened CBN-based sintered body of the present invention, the ultrafine CBN particles dispersed in the binder phase make the binder phase a fine structure and improve the hardness, strength and toughness of the binder phase by the dispersion strengthening mechanism. It acts to improve wear resistance, chipping resistance, and chipping resistance at the same time, and its manufacturing method is that the mixture of ultrafine CBN powder and binder phase forming powder is heat treated and then finely pulverized in the binder phase. The ultrafine CBN particles act to uniformly and finely disperse.
[0020]
[Example 1]
CBN powder having an average particle size of 0.1 μm (denoted as UF / CBN), 2.0 μm CBN powder (denoted as M / CBN) and 5.5 μm CBN powder (C / CBN), 1.1 μm TiN 0.8 Powder, 0.9 μm Al powder, 0.2 μm Al 2 O 3 powder, 1 to 2 μm TiC, HfN, TaC, WC, Co are mixed into the composition shown in Table 1 and made of cemented carbide. After mixing and grinding for 48 hours with a ball mill using a ball and a methanol solvent, heat treatment was performed at a temperature listed in Table 1 for 1.0 hour in a vacuum of 0.1 Pa. Thus, fine pulverization with a similar ball mill was performed to obtain binder phase powders A to F used in the present invention.
[0021]
[Table 1]
Figure 0004887588
[0022]
Next, the binder phase powders A to F and the above-described raw material powders were blended into the composition shown in Table 2, and this was mixed with a ball mill using a cemented carbide ball and a methanol solvent for 24 hours (however, the comparative product was 48 hours) ) And drying in argon to prepare each mixed powder. After setting these press-molded bodies on a cemented carbide disc base metal to form a capsule, using an ultra-high pressure and high temperature apparatus, pressure of 5.5 GPa, temperature of 1500 ° C., holding time of 30 minutes Therefore, it sintered and obtained the products 1-7 of this invention and the comparative products 1-7.
[0023]
[Table 2]
Figure 0004887588
[0024]
The CBN-based sintered bodies of the present invention products 1 to 7 and comparative products 1 to 7 thus obtained were cut by electric discharge machining, ground with diamond, and lapped to prepare measurement samples. First, Table 2 shows the measurement results of Knoop hardness and fracture toughness value by the Vickers indentation method. Next, using a field emission analytical electron microscope, the dispersion state of the ultrafine CBN in the binder phase, the amount of dispersion and the volume ratio to the binder phase, the average particle diameter, the average thickness of the surrounding Ti compound, and the binder phase The average particle size and the like were measured (confirmed from fracture surface observation). These results are shown in Table 3.
[0025]
[Table 3]
Figure 0004887588
[0026]
[Example 2]
Cutting each sintered body of the present invention product 1-7 and the comparative products 1-7 obtained in Example 1 by electric discharge machining, brazing to the cemented carbide tip base metal, through a grinding with a diamond grinding wheel, Chip shape for cutting test: TNMA160408 was produced. And the cutting test by the following conditions was done and the result was shown in Table 4.
(A) Peripheral continuous dry cutting Work material: SCM415 (HRC 60.9 to 61.7), cutting speed: 150 m / min, cutting depth: 0.5 mm, feeding amount: 0.1 mm / rev, evaluation criteria: average clearance Cutting time until surface wear amount VB = 0.2 mm or until halfway defect (B) Perimeter continuous wet cutting Work material: FC30 (HB210-230), cutting speed: 500 m / min, cutting depth: 0.5 mm, feed Amount: 0.15 mm / rev, Evaluation criteria: Average flank wear amount VB = 0.2 mm or cutting time until midway defect (C) Peripheral continuous wet cutting Work material: Inconel 718, Cutting speed: 120 m / min Incision amount: 0.3 mm, Feed amount: 0.10 mm / rev, Evaluation criteria: Cutting time until boundary wear amount VN = 0.3 mm
[Table 4]
Figure 0004887588

Claims (5)

平均粒子径0.5μm以下の超微粒CBN粒子1〜28体積%と、セラミックス及び/又は鉄族金属を主成分とする結合相5〜65体積%と、残りが平均粒子径1〜10μmのCBN粒子と不可避不純物からなるCBN基焼結体において、該超微粒CBN粒子は該結合相中に均一分散しており、該超微粒CBNを除いた該結合相の体積に対する、該結合相中に分散した該超微粒CBN粒子の体積割合が0.1〜1.0であることを特徴とする分散強化CBN基焼結体。1 to 28% by volume of ultrafine CBN particles having an average particle size of 0.5 μm or less, 5 to 65% by volume of a binder phase mainly composed of ceramics and / or iron group metal, and the rest being CBN having an average particle size of 1 to 10 μm In the CBN-based sintered body composed of particles and inevitable impurities, the ultrafine CBN particles are uniformly dispersed in the binder phase, and dispersed in the binder phase relative to the volume of the binder phase excluding the ultrafine CBN. A dispersion strengthened CBN-based sintered body, wherein the volume ratio of the ultrafine CBN particles is 0.1 to 1.0. 上記結合相は、平均粒径が1μm以下であることを特徴とする請求項1記載の分散強化CBN基焼結体。The dispersion strengthened CBN-based sintered body according to claim 1, wherein the binder phase has an average particle size of 1 μm or less. 上記結合相は、周期律表第4a,5a,6a族元素の炭化物,窒化物,酸化物,ホウ化物,ケイ化物、アルミニウムの窒化物,酸化物,ホウ化物、並びにこれらの複合化合物,相互固溶体、及び鉄族金属の中の少なくとも一種以上からなることを特徴とする請求項1又は2記載の分散強化CBN基焼結体。The binder phase includes carbides, nitrides, oxides, borides, silicides, aluminum nitrides, oxides, borides, and complex compounds and mutual solid solutions of elements 4a, 5a, and 6a of the periodic table. And a dispersion strengthened CBN-based sintered body according to claim 1, wherein the dispersion strengthened CBN-based sintered body is composed of at least one of iron group metals. 上記超微粒CBN粒子は、平均層厚0.01〜0.2μmのホウ化チタン及び/又は窒化チタンのTi化合物により囲繞されていることを特徴とする請求項1,2又は3記載の分散強化CBN基焼結体。4. The dispersion strengthening according to claim 1, wherein the ultrafine CBN particles are surrounded by a titanium boride and / or titanium nitride Ti compound having an average layer thickness of 0.01 to 0.2 μm. CBN-based sintered body. 平均粒径0.5μm以下の超微粒CBN粉末と、周期律表第4a,5a,6a族元素の金属,炭化物,窒化物,酸化物,ホウ化物、アルミニウムの金属,酸化物,窒化物,ホウ化物,ケイ化物、及び鉄族金属の中の少なくとも一種以上の結合相形成粉末とを混合粉砕する第1工程、混合粉末を真空中,700℃〜1000℃で熱処理する第2工程、熱処理した混合粉末を微粉砕する第3工程、得られた超微粒CBN分散の結合相粉末と1〜10μmCBN粉末とを混合する第4工程、次いで圧力4〜6GPa,温度1400〜1600℃の超高圧高温下でもって焼結する第5工程からなることを特徴とする分散強化CBN基焼結体の製造方法。Ultrafine CBN powder with an average particle size of 0.5 μm or less, and metals, carbides, nitrides, oxides, borides, aluminum metals, oxides, nitrides, boron of group 4a, 5a, and 6a elements of the periodic table A first step of mixing and pulverizing at least one binder phase-forming powder in the halide, silicide, and iron group metal; a second step of heat-treating the mixed powder in a vacuum at 700 to 1000 ° C .; heat-treated mixing The third step of finely pulverizing the powder, the fourth step of mixing the obtained ultrafine CBN-dispersed binder phase powder and 1-10 μm CBN powder, followed by ultra-high pressure and high temperature of 4-6 GPa and 1400-1600 ° C. A method for producing a dispersion-strengthened CBN-based sintered body comprising the fifth step of sintering.
JP2001272928A 2001-09-10 2001-09-10 Dispersion strengthened CBN-based sintered body and method for producing the same Expired - Lifetime JP4887588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001272928A JP4887588B2 (en) 2001-09-10 2001-09-10 Dispersion strengthened CBN-based sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001272928A JP4887588B2 (en) 2001-09-10 2001-09-10 Dispersion strengthened CBN-based sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003081677A JP2003081677A (en) 2003-03-19
JP4887588B2 true JP4887588B2 (en) 2012-02-29

Family

ID=19098217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001272928A Expired - Lifetime JP4887588B2 (en) 2001-09-10 2001-09-10 Dispersion strengthened CBN-based sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4887588B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137623A (en) * 2004-11-10 2006-06-01 Tungaloy Corp Cubic boron nitride sintered body, coated cubic boron nitride sintered body and their manufacturing methods
JP5298372B2 (en) * 2006-06-12 2013-09-25 住友電工ハードメタル株式会社 Composite sintered body
GB201307800D0 (en) * 2013-04-30 2013-06-12 Element Six Ltd PCBN material, method for making same, tools comprising same and method of using same
CN113321504A (en) * 2021-07-06 2021-08-31 中国有色桂林矿产地质研究院有限公司 Zirconia toughened alumina ceramic material and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131581A (en) * 1983-01-18 1984-07-28 住友電気工業株式会社 High hardness sintered body for tool and manufacture
JPH10226575A (en) * 1997-02-14 1998-08-25 Nof Corp High-pressure form of boron nitride sintered compact for cutting tool
JPH10245287A (en) * 1997-03-04 1998-09-14 Nof Corp Hard layer-coated high pressure phase boron nitride sinter compact for cutting tool
JP2000044348A (en) * 1998-07-22 2000-02-15 Nof Corp High-hardness sintered compact for cutting working of cast iron

Also Published As

Publication number Publication date
JP2003081677A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP5100927B2 (en) Method for producing cubic boron nitride sintered body
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP6637664B2 (en) Cubic boron nitride sintered compact cutting tool
EP2297371B1 (en) Cubic boron nitride compact
JP6703757B2 (en) Cermet and cutting tool
JP5447844B2 (en) High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
WO2012053507A1 (en) Cubic boron nitride sintered body and cubic boron nitride sintered body tool
WO2016063769A1 (en) Sintered compact
JP4787388B2 (en) Cutting tool with excellent fracture resistance and manufacturing method thereof
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP4887588B2 (en) Dispersion strengthened CBN-based sintered body and method for producing the same
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP2815686B2 (en) Composite sintered cutting tool material with excellent chipping resistance and its manufacturing method
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JP4004024B2 (en) Titanium carbide based ceramic tool and manufacturing method thereof
JP6365228B2 (en) Sintered body
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2900545B2 (en) Cutting tool whose cutting edge is made of cubic boron nitride based sintered body
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPH03131573A (en) Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JP2004114163A (en) Alumina group ceramic tool and production method for the same
JP2023511696A (en) Polycrystalline cubic boron nitride material
JP2932738B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material having high toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4887588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term