JP2003081677A - Dispersion-enhanced cbn-based sintered compact and method of producing the same - Google Patents

Dispersion-enhanced cbn-based sintered compact and method of producing the same

Info

Publication number
JP2003081677A
JP2003081677A JP2001272928A JP2001272928A JP2003081677A JP 2003081677 A JP2003081677 A JP 2003081677A JP 2001272928 A JP2001272928 A JP 2001272928A JP 2001272928 A JP2001272928 A JP 2001272928A JP 2003081677 A JP2003081677 A JP 2003081677A
Authority
JP
Japan
Prior art keywords
cbn
particles
based sintered
binder phase
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001272928A
Other languages
Japanese (ja)
Other versions
JP4887588B2 (en
Inventor
Masaki Kobayashi
正樹 小林
Masaichi Onizuka
政一 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP2001272928A priority Critical patent/JP4887588B2/en
Publication of JP2003081677A publication Critical patent/JP2003081677A/en
Application granted granted Critical
Publication of JP4887588B2 publication Critical patent/JP4887588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a CBN-based sintered compact which has simultaneously improved hardness and toughness, that is, wear resistance and resistance to fracture by uniformly dispersing an appropriate amount of superfine particles of CBN into a binding phase, and to provide a method of producing the same. SOLUTION: The CBN-based sintered compact consists of 1 to 25 vol% superfine CBN particles having a diameter of <=0.5 μm, 5 to 65 vol% binding phase and the balance being CBN particles having an average particle diameter of 1 to 10 μm. The superfine CBN particles are uniformly dispersed in the binding phase, and the volume ratio of the superfine CBN particles to the binding phase is 0.05 to 1.5. In the method of producing the CBN-based sintered compact, the superfine CBN particles and a binding material component are previously mixed and subjected to heat treatment, and the heat treated mixture is then finely pulverized and used as a starting material. Accordingly, the CBN- based sintered compact has higher hardness and fracture toughness, exhibits superior wear resistance, resistance to fracture and chipping resistance in comparison with a conventional CBN-based sintered compact containing fine granular CBN particles, and yields a cutting tool having a longer service life.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、切削工具または耐摩耗
工具として最適な立方晶窒化ホウ素(CBN)基焼結体
およびその製造方法に関し、具体的には、CBN粒子を
結合するセラミックス成分中に超微粒のCBN粒子を均
一分散させることにより、耐摩耗性と共に耐欠損性,耐
チッピング性を大幅に向上させた分散強化CBN基焼結
体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cubic boron nitride (CBN) -based sintered body which is most suitable as a cutting tool or wear resistant tool, and a method for producing the same, and more specifically, to a ceramic component for bonding CBN particles. The present invention relates to a dispersion-strengthened CBN-based sintered body in which abrasion resistance as well as chipping resistance and chipping resistance are significantly improved by uniformly dispersing ultrafine CBN particles into a dispersion and a method for producing the same.

【0002】[0002]

【従来の技術】CBNは、ダイヤモンドに次ぐ高い硬度
と優れた熱伝導性を持ち、しかもダイヤモンドに比べて
鉄との親和性が低いという工具材料としての優れた長所
を有している。このCBNとセラミックスや金属の結合
相とでなるCBN含有焼結体の性能向上についての検討
が多数行われており、その内、焼結体の組織構造から提
案されている代表的なものとして、特開2000−21
8411号公報,特開2000−247746号公報,
特開2000−44348号公報および特開2000−
226263号公報がある。
2. Description of the Related Art CBN has an excellent advantage as a tool material that it has the second highest hardness after diamond and excellent thermal conductivity, and that it has a lower affinity for iron than diamond. Many studies have been conducted on the performance improvement of a CBN-containing sintered body composed of CBN and a binder phase of ceramics or a metal, and among them, as a typical one proposed from the structure structure of the sintered body, JP 2000-21
8411, JP 2000-247746 A,
JP-A-2000-44348 and JP-A-2000-
There is 226263 publication.

【0003】[0003]

【発明が解決しようとする課題】特開2000−218
411号公報には、平均粒径1μm以下の微粒立方晶窒
化硼素30〜90体積%と平均粒径2〜10μmの粗粒
立方晶窒化硼素を含有するとともに、残部の結合材の平
均粒径が微粒立方晶窒化硼素<結合材<粗粒立方晶窒化
硼素とした立方晶窒化硼素質焼結体切削工具が記載され
ている。また、特開2000−247746号公報に
は、平均粒径1μm以下の微粒立方晶窒化硼素30〜9
0体積%と平均粒径2〜10μmの粗粒立方晶窒化硼素
を含有するとともに、結合材中にAlNとAl2O3を
含み、X線回折測定による周期律表第4a,5a,6a
族元素の硼化物,これら元素の非硼化化合物,立方晶窒
化硼素のピーク強度比を限定した立方晶窒化硼素質焼結
体切削工具が記載されている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
No. 411 gazette contains 30 to 90% by volume of fine-grained cubic boron nitride having an average grain size of 1 μm or less and coarse-grained cubic boron nitride having an average grain size of 2 to 10 μm. A cubic boron nitride sintered body cutting tool is described in which fine-grained cubic boron nitride <bonding material <coarse-grained cubic boron nitride. Further, JP-A-2000-247746 discloses that fine grained cubic boron nitride 30-9 having an average grain size of 1 μm or less.
In addition to containing 0% by volume and coarse-grained cubic boron nitride having an average particle size of 2 to 10 μm, AlN and Al 2 O 3 were contained in the binder, and the periodic table 4a, 5a, 6a by X-ray diffraction measurement was used.
A cutting tool for cubic boron nitride sintered bodies is described in which the peak strength ratios of borides of group elements, non-boriding compounds of these elements, and cubic boron nitride are limited.

【0004】さらに、特開2000−44348号公報
には、高圧相窒化ホウ素50〜80体積%とチタン化合
物(TiC,TiN,TiCN)およびアルミニウムか
らなる結合相50〜20体積%からなる高硬度焼結体に
おいて、高圧相窒化ホウ素が1〜8μmの粗粒子60〜
80体積%と0.02〜1μmの微粒子20〜40体積
である鋳鉄切削加工用高硬度焼結体が記載されている。
Further, in Japanese Unexamined Patent Publication No. 2000-44348, high-hardness firing consisting of 50 to 80% by volume of high-pressure phase boron nitride and 50 to 20% by volume of a binder phase composed of titanium compounds (TiC, TiN, TiCN) and aluminum. In the aggregate, the high-pressure phase boron nitride contains coarse particles 60 of 1 to 8 μm.
A high-hardness sintered body for cutting cast iron having 80% by volume and 20 to 40 volume of 0.02 to 1 μm fine particles is described.

【0005】これら3件の公報に記載されているCBN
基焼結体は、微粒のCBN粒子を配合することによっ
て、切削時に起こるCBN粒子の脱落や結合材の摩耗,
脱落による工具摩耗,欠損を防止したものではあるが、
微粒CBNの配合量が多いあるいは粒径が結合材より著
しく粗大であるために、焼結体の組織中に微粒CBNの
凝集体を生じ、却って粒子脱落による摩耗やこの凝集体
からの欠損を発生し易いと言う問題がある。
CBN described in these three publications
By mixing fine CBN particles in the base sintered body, the CBN particles may fall off during cutting, wear of the binder,
Although it prevents tool wear and chipping due to falling off,
Since the amount of fine CBN is large or the grain size is significantly larger than that of the binder, agglomerates of fine CBN are formed in the structure of the sintered body, which in turn causes wear due to particle loss and defects from this aggregate. There is a problem that it is easy to do.

【0006】次に、特開2000−226263号公報
には、4a,5a,6a族金属の炭化物,窒化物,炭窒
化物および鉄族金属から選ばれる1種以上の微粒子を被
覆した立方晶窒化ホウ素粒子を用いた立方晶窒化ホウ素
複合サーメット工具とその製造方法が記載させている。
本公報に記載されているCBN焼結体は、CBN粒子近
傍での結合材粒子が微細となるために、燒結性の改善、
硬さ向上やCBN粒子の脱落防止による寿命改善が図れ
るものの、結合材の強度や耐摩耗性の改善が不十分なた
めに性能向上が少ないと言う問題がある。
Next, Japanese Patent Laid-Open No. 2000-226263 discloses cubic nitriding coated with one or more kinds of fine particles selected from carbides, nitrides, carbonitrides of group 4a, 5a, and 6a metals. A cubic boron nitride composite cermet tool using boron particles and a method for making the same are described.
In the CBN sintered body described in this publication, since the binder particles in the vicinity of the CBN particles are fine, the sintering property is improved,
Although the hardness can be improved and the life of the CBN particles can be improved by preventing the particles from falling off, there is a problem that the performance improvement is small because the strength and wear resistance of the binder are insufficiently improved.

【0007】本発明は、上述のような問題点を解決した
もので、具体的には、超微粒CBNの適量を結合材中に
均一分散させ、結合相を微細組織にすると共に結合材自
体を分散強化することによって、焼結体の硬さ,強度,
靱性を向上させて耐摩耗性,耐欠損性などを大幅に向上
させた分散強化CBN基焼結体およびその製造方法の提
供を目的とする。
The present invention has solved the above-mentioned problems. Specifically, an appropriate amount of ultrafine CBN is uniformly dispersed in the binder to form a binder phase having a fine structure and the binder itself. By strengthening the dispersion, the hardness, strength, and
An object of the present invention is to provide a dispersion-strengthened CBN-based sintered body having improved toughness and greatly improved wear resistance, fracture resistance and the like, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、CBNと
結合相とでなる焼結体の耐摩耗性と耐欠損性の同時向上
について検討していたところ、結合相中に超微粒CBN
の適量を均一分散させると、燒結中での結合相の粒子成
長が抑制されて結合相が均一微粒な組織となると同時に
超微粒CBNにより結合相が分散強化されて、強度や靱
性が大幅に向上して耐チッピング性や耐欠損性が改善さ
れること、均一微細に分散した超微粒CBNは切削時に
脱落し難いために結合相そのものの耐摩耗性が改善され
ること、結合相を分散強化するには、超微粒CBNと結
合材成分とを予め混合して熱処理し、これを粉砕して分
散強化結合材の微粉末を得た後、通常粒度のCBN粉と
混合して燒結すれば良いと言う知見を得て、本発明を完
成するに至ったものである。
Means for Solving the Problems The inventors of the present invention have studied simultaneous improvement of wear resistance and fracture resistance of a sintered body composed of CBN and a binder phase.
If the appropriate amount of is dispersed uniformly, the grain growth of the binder phase during sintering is suppressed and the binder phase becomes a uniform fine grain structure, and at the same time the binder phase is dispersed and strengthened by the ultrafine CBN, and the strength and toughness are greatly improved. The chipping resistance and chipping resistance are improved, and because the ultrafine CBN particles that are uniformly and finely dispersed are difficult to drop during cutting, the wear resistance of the binder phase itself is improved, and the binder phase is dispersed and strengthened. For this, ultrafine CBN and a binder component are mixed in advance and heat-treated, and this is pulverized to obtain a fine powder of a dispersion-strengthening binder, which is then mixed with CBN powder of a normal grain size and sintered. Based on the knowledge obtained, the present invention has been completed.

【0009】本発明の分散強化CBN基焼結体は、平均
粒子径0.5μm以下の超微粒CBN粒子1〜25体積
%と、セラミックス及び/又は鉄族金属を主成とする結
合相5〜65体積%と、残りが平均粒子径1〜10μm
のCBN粒子と不可避不純物からなるCBN基焼結体に
おいて、該超微粒CBN粒子は該結合相中に均一分散し
ており、該超微粒CBN粒子の該結合相に対する体積割
合が0.1〜1.0であることを特徴とするものであ
る。
The dispersion-strengthened CBN-based sintered body of the present invention comprises 1 to 25% by volume of ultrafine CBN particles having an average particle diameter of 0.5 μm or less and a binder phase 5 mainly composed of ceramics and / or iron group metal. 65% by volume and the rest having an average particle size of 1 to 10 μm
In the CBN-based sintered body composed of CBN particles and unavoidable impurities, the ultrafine CBN particles are uniformly dispersed in the binder phase, and the volume ratio of the ultrafine CBN particles to the binder phase is 0.1 to 1. It is characterized by being 0.0.

【0010】本発明の分散強化CBN基焼結体における
超微粒CBN粒子は、平均粒子径が0.5μmを超えて
大きくなると結合相中に均一分散され難くなるために分
散強化の効果がなく、またその含有量が1体積%未満で
は分散粒子が少なくて分散強化による耐摩耗性,耐欠損
性改善の効果がなく、逆に25体積%を超えて多くなる
と結合相中に凝集体を生じて摩耗,欠損とも増加する。
また、CBN平均粒子径は、0.01μm未満のものを得るには
製造上の困難を伴うため、0.01μm以上であることが実
用上好ましい。
The ultrafine CBN particles in the dispersion-strengthened CBN-based sintered body of the present invention have no effect of dispersion strengthening because it becomes difficult to uniformly disperse them in the binder phase when the average particle size increases beyond 0.5 μm. On the other hand, if the content is less than 1% by volume, there are few dispersed particles and there is no effect of improving wear resistance and fracture resistance by dispersion strengthening. Conversely, if it exceeds 25% by volume, aggregates are formed in the binder phase. Both wear and loss increase.
Further, it is practically preferable that the average particle size of CBN be 0.01 μm or more because it is difficult to produce a CBN having an average particle size of less than 0.01 μm.

【0011】本発明の分散強化CBN基焼結体における
超微粒CBN粒子は、結合相中に均一分散しており、具
体的には、3個以上の粒子が合体した凝集体を形成して
おらず、CBNと結合相との接触面積に対するCBNと
CBNとの接触面積の割合が0.5以下のものである。
また、結合相に対する体積割合(超微粒CBN量/結合
相量)は、0.1未満では超微粒CBNの分散による焼
結時での結合相の粒成長抑制効果が少なくて粗大組織と
なり、また超微粒CBNの分散強化の効果が少ないため
に耐摩耗性,耐欠損性の改善効果がなく、逆に1.5を
超えて大きくなると結合相中に均一分散し難くなって凝
集体を生じ、耐摩耗性,耐欠損性とも低下するため、
0.1〜1.0に定めた。
The ultrafine CBN particles in the dispersion-strengthened CBN-based sintered body of the present invention are uniformly dispersed in the binder phase. Specifically, three or more particles are united to form an aggregate. The ratio of the contact area between CBN and CBN to the contact area between CBN and the binder phase is 0.5 or less.
Further, if the volume ratio to the binder phase (amount of ultrafine CBN / amount of binder phase) is less than 0.1, the grain growth suppressing effect of the binder phase during sintering due to dispersion of the ultrafine CBN is small and a coarse structure is formed. Since the effect of strengthening the dispersion of ultrafine CBN is small, there is no effect of improving wear resistance and fracture resistance. On the contrary, when it exceeds 1.5, it becomes difficult to uniformly disperse in the binder phase, and aggregates are formed. Since both wear resistance and fracture resistance decrease,
It was set to 0.1 to 1.0.

【0012】本発明の分散強化CBN基焼結体における
結合相は、具体的には、TiC,TiN,TiN,Ti
(CN),ZrN,HfC,NbN,TaC,WC,Z
rO2,TiB2,MoSi2などの周期律表第4a,5
a,6a族元素の炭化物,窒化物,酸化物,ホウ化物,
ケイ化物、Al23,AlN,AlB12などのアルミニ
ウムの窒化物,酸化物,ホウ化物、AlCTi2,(T
iAl)N,AlBMoなどの複合化合物,相互固溶
体、Co,Ni,Feなどの金属,合金およびこれら金
属と上記化合物との混合物,複合化合物などを上げるこ
とができる。特に、これら結合相の粒度が平均粒径で1
μm以下であると、結合相中への超微粒CBN粒子の分
散が均一となるので好ましい。また、製造工程での困難
性から、0.02μm以上であることが実用上好ましい。
The binder phase in the dispersion-strengthened CBN-based sintered body of the present invention is specifically TiC, TiN, TiN, Ti.
(CN), ZrN, HfC, NbN, TaC, WC, Z
Periodic Table 4a, 5 of rO 2 , TiB 2 , MoSi 2 etc.
Carbides, nitrides, oxides, borides of a and 6a group elements,
Silicides, aluminum nitrides such as Al 2 O 3 , AlN, and AlB 12 , oxides, borides, AlCTi 2 , (T
iAl) N, AlBMo and other complex compounds, mutual solid solutions, metals such as Co, Ni and Fe, alloys and mixtures of these metals with the above compounds, complex compounds and the like can be mentioned. In particular, the average particle size of these binder phases is 1
It is preferable that the particle size is not more than μm because the ultrafine CBN particles are uniformly dispersed in the binder phase. Further, from the viewpoint of difficulty in the manufacturing process, it is practically preferable that the thickness is 0.02 μm or more.

【0013】本発明の分散強化CBN基焼結体における
残りのCBN粒子は、平均粒子径が1μm未満では相対
的に結合相量が不足して燒結し難くなり、逆に10μm
を超えて大きくなるとCBN粒子同士の接触が強固とな
るために高圧燒結あるいは結合相の増量が必要となる。
If the average particle size of the remaining CBN particles in the dispersion-strengthened CBN-based sintered body of the present invention is less than 1 μm, the amount of the binder phase is relatively insufficient and it is difficult to sinter, and conversely 10 μm.
If it exceeds the range, the contact between CBN particles becomes strong, so that high-pressure sintering or an increase in the amount of the binder phase is required.

【0014】本発明の分散強化CBN基焼結体における
超微粒CBN粒子は、平均層厚0.01〜0.2μmの
ホウ化チタン及び/又は窒化チタンのTi化合物により
囲繞されていると、結合相との接着強度が高まって超微
粒CBNの脱落摩耗が起こり難くなるので好ましい。T
i化合物により囲繞は、超微粒CBN粒子と結合相成分
粒子が均一分散した混合粉末を燒結する際に、拡散反応
によって超微粒CBN粒子の表面に形成されるものであ
る。Ti化合物層の厚みは、超微粒CBN粒子の径を超
えない範囲が好ましい。
When the ultrafine CBN particles in the dispersion-strengthened CBN-based sintered body of the present invention are surrounded by a Ti compound of titanium boride and / or titanium nitride having an average layer thickness of 0.01 to 0.2 μm, they are bonded. It is preferable because the adhesive strength with the phase is increased and the falling wear of the ultrafine CBN is less likely to occur. T
The enclosure with the i compound is formed on the surface of the ultrafine CBN particles by a diffusion reaction when sintering the mixed powder in which the ultrafine CBN particles and the binder phase component particles are uniformly dispersed. The thickness of the Ti compound layer is preferably in a range not exceeding the diameter of the ultrafine CBN particles.

【0015】本発明の分散強化CBN基焼結体は、原材
料となる超微粒CBN粉末,結合相形成粉末,通常粒子
CBN粉末を混合した後、超高圧燒結しても得られる
が、優れた特性,性能を発揮させるには、以下の製造工
程,方法が好ましい。
The dispersion-strengthened CBN-based sintered body of the present invention can be obtained by mixing ultrafine CBN powder as a raw material, binder phase forming powder, and normal particle CBN powder, and then sintering by ultrahigh pressure. The following manufacturing steps and methods are preferable for exhibiting the performance.

【0016】すなわち、本発明の分散強化CBN基焼結
体の製造方法は、平均粒径0.5μm以下の超微粒CB
N粉末と、周期律表第4a,5a,6a族元素の金属,
炭化物,窒化物,酸化物,ホウ化物、アルミニウムの金
属,酸化物,窒化物,ホウ化物,ケイ化物、及び鉄族金
属の中の少なくとも一種以上の結合相形成粉末とを混合
粉砕する第1工程、混合粉末を真空中,700℃〜10
00℃で熱処理する第2工程、熱処理した混合粉末を微
粉砕する第3工程、得られた超微粒CBN分散の結合相
粉末と場合によっては該結合相形成粉末と、1〜10μ
mCBN粉末とを混合する第4工程、次いで圧力4〜6
GPa,温度1400〜1600℃の超高圧高温下でも
って焼結する第5工程からなることを特徴とするもので
ある。
That is, the method of manufacturing the dispersion-strengthened CBN-based sintered body of the present invention uses ultrafine CB having an average particle size of 0.5 μm or less.
N powder and metal of Group 4a, 5a, 6a group of periodic table,
First step of mixing and pulverizing carbide, nitride, oxide, boride, aluminum metal, oxide, nitride, boride, silicide, and at least one or more binder phase forming powders of iron group metals , Mixed powder in vacuum, 700 ℃ ~ 10
Second step of heat treatment at 00 ° C., third step of pulverizing the heat-treated mixed powder, the obtained ultrafine CBN-dispersed binder phase powder and, if necessary, the binder phase forming powder and 1 to 10 μm
Fourth step of mixing with mCBN powder, then pressure 4-6
It is characterized by comprising a fifth step of sintering under an ultrahigh pressure and high temperature of GPa and a temperature of 1400 to 1600 ° C.

【0017】本発明の分散強化CBN基焼結体の製造方
法における結合相形成粉末は、金属Alと非化学量論組
成からなるTiNX,Ti(CN)X(x=0.6〜0.
9)とを主成分とする混合粉末、もしくは金属Alと金
属Coとを主成分とする混合粉末が好ましい。
The binder phase forming powder in the method for producing the dispersion-strengthened CBN-based sintered body of the present invention comprises TiN x , Ti (CN) x (x = 0.6-0.
A mixed powder containing 9) as a main component or a mixed powder containing metal Al and metal Co as main components is preferable.

【0018】本発明の分散強化CBN基焼結体の製造方
法における第2工程は、結合相成分、例えばTiNとA
lを反応させて脆性なTi2AlNなどを生成させ、第
3工程での微粉砕による伴う超微粒CBN粒子の結合相
中への均一分散を助長するものである。
The second step in the method for producing the dispersion-strengthened CBN-based sintered body of the present invention is the binder phase component such as TiN and A.
1 is reacted to generate brittle Ti 2 AlN or the like, and promotes uniform dispersion of the accompanying ultrafine CBN particles in the binder phase by fine grinding in the third step.

【0019】[0019]

【作用】本発明の本発明の分散強化CBN基焼結体は、
結合相中に分散した超微粒CBN粒子が、結合相を微細
組織にすると共に分散強化機構により、結合相の硬さ,
強度,靱性を向上させて耐摩耗性と耐欠損性,耐チッピ
ング性を同時に改善する作用をし、その製造方法は、超
微粒CBN粉末と結合相形成粉末との混合物を熱処理し
た後に微粉砕することが、結合相中に超微粒CBN粒子
が均一微細に分散させる作用をしている。
The operation of the dispersion-strengthened CBN-based sintered body of the present invention is as follows.
The ultrafine CBN particles dispersed in the binder phase make the binder phase into a fine structure and the hardness of the binder phase by the dispersion strengthening mechanism.
It has the effect of improving strength and toughness to simultaneously improve wear resistance, chipping resistance and chipping resistance. The manufacturing method is to heat-treat a mixture of ultrafine CBN powder and binder phase forming powder and then pulverize it. That is, the ultrafine CBN particles have a function of uniformly and finely dispersing in the binder phase.

【0020】[0020]

【実施例1】平均粒径が0.1μmのCBN粉末(UF
/CBNと表記),2.0μmのCBN粉末(M/CB
Nと表記)および5.5μmのCBN粉末(C/CB
N)、1.1μmのTiN0.8粉末、0.9μmのAl
粉末、0.2μmのAl23粉末,1〜2μmのTi
C,HfN,TaC,WC,Coを用いて表1に示す組
成に配合し、これを超硬合金製ボールとメタノール溶媒
を使用したボールミルでもって48Hrの混合粉砕を行
った後、0.1Paの真空中で表1に併記した温度で
1.0時間の加熱処理し、次いで表1に併記した時間で
もって同様のボールミルによる微粉砕を行って、本発明
に使用する結合相用粉末A〜Fを得た。
Example 1 CBN powder (UF having an average particle size of 0.1 μm)
/ CBN), 2.0 μm CBN powder (M / CB
N) and 5.5 μm CBN powder (C / CB
N), 1.1 μm TiN 0.8 powder, 0.9 μm Al
Powder, 0.2 μm Al 2 O 3 powder, 1-2 μm Ti
C, HfN, TaC, WC, and Co were blended to the composition shown in Table 1, and this was mixed and pulverized for 48 hours with a ball mill using a cemented carbide ball and a methanol solvent. Powders A to F for the binder phase used in the present invention were obtained by heating in vacuum for 1.0 hour at the temperature shown in Table 1 and then pulverizing with the same ball mill for the time shown in Table 1. Got

【0021】[0021]

【表1】 [Table 1]

【0022】次に、結合相用粉末A〜Fおよび前述した
各原料粉末を表2に示す組成に配合し、これを超硬合金
製ボールとメタノール溶媒を使用したボールミルでもっ
て24Hr(但し、比較品は48Hr)の混合とアルゴ
ン中での乾燥して各混合粉末を作製した。これらのプレ
ス成形体を超硬合製の円盤台金上にセットしてカプセル
を構成した後、超高圧高温装置を用いて5.5GPaの
圧力、1500℃の温度、30分の保持時間の条件でも
って焼結し、本発明品1〜7および比較品1〜7を得
た。
Next, the binder phase powders A to F and the above-mentioned respective raw material powders were blended in the composition shown in Table 2, and this was mixed with a cemented carbide ball and a ball mill using a methanol solvent for 24 hours (however, in comparison. The product was mixed for 48 hours and dried in argon to prepare each mixed powder. These press-formed bodies were set on a disc base metal made of cemented carbide to form capsules, and then a pressure of 5.5 GPa, a temperature of 1500 ° C., and a holding time of 30 minutes were used by using an ultra-high pressure and high temperature apparatus. Then, the products of the present invention 1 to 7 and comparative products 1 to 7 were obtained by sintering.

【0023】[0023]

【表2】 [Table 2]

【0024】こうして得た本発明品1〜7および比較品
1〜7の各CBN基焼結体を放電加工による切断とダイ
ヤモンドによる研削、ラップ加工して測定用試料を作製
した。まず、ヌープ硬さおよびビッカース圧痕法による
破壊靱性値の測定結果を表2に併記した。次に、電界放
射型分析電顕を用いて、結合相中での超微粒CBNの分
散状態、分散量と結合相に対する体積割合、平均粒子
径、囲繞されたTi化合物の平均厚みおよび結合相の平
均粒子径などを測定した(破面観察からも確認した)。
これらの結果を表3に示す。
The CBN-based sintered bodies of the present invention products 1 to 7 and comparative products 1 to 7 thus obtained were cut by electric discharge machining, ground by diamond, and lapped to prepare samples for measurement. First, Table 2 also shows the measurement results of the fracture toughness values by the Knoop hardness and the Vickers indentation method. Next, using a field emission analytical electron microscope, the dispersion state of the ultrafine CBN in the binder phase, the dispersion amount and the volume ratio to the binder phase, the average particle diameter, the average thickness of the enclosed Ti compound and the binder phase The average particle diameter and the like were measured (confirmed by observing the fracture surface).
The results are shown in Table 3.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【実施例2】実施例1で得られた本発明品1〜6および
比較品1〜6の各焼結体を放電加工による切断、超硬合
金製チップ台金へのロー付け、ダイヤモンド砥石による
研削加工を経て、切削試験用チップ形状:TNMA16
0408を作製した。そして、下記条件による切削試験
を行い、その結果を表4に示した。 (A)外周連続乾式切削 被削材:SCM415(HR
C60.9〜61.7)、切削速度:150m/mi
n、切込み量:0.5mm、送り量:0.1mm/re
v、評価基準:平均逃げ面摩耗量VB=0.2mmとな
るまたは途中欠損までの切削時間 (B)外周連続湿式切削 被削材:FC30(HB21
0〜230)、切削速度:500m/min、切込み
量:0.5mm、送り量:0.15mm/rev、評価
基準:平均逃げ面摩耗量VB=0.2mmになるまたは
途中欠損までの切削時間 (C)外周連続湿式切削 被削材:インコネル718、
切削速度:120m/min、切込み量:0.3mm、
送り量:0.10mm/rev、評価基準:境界摩耗量
VN=0.3mmになるまでの切削時間
[Embodiment 2] Each of the sintered bodies of the present invention products 1 to 6 and comparative products 1 to 6 obtained in the embodiment 1 is cut by electric discharge machining, brazed to a cemented carbide chip base metal, and diamond diamond is used. After grinding, cutting test tip shape: TNMA16
0408 was prepared. Then, a cutting test was conducted under the following conditions, and the results are shown in Table 4. (A) Peripheral continuous dry cutting Work material: SCM415 (HR
C60.9-61.7), cutting speed: 150 m / mi
n, depth of cut: 0.5 mm, feed: 0.1 mm / re
v, evaluation criteria: average flank wear amount VB = 0.2 mm or cutting time until intermediate fracture (B) outer peripheral continuous wet cutting Work material: FC30 (HB21
0-230), cutting speed: 500 m / min, depth of cut: 0.5 mm, feed rate: 0.15 mm / rev, evaluation standard: average flank wear amount VB = 0.2 mm or cutting time until midway fracture (C) Peripheral continuous wet cutting Work material: Inconel 718,
Cutting speed: 120 m / min, Depth of cut: 0.3 mm,
Feed rate: 0.10 mm / rev, Evaluation criteria: Boundary wear amount VN = Cutting time until reaching 0.3 mm

【0027】[0027]

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA03 BA12 BA24 BA34 BA36 BA37 BA41 BA43 BA48 BA61 BA63 BB03 BB12 BB24 BB34 BB37 BB43 BB48 BB61 BC13 BC43 BC52 BC54 BD12 BD16 BD18    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G001 BA03 BA12 BA24 BA34 BA36                       BA37 BA41 BA43 BA48 BA61                       BA63 BB03 BB12 BB24 BB34                       BB37 BB43 BB48 BB61 BC13                       BC43 BC52 BC54 BD12 BD16                       BD18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】平均粒子径0.5μm以下の超微粒CBN
粒子1〜25体積%と、セラミックス及び/又は鉄族金
属を主成分とする結合相5〜65体積%と、残りが平均
粒子径1〜10μmのCBN粒子と不可避不純物からな
るCBN基焼結体において、該超微粒CBN粒子は該結
合相中に均一分散しており、該超微粒CBN粒子の該結
合相に対する体積割合が0.1〜1.0であることを特
徴とする分散強化CBN基焼結体。
1. Ultrafine CBN particles having an average particle diameter of 0.5 μm or less.
1 to 25% by volume of particles, 5 to 65% by volume of a binder phase containing ceramics and / or an iron group metal as a main component, and the rest of the CBN-based sintered body consisting of CBN particles having an average particle size of 1 to 10 μm and inevitable impurities. In, the ultrafine CBN particles are uniformly dispersed in the binder phase, and the volume ratio of the ultrafine CBN particles to the binder phase is 0.1 to 1.0. Sintered body.
【請求項2】上記結合相は、平均粒径が1μm以下であ
ることを特徴とする請求項1記載の分散強化CBN基焼
結体。
2. The dispersion-strengthened CBN-based sintered body according to claim 1, wherein the binder phase has an average particle diameter of 1 μm or less.
【請求項3】上記結合相は、周期律表第4a,5a,6
a族元素の炭化物,窒化物,酸化物,ホウ化物,ケイ化
物、アルミニウムの窒化物,酸化物,ホウ化物、並びに
これらの複合化合物,相互固溶体、及び鉄族金属の中の
少なくとも一種以上からなることを特徴とする請求項1
又は2記載の分散強化CBN基焼結体。
3. The bonding phase is represented by Periodic Table Nos. 4a, 5a, 6
Consists of at least one or more of a-group element carbides, nitrides, oxides, borides, silicides, aluminum nitrides, oxides, borides, and their complex compounds, mutual solid solutions, and iron group metals. Claim 1 characterized by the above.
Alternatively, the dispersion-strengthened CBN-based sintered body according to item 2.
【請求項4】上記超微粒CBN粒子は、平均層厚0.0
1〜0.2μmのホウ化チタン及び/又は窒化チタンの
Ti化合物により囲繞されていることを特徴とする請求
項1,2又は3記載の分散強化CBN基焼結体。
4. The ultrafine CBN particles have an average layer thickness of 0.0.
The dispersion-strengthened CBN-based sintered body according to claim 1, wherein the dispersion-strengthened CBN-based sintered body is surrounded by a Ti compound of 1 to 0.2 μm of titanium boride and / or titanium nitride.
【請求項5】平均粒径0.5μm以下の超微粒CBN粉
末と、周期律表第4a,5a,6a族元素の金属,炭化
物,窒化物,酸化物,ホウ化物、アルミニウムの金属,
酸化物,窒化物,ホウ化物,ケイ化物、及び鉄族金属の
中の少なくとも一種以上の結合相形成粉末とを混合粉砕
する第1工程、混合粉末を真空中,700℃〜1000
℃で熱処理する第2工程、熱処理した混合粉末を微粉砕
する第3工程、得られた超微粒CBN分散粉末と場合に
よっては該結合相形成粉末と、1〜10μmCBN粉末
とを混合する第4工程、次いで圧力4〜6GPa,温度
1400〜1600℃の超高圧高温下でもって焼結する
第5工程からなることを特徴とする分散強化CBN基焼
結体の製造方法。
5. An ultrafine CBN powder having an average particle size of 0.5 μm or less, and metals, carbides, nitrides, oxides, borides, aluminum metals of elements of groups 4a, 5a and 6a of the periodic table,
First step of mixing and pulverizing oxide, nitride, boride, silicide, and at least one or more binder phase forming powders of iron group metal, the mixed powder in vacuum at 700 ° C to 1000 ° C
Second step of heat treatment at 0 ° C, third step of finely pulverizing the heat-treated mixed powder, fourth step of mixing the obtained ultrafine CBN dispersed powder and optionally the binder phase forming powder and 1-10 µm CBN powder And a fifth step of sintering at a pressure of 4 to 6 GPa and a temperature of 1400 to 1600 ° C. under an ultrahigh pressure and high temperature.
JP2001272928A 2001-09-10 2001-09-10 Dispersion strengthened CBN-based sintered body and method for producing the same Expired - Lifetime JP4887588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001272928A JP4887588B2 (en) 2001-09-10 2001-09-10 Dispersion strengthened CBN-based sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001272928A JP4887588B2 (en) 2001-09-10 2001-09-10 Dispersion strengthened CBN-based sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003081677A true JP2003081677A (en) 2003-03-19
JP4887588B2 JP4887588B2 (en) 2012-02-29

Family

ID=19098217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001272928A Expired - Lifetime JP4887588B2 (en) 2001-09-10 2001-09-10 Dispersion strengthened CBN-based sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4887588B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137623A (en) * 2004-11-10 2006-06-01 Tungaloy Corp Cubic boron nitride sintered body, coated cubic boron nitride sintered body and their manufacturing methods
JP5298372B2 (en) * 2006-06-12 2013-09-25 住友電工ハードメタル株式会社 Composite sintered body
JP2016520030A (en) * 2013-04-30 2016-07-11 エレメント シックス リミテッド PCBN material, method for making it, tool including it, and method of using the same
CN113321504A (en) * 2021-07-06 2021-08-31 中国有色桂林矿产地质研究院有限公司 Zirconia toughened alumina ceramic material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131581A (en) * 1983-01-18 1984-07-28 住友電気工業株式会社 High hardness sintered body for tool and manufacture
JPH10226575A (en) * 1997-02-14 1998-08-25 Nof Corp High-pressure form of boron nitride sintered compact for cutting tool
JPH10245287A (en) * 1997-03-04 1998-09-14 Nof Corp Hard layer-coated high pressure phase boron nitride sinter compact for cutting tool
JP2000044348A (en) * 1998-07-22 2000-02-15 Nof Corp High-hardness sintered compact for cutting working of cast iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131581A (en) * 1983-01-18 1984-07-28 住友電気工業株式会社 High hardness sintered body for tool and manufacture
JPH10226575A (en) * 1997-02-14 1998-08-25 Nof Corp High-pressure form of boron nitride sintered compact for cutting tool
JPH10245287A (en) * 1997-03-04 1998-09-14 Nof Corp Hard layer-coated high pressure phase boron nitride sinter compact for cutting tool
JP2000044348A (en) * 1998-07-22 2000-02-15 Nof Corp High-hardness sintered compact for cutting working of cast iron

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137623A (en) * 2004-11-10 2006-06-01 Tungaloy Corp Cubic boron nitride sintered body, coated cubic boron nitride sintered body and their manufacturing methods
JP5298372B2 (en) * 2006-06-12 2013-09-25 住友電工ハードメタル株式会社 Composite sintered body
US8999023B2 (en) 2006-06-12 2015-04-07 Sumitomo Electric Hardmetal Corp. Composite sintered body
US10307829B2 (en) 2006-06-12 2019-06-04 Sumitomo Electric Hardmetal Corp. Composite sintered body
JP2016520030A (en) * 2013-04-30 2016-07-11 エレメント シックス リミテッド PCBN material, method for making it, tool including it, and method of using the same
CN113321504A (en) * 2021-07-06 2021-08-31 中国有色桂林矿产地质研究院有限公司 Zirconia toughened alumina ceramic material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4887588B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP5100927B2 (en) Method for producing cubic boron nitride sintered body
EP2297371B1 (en) Cubic boron nitride compact
JPH0621313B2 (en) Sintered body for high hardness tool and manufacturing method thereof
JP5447844B2 (en) High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
WO2016063769A1 (en) Sintered compact
JPH0782031A (en) Cubic boron nitride-containing sintered compact and its production
JPS58213679A (en) Composite ceramic cutting tool and manufacture
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JPS63145726A (en) Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool
JP4887588B2 (en) Dispersion strengthened CBN-based sintered body and method for producing the same
JP2815686B2 (en) Composite sintered cutting tool material with excellent chipping resistance and its manufacturing method
JP3553496B2 (en) Titanium carbide based alloys of hard materials, their preparation and use
JP2900545B2 (en) Cutting tool whose cutting edge is made of cubic boron nitride based sintered body
JPH08239277A (en) Cubic boron nitride composite ceramic tool and production thereof
JPH0742170B2 (en) Cubic boron nitride based sintered body
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JP2001179508A (en) Cutting tool
JPH06340941A (en) Nano-phase composite hard material and its production
JPH03131573A (en) Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JPH08197307A (en) Cutting tool made of cubic system boron nitride base superhigh pressure sintered material having high strength and high toughness
JPH11269573A (en) Manufacture of cemented carbide containing plate crystal wc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4887588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term