JPS6330983B2 - - Google Patents

Info

Publication number
JPS6330983B2
JPS6330983B2 JP59000221A JP22184A JPS6330983B2 JP S6330983 B2 JPS6330983 B2 JP S6330983B2 JP 59000221 A JP59000221 A JP 59000221A JP 22184 A JP22184 A JP 22184A JP S6330983 B2 JPS6330983 B2 JP S6330983B2
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
cbn
powder
forming component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59000221A
Other languages
Japanese (ja)
Other versions
JPS60145351A (en
Inventor
Kisho Miwa
Masami Kayukawa
Fumihiko Muroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59000221A priority Critical patent/JPS60145351A/en
Publication of JPS60145351A publication Critical patent/JPS60145351A/en
Publication of JPS6330983B2 publication Critical patent/JPS6330983B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、立方晶窒化硼素(Cubic Boron
Nitride、以下CBNと略記する)の含有量が70容
量%(以下%は容量%を示す)以上と高い超高圧
焼結材料にして、本来CBNによつてもたらされ
るすぐれた特性、すなわち、ダイヤモンドに次ぐ
高硬度、すぐれた化学的安定性、および高い熱伝
導度などを最大限に発揮せしめた状態で、高靭性
と高強度を具備せしめた超高圧焼結材料に係り、
特に苛酷な熱衝撃の加わるダイス鋼や高速度鋼の
断続切削、普通鋳鉄やチルド鋳鉄などの切削速
度:500m/minを越える高速切削、並びにフラ
イス切削などの切削に切削工具として用いた場合
にすぐれた性能を発揮するCBN基超高圧焼結材
料に関するものである。 先に、同一出願人は、特願昭56−100980号(特
開昭58−3903号)として、 結合相形成成分として、炭化チタン(以下TiC
で示す)および炭窒化チタン(以下TiCNで示
す)のうちの1種または2種:1〜20%、 同じく結合相形成成分として、CoAl、NiAl、
および(Co、Ni)Alのうちの1種または2種以
上からなる金属間化合物:1〜20%、 CBNおよび不可避不純物:75〜97%、からな
る組成を有する切削工具用CBN基超高圧焼結材
料を出願した。 確かに、この先行発明のCBN基超高圧焼結材
料は、ダイス鋼や高速度鋼のフライス切削、並び
に各種難削材の切削に切削工具として用いた場合
にはすぐれた性能を発揮するが、反面、被削材
が、例えば溝付きの高硬度鋼である場合の断続切
削や、切削速度の高速化に伴ない、激しい熱衝撃
が繰り返し付加される条件での切削などに際して
は、十分な靭性および耐摩耗性を示さないもので
あつた。 そこで、本発明者等は、上記の先行発明の
CBN基超高圧焼結材料に比して、すぐれた靭性
を有し、さらに耐摩耗性にもすぐれたCBN基超
高圧焼結材料を得べく研究を行なつた結果、 (a) CBNを70%以上含有するCBN基超高圧焼結
材料の場合、相対的に塑性変形能を有する結合
相形成成分の含有量は少なくなることから、そ
の製造に際して、混合工程で機械的混合を充分
に行なつて、結合相形成成分を均一に混合した
としても、充分に個々のCBN粒子の周りを結
合相形成成分で覆うことができないので、超高
圧焼結時に局所的にCBN−CBN粒子同志がブ
リツジを形成してしまい、この部分の局所的な
実効圧力が減じるようになり、この結果CBN
の一部が低圧相である六方晶窒化硼素
(Hexagonal Boron Nitride)に逆変換するこ
と、並びにCBN−CBN粒子ブリツジ間に生じ
る物理的な隙間に、結合相形成成分が廻り込め
ないことに起因してマイクロポアが発生し、粒
界強度が低下するようになること、などが主原
因となつて十分満足する靫性を具備することが
困難となること。 (b) しかし、原料粉末として、平均粒径:10μm
以下のCBN粒末、同0.2μm以下の超微粒TiC粉
末、同1μm以下のTiCN粉末、およびいずれも
同0.3μm以上にして、CBN粒末より粒径が小
さく、かつ1400℃以上の融点をもつた金属間化
合物粉末を用い、これら原料粉末を所定の配合
組成に配合し、混合し、プレス成形にて圧粉体
とした後、この圧粉体を、10-2torr以上の真空
中、1200〜1400℃の範囲内の所定温度に5〜60
分間保持の条件で予備焼結すると、前記金属間
化合物の存在下で、CBN粒子の表面部と超微
粒子化により充分に活性化されたTiC粉末との
間で反応が起り、CBN粒子と結合相との中間
層として、その界面に二硼化チタン(以下
TiB2で示す)が形成されるようになり、この
TiB2中間層の形成によつてCBN−CBN粒子同
志によるブリツジの発生頻度が極力抑制される
と同時に、CBN粒子と結合相との結合が一段
と強固になることから、この後工程で通常の条
件で超高圧焼結を施すと、製造されたCBN基
超高圧焼結材料は著しくすぐれた鞁性と高強度
をもつようになること。 以上(a)および(b)に示される知見を得たのであ
る。 この発明は、上記知見にもとづいてなされたも
のであつて、 原料粉末として、平均粒径:10μm以下のCBN
粉末、同0.2μm以下の超微粒TiC粉末、同1μm以
下のTiCN粉末、さらにいずれも平均粒径が0.3μ
m以上にして、前記CBN粉末より微細な、金属
間化合物としてのCoAl粉末、NiAl粉末、および
(Co、Ni)Al粉末を用意し、これら原料粉末を
所定の配合組成に配合し、通常の条件で混合し、
プレス成形して圧粉体とした後、この圧粉体を、
10-2torr以上の真空中、1200〜1400℃の範囲内の
所定温度に5〜60分間保持の条件で予備焼結し、
ついでこの仮焼結体を通常の条件で超高圧焼結す
ることによつて、 結合相形成成分として、TiC:1〜20%、 同じく結合相形成成分として、CoAl、NiAl、
および(Co、Ni)Alのうちの1種または2種以
上からなる金属間化合物:1〜10%、 を含有し、さらに必要に応じて、 結合相形成成分として、TiCN:1〜10%、を
含有し、残りが分散相形成成分としてのCBNと
中間層形成成分としてのTiB2、並びに不可避不
純物(ただしCBN:70〜95%含有)からなる組
成を有すると共に、CBNと結合相の中間層とし
てのTiB2のCBNに対する割合が、X線回折によ
り測定した場合、 TiB2の(101)面のピーク高さ/CBNの(111)面のピー
ク高さ=0.1〜0.5、 を満足し、さらに直線上におけるCBN粒子同志
の接触数をNcで現わし、かつ同一直線上におけ
るCBNの結合相との接触数をNbで現わした場
合、 2Nc/Nb+2Nc=0.05〜0.2 を満足するCBNの接触頻度を有する靭性のすぐ
れた切削工具用高強度CBN基超高圧焼結材料に
特徴を有するものである。 さらに、この発明のCBN基超高圧焼結材料の
製造法については詳述すれば、原料粉末である超
微粒TiCの粒径は、予備焼結時に、CBN粒子と
反応してTiB2を形成する際の形成量を左右する
重要な因子であつて、十分満足なTiB2の形成量
を確保するためには、平均粒径:0.2μm以下、望
ましくは0.05〜0.1μmとする必要がある。すなわ
ち、TiCの平均粒径が0.2μmを越えると、CBN粒
子の表面部との反応が不十分となり、CBN−
CBN粒子同志の接触を抑制し、かつCBN粒子と
結合相の結合を強固にする中間層としてのTiB2
の形成が不十分となるからである。また、原料粉
末として超微粒TiC粉末を用いることによつて、
通常の機械的混合によつて個々のCBN粒子の表
面に、これを被覆することが可能となり、これに
よつてもCBN粒子同志の接触頻度を軽減するこ
とができるので、超高圧焼結時におけるマイクロ
ポアの発生が阻止され、かつ局所的は実効圧力の
低下に関してもフイルム状TiCの存在によつて軽
減されるなどの副次的効果が得られるのである。
なお、これに関連して、他の原料粉末の平均粒径
を、それぞれCBN粉末:10μm以下、TiCN:1μ
m以下、および金属間化合物粉末:0.3μm以上と
する必要があるのであつて、いずれの粒径でも前
記粒径を越えると所望の高強度および高靭性を確
保することができなくなるからである。すなわ
ち、構成必須成分であるTiC粉末が平均粒径:
0.2μm以下の超微粉末であるため、他の結合相形
成成分であるTiCN粉末や金属間化合物粉末の粒
度が、それぞれ上記の上限値を超えて粗くなる
と、粉末混合時に活性化したTiC粉末が、それ自
体で凝集してしまつて、均一組織の焼結材料を得
ることができなくなるのである。また、金属間化
合物粉末は、CBN粒子の表面部を反応させる助
剤的役割を担うものであり、したがつて、CBN
粒子に対する付きまわりを良くするために、少な
くともCBN粉末の粒径より細かくする必要があ
る。ところが、前記金属間化合物粉末を、機械的
粉砕などで平均粒径:0.3μm未満に微粉砕化する
と、粉砕容器の構成成分が粉砕粉末中に混入する
ようになつて、焼結材料が汚染されるようになる
ので好ましくないのである。 さらに、この発明のCBN基超高圧焼結材料の
製造法において、原料粉末として、Co粉末、Ni
粉末、およびAl粉末を用い、これらを適当量配
合し、予備焼結および超高圧焼結を経てCoAl、
NiAl、あるいは(Co、Ni)Alとするのは望まし
くなく、あくまでも原料粉末として、1400℃以上
の融点を有するCoAl、NiAl、および(Co、Ni)
Alのうちの1種または2種以上からなる金属間
化合物粉末を用いる必要がある。 その第1の理由は、個々の元素形態の金属粉末
の形で配合すると、1200〜1400℃の温度で行なわ
れる予備焼結に際して、低融点を有し、かつ反応
性の大きいAlがすばやく溶融し、直ちにCBN粒
子と液相反応を起してAlNやAlB2を形成してし
まい、超微粒TiC粉末はCBN粒子との反応にあ
ずかることができず、しかも、この結果形成され
たAlNは硬さがマイクロビツカース硬さ( MHV
で1200程度と低く、またAlB2は硬さが MHV
2400程度と高いものの、非常に脆く、耐熱性に劣
るものであるため、高硬度および高靭性を有する
超高圧焼結材料を得ることができなくなることに
ある。ことにAlNは、蒸気圧が高く、かつ安定
な化合物であるために、後工程の超高圧焼結にお
いて焼結性阻害因子として働くことと合まつて、
これらの化合物の形成は望ましくないのである。 また、第2の理由は、Co−AlおよびNi−Al2
元合金状態図に見られるように、例えば重量割合
でCo/Al=68/32の金属間化合物:CoAlは1645
℃、同じくNi/Al÷68/32の金属間化合物:
NiAlは1636℃の高融点を有するので、切削工具
の刃先温度が1000℃を超えるような高温条件下で
使用されても容易に軟化することはなく、これら
金属間化合物のもつすぐれた靭性と合まつて、超
高圧焼結材料はすぐれた高温耐摩耗性と耐溶着性
をもつようになることにある。 さらに、第3の理由は、個々の元素形態の金属
粉末の形で配合した場合、これを平均粒径:0.2μ
m以下を有する超微粒TiC粉末とボールミルなど
の機械的混合によつて充分均一に混合することは
不可能であり、したがつて、これらの元素が焼結
材料中に偏析され易くなるが、金属間化合物の形
で配合すると、粉砕が容易となるばかりでなく、
均一混合が可能となり、焼結性向上に寄与するよ
うになることにある。 以上の結果から、この発明の超高圧焼結材料を
製造するに際しては、原料粉末として金属間化合
物粉末を使用することが不可欠の要件となるので
ある。 また、この発明のCBN基超高圧焼結材料を製
造するに際して、TiB2を予備焼結により形成し
ないで、原料粉末として最初から配合使用するこ
とも考えられるが、TiB2粉末を配合した場合、 (a) TiB2粉末が超微粒TiCと共に均一に分散し
てしまい、CBN粒子に対する結合相の結合効
果が低減する。 (b) 超微粒のTiB2粉末を得ることはきわめて難
かしく、したがつて比較的粗粒のTiB2粉末を
使用することになるが、TiB2粉末自体きわめ
て硬質であるために、微粉化が困難であること
から、緻密な焼結材料を製造することができ
ず、さらに粒度の細かい混合粉末を得るため、
長時間粉砕を施した場合、TiB2粉末が硬いこ
とに原因して、粉砕容器を構成する成分によつ
て焼結材料が汚染されるようになり、脆化をき
たすようになる。 などの問題点の発生を避けることができないの
で、原料粉末としてTiB2粉末を配合するのは望
ましくなく、あくまで、CBN粒子と超微粒TiC
粉末との反応によつて、CBN粒子と結合相との
中間層としてTiB2を形成し、CBN−CBN粒子同
志の接触を抑制し、かつ、CBN粒子と結合相と
の結合強度を向上させるようにする必要がある。 つぎに、この発明のCBN基超高圧焼結材料に
関して、予備焼結条件および成分組成を上記の通
りに限定した理由を説明する。 A 予備焼結条件 CBN粒子の一部を分解してBとNを生成さ
せ、かつ超微粒TiCを活性化し、もつてCBN
粒子と結合相の中間層を構成するTiB2を効率
よく形成するためには、予備焼結雰囲気の真空
度を10-2torr以上、望ましくは10-4torr以上の
高真空にする必要があるのであつて、10-2torr
未満の低真空ではTiB2の効率的形成ができな
いものであり、このことは予備焼結温度にも云
えることで、1200℃未満の温度では十分な
TiB2の形成は望めない。一方予備焼結温度が
1400℃を越えると、CBNが六方晶系に逆変換
し、CBN粒子のもつすぐれた特性を発揮する
ことができなくなるのである。また、予備焼結
時間についても、その保持時間が5分未満では
TiB2の形成量が十分でなく、一方60分を越え
た長時間保持すると、TiB2の形成量が多くな
りすぎて焼結材料の鞁性、特に耐欠損性が劣化
するようになることから、その保持時間を5〜
60分と定めた。 B 成分組成 (a) CBN CBNは分散相を形成し、これ自体のもつ
高硬度、すぐれた化学的安定性、および高い
熱伝導度によつて、焼結材料がこれらのすぐ
れた特性を具備するようになるが、その含有
量が70%未満では焼結材料に前記の特性を十
分に付与せしめるとができず、一方95%を越
えて含有させると、焼結性が著しく劣化し、
CBN粒子が脱落し易くなり、耐摩耗性の著
しい劣化を招くようになることから、その含
有量を70〜95%と定めた。 (b) TiC TiCは、それ自体高融点および高硬度を有
し、焼結材料の耐摩耗性および耐熱性を向上
させる作用があるほか、上記のように予備焼
結時にCBN粒子と反応して、靭性劣化の原
因となるCBN−CBN粒子同志のブリツジ形
成を抑制し、かつCBN粒子と結合相との結
合を向上させるTiB2を形成する作用がある
が、その含有量が1%未満では前記作用に所
望の効果が得られず、一方20%を越えて含有
させると、焼結材料の硬さが低下するように
なると共に、脆化傾向が現われるようになる
ことから、その含有量を1〜20%と定めた。 (c) 金属間化合物 これらの成分には、予備焼結時における
CBN粒子と超微粒TiC粉末との反応を促進
する作用があるほか、これ自体のもつ高靭
性、並びにすぐれた高温耐摩耗性および耐溶
着性によつて、焼結材料にこれらの特性を付
与する作用があるが、その含有量が1%未満
では前記作用に所望の効果が得られず、一方
10%を越えて含有させると、焼結材料に硬さ
低下傾向が現われるようになり、実用に際し
て耐摩耗性が低下するようになることから、
その含有量を1〜10%と定めた。 (d) TiCN TiCNには焼結材料の耐熱性を著しく向上
させる作用があり、したがつて特に高温加熱
を伴う切削条件下で使用される場合に、必要
に応じて含有されるが、その含有量が1%未
満では所望の耐熱性向上効果が得られず、一
方10%を越えて含有させると、TiCの場合と
同様に焼結材料の硬さが低下し、かつ脆化す
るようになることから、その含有量を1〜10
%と定めた。 (e) TiB2 TiB2は、上記の通り予備焼結時にCBN粒
子と結合相の中間層として形成されるもので
あつて、CBN−CBN粒子同志のブリツジ形
成に帰因するCBNの六方晶系への逆変換お
よびマイクロポアの発生を抑制して焼結材料
の靭性を向上させ、かつCBN粒子と結合相
との結合強度を高める作用がある。しかし、
このTiB2の形成量はきわめて微量であつて、
定量的分析および顕微鏡観察では測定不能で
あるので、その形成量をX線回折により測定
した。すなわち、X線回折において、CBN
の(111)面に現われるピーク高さ(以下Xc
で示す)とTiB2の(101)面に現われるピー
ク高さ(以下Xtで示す)を測定し、Xt/Xc
の割合をもつて現わした。したがつてXt/
Xcの比が0.1未満ではTiB2の形成量が少なす
ぎて前記作用に所望の効果が得られず、一方
その比が0.5を越えると、TiB2の形成量が多
くなりすぎて靭性、特に耐欠損性が低下する
ようになるので、TiB2の含有量を、Xt/Xc
の比で0.1〜0.5と定めた。 (f) CBNの接触頻度 上記のようにCBN粒子同志の接触が抑制
されなければ高靭性と高強度をもつた焼結材
料を得ることができないので、WC−Co系超
硬合金などにおいて用いられている粒子の接
触頻度を用いて、CBN粒子の接触頻度を限
定した。すなわち、第1図に示されるよう
に、直線上におけるCBN粒子同志の接触点
(●印)の数:Ncと、同一直線上における
CBN粒子の結合相との接触点(〇印)の
数:Nbとを測定し、式: 2Nc/Nb+2Nc によつて算出される値をCBN粒子の接触頻度
とした。したがつて、この値が0.2を越えると、
CBN粒子同志の接触が多くなりすぎて、所望
の高靭性および高強度を有する焼結材料を得る
ことができず、一方その値が0.05未満では、過
剰な予備焼結が行なわれ、TiB2の形成量が実
質的に多くなり過ぎ、反面CBN粒子自体が細
くやせてしまうことになり、この結果CBN粒
子によつてもたらされる特性に劣化傾向が現わ
れるようになることから、その値、すなわち
CBNの接触頻度を0.05〜0.2と定めた。 なお、この発明のCBN基超高圧焼結材料を
製造するに際して採用される超高圧焼結条件
は、圧力:70ton/cm2、温度:1200〜1500℃、
保持時間;10〜60分の通常の条件である。 つぎに、この発明の焼結材料を実施例により具
体的に説明する。 実施例 原料粉末として、平均粒径:3μmのCBN粒末、
同0.08μmの化学気相蒸着法により形成された
TiC粉末、同0.8μmのTiCN粉末、同1μmのCoAl
粉末(Co/Al=70/30、重量比、以下同じ)、同
1μmのNiAl粉末(Ni/Al=70/30)、同1μmの
(Co、Ni)Al粉末(Co/Ni/Al=35/35/30)
を用意し、これら原料粉末を第1表に示される配
合組成に配合し、ボールミルにて混合した後、
2ton/cm2の圧力にて、直径110mmφ×厚さ:1mm
の寸法をもつた円板状圧粉体に成形し、ついで、
この圧粉体の一部を同じく第1表に示される条件
で真空炉内で予備焼結して仮焼結体とし、引続い
てこの仮焼結体並びに予備焼結を施さない圧粉体
を、同一寸法の炭化タングステン基超硬焼結合金
(Co:12重量%、WC:残り)チツプに重ね合わ
せた状態で超高圧容器内に挿入し、圧力:
50ton/cm2、温度:1300℃、保持時間:15分の条
件で超高圧焼結することによつて、本発明焼結材
料1〜20および比較焼結材料1〜20をそれぞれ製
造した。なお、比較焼結材料1〜20
This invention utilizes cubic boron nitride (Cubic Boron Nitride).
This is an ultra-high pressure sintered material with a high content of Nitride (hereinafter abbreviated as CBN) of over 70% by volume (hereinafter % indicates volume%), and the excellent properties originally brought about by CBN, that is, diamond. This is an ultra-high pressure sintered material that has the second highest hardness, excellent chemical stability, high thermal conductivity, and has high toughness and strength.
Excellent when used as a cutting tool for intermittent cutting of die steel and high-speed steel, which are particularly subject to severe thermal shock, high-speed cutting of ordinary cast iron and chilled cast iron, etc. at a cutting speed exceeding 500 m/min, and cutting such as milling. This article concerns a CBN-based ultra-high pressure sintered material that exhibits excellent performance. Previously, the same applicant filed a patent application No. 56-100980 (Japanese Unexamined Patent Publication No. 58-3903) in which titanium carbide (hereinafter referred to as TiC) was used as a binder phase forming component.
) and titanium carbonitride (hereinafter referred to as TiCN): 1 to 20%; CoAl, NiAl,
CBN-based ultra-high pressure sintering for cutting tools with a composition consisting of 1 to 20% intermetallic compound consisting of one or more of (Co, Ni) Al and 75 to 97% CBN and unavoidable impurities. I applied for a binding material. It is true that the CBN-based ultra-high pressure sintered material of this prior invention exhibits excellent performance when used as a cutting tool for milling die steel and high-speed steel, as well as cutting various difficult-to-cut materials. On the other hand, sufficient toughness is required for interrupted cutting when the workpiece material is, for example, high-hardness steel with grooves, or for cutting under conditions where severe thermal shock is repeatedly applied as the cutting speed increases. and showed no abrasion resistance. Therefore, the present inventors have determined that the above-mentioned prior invention
As a result of conducting research to obtain a CBN-based ultra-high pressure sintered material that has superior toughness and wear resistance compared to CBN-based ultra-high pressure sintered materials, we found that (a) CBN 70 In the case of CBN-based ultra-high-pressure sintered materials containing % or more, the content of binder phase-forming components that have plastic deformability is relatively small, so when manufacturing them, sufficient mechanical mixing is performed in the mixing process. Even if the binder phase-forming components are mixed uniformly, it is not possible to sufficiently cover each CBN particle with the binder phase-forming component, so the CBN-CBN particles may locally bridge together during ultra-high pressure sintering. The local effective pressure in this area is reduced, resulting in CBN
This is due to the fact that a part of the CBN is converted back into hexagonal boron nitride, which is a low-pressure phase, and that the components forming the bonded phase cannot pass through the physical gaps created between CBN and CBN particle bridges. The main causes of this are the generation of micropores and a decrease in grain boundary strength, which makes it difficult to provide sufficient saturation. (b) However, as a raw material powder, average particle size: 10 μm
The following CBN granules, ultrafine TiC powder of 0.2μm or less, TiCN powder of 1μm or less, and all of them 0.3μm or more, smaller in particle size than CBN powder, and with a melting point of 1400℃ or higher. Using intermetallic compound powder, these raw material powders are blended into a predetermined composition, mixed, and press-molded to form a green compact.The green compact is then heated at 1200 m 5 to 60 to a specified temperature within the range of ~1400℃
When pre-sintering is carried out under conditions of holding for a minute, in the presence of the intermetallic compound, a reaction occurs between the surface of the CBN particles and the TiC powder that has been sufficiently activated by ultrafine particle formation, and the CBN particles and the binder phase Titanium diboride (hereinafter referred to as
TiB (shown as 2 ) is now formed, and this
By forming the TiB 2 intermediate layer, the frequency of bridging caused by CBN-CBN particles is suppressed as much as possible, and at the same time, the bond between the CBN particles and the binder phase becomes even stronger. When subjected to ultra-high-pressure sintering, the CBN-based ultra-high-pressure sintered material has significantly superior toughness and strength. The findings shown in (a) and (b) above were obtained. This invention was made based on the above knowledge, and uses CBN with an average particle size of 10 μm or less as a raw material powder.
Powder, ultra-fine TiC powder of 0.2 μm or less, TiCN powder of 1 μm or less, and all with an average particle size of 0.3 μm.
CoAl powder, NiAl powder, and (Co, Ni)Al powder as intermetallic compounds, which are finer than the CBN powder, are prepared, and these raw material powders are blended into a predetermined composition and heated under normal conditions. Mix with
After press-forming to make a green compact, this green compact is
Preliminary sintering is carried out in a vacuum of 10 -2 torr or more at a predetermined temperature within the range of 1200 to 1400°C for 5 to 60 minutes,
Then, by sintering this pre-sintered body under ultra-high pressure under normal conditions, TiC: 1 to 20% as a binder phase forming component, CoAl, NiAl,
and (Co, Ni)Al, an intermetallic compound consisting of one or more of two or more types: 1 to 10%, and if necessary, TiCN: 1 to 10% as a bonding phase forming component, The remainder consists of CBN as a dispersed phase forming component, TiB 2 as an intermediate layer forming component, and unavoidable impurities (CBN: 70 to 95% content), and an intermediate layer of CBN and a binder phase. When the ratio of TiB 2 to CBN as When the number of contacts between CBN particles on a straight line is expressed as Nc , and the number of contacts of CBN with the bonded phase on the same line is expressed as Nb, CBN contacts that satisfy 2Nc/Nb+2Nc=0.05 to 0.2 This is a high-strength CBN-based ultra-high-pressure sintered material for cutting tools with excellent toughness. Furthermore, in detail about the manufacturing method of the CBN-based ultra-high pressure sintered material of the present invention, the particle size of the ultra-fine TiC as the raw material powder reacts with the CBN particles during preliminary sintering to form TiB 2 . This is an important factor that influences the amount of TiB 2 formed, and in order to ensure a sufficiently satisfactory amount of TiB 2 formed, the average particle size must be 0.2 μm or less, preferably 0.05 to 0.1 μm. In other words, when the average particle size of TiC exceeds 0.2 μm, the reaction with the surface of CBN particles becomes insufficient, and CBN-
TiB 2 as an intermediate layer that suppresses contact between CBN particles and strengthens the bond between CBN particles and the binder phase.
This is because the formation of is insufficient. In addition, by using ultrafine TiC powder as the raw material powder,
It is possible to coat the surfaces of individual CBN particles through normal mechanical mixing, and this also reduces the frequency of contact between CBN particles, so it is possible to reduce the frequency of contact between CBN particles during ultra-high pressure sintering. The generation of micropores is prevented, and the presence of the film-like TiC has the secondary effect of reducing the local effective pressure drop.
In connection with this, the average particle diameters of other raw material powders were set to 10μm or less for CBN powder and 1μm for TiCN.
The particle size of the intermetallic compound powder needs to be 0.3 μm or less, and if any particle size exceeds the above-mentioned particle size, it will not be possible to secure the desired high strength and high toughness. In other words, the average particle size of TiC powder, which is an essential component, is:
Since it is an ultrafine powder of 0.2 μm or less, if the particle size of TiCN powder or intermetallic compound powder, which are other binder phase forming components, becomes coarser than the above upper limit, the TiC powder activated during powder mixing will , it aggregates by itself, making it impossible to obtain a sintered material with a uniform structure. In addition, the intermetallic compound powder plays the role of an auxiliary agent that causes the surface part of the CBN particles to react.
In order to improve the coverage of the particles, it is necessary to make the particle size at least smaller than that of the CBN powder. However, when the intermetallic compound powder is pulverized to an average particle size of less than 0.3 μm by mechanical pulverization, the constituent components of the pulverization container become mixed into the pulverized powder, resulting in contamination of the sintered material. This is undesirable because it makes it worse. Furthermore, in the method for producing the CBN-based ultra-high pressure sintered material of the present invention, Co powder, Ni
CoAl powder and Al powder are mixed in appropriate amounts and subjected to preliminary sintering and ultra-high pressure sintering to produce CoAl,
It is not desirable to use NiAl or (Co, Ni)Al, and only CoAl, NiAl, and (Co, Ni) with a melting point of 1400°C or higher should be used as raw material powder.
It is necessary to use an intermetallic compound powder consisting of one or more types of Al. The first reason is that when mixed in the form of metal powder in the form of individual elements, Al, which has a low melting point and is highly reactive, melts quickly during preliminary sintering at a temperature of 1200 to 1400°C. , the liquid phase reaction immediately occurs with the CBN particles to form AlN and AlB 2 , and the ultrafine TiC powder cannot participate in the reaction with the CBN particles, and the resulting AlN has a hardness. is the microvits hardness ( M H V )
The hardness of AlB 2 is low at around 1200, and the hardness of AlB 2 is M H V :
Although it has a high hardness of about 2400, it is extremely brittle and has poor heat resistance, making it impossible to obtain ultra-high pressure sintered materials with high hardness and high toughness. In particular, since AlN is a stable compound with high vapor pressure, it acts as a sinterability inhibiting factor in the ultra-high pressure sintering process in the subsequent process.
The formation of these compounds is undesirable. The second reason is that Co-Al and Ni-Al2
As seen in the original alloy phase diagram, for example, an intermetallic compound with a weight ratio of Co/Al = 68/32: CoAl is 1645
℃, also the intermetallic compound of Ni/Al÷68/32:
NiAl has a high melting point of 1636°C, so it does not easily soften even when used under high-temperature conditions where the cutting tool edge temperature exceeds 1000°C. Moreover, ultra-high pressure sintered materials have excellent high-temperature wear resistance and welding resistance. Furthermore, the third reason is that when compounded in the form of metal powder in the form of individual elements, the average particle size: 0.2μ
It is impossible to sufficiently uniformly mix ultrafine TiC powder having a particle size of less than When mixed in the form of an intermediate compound, it not only becomes easier to grind, but also
The purpose is to enable uniform mixing and contribute to improved sinterability. From the above results, when producing the ultra-high pressure sintered material of the present invention, it is essential to use intermetallic compound powder as the raw material powder. In addition, when producing the CBN-based ultra-high pressure sintered material of the present invention, it is possible to mix and use TiB 2 as a raw material powder from the beginning without forming it by preliminary sintering, but if TiB 2 powder is blended, (a) TiB 2 powder is uniformly dispersed together with ultrafine TiC particles, reducing the binding effect of the binder phase on CBN particles. (b) It is extremely difficult to obtain ultra-fine TiB 2 powder, so relatively coarse-grained TiB 2 powder is used, but since TiB 2 powder itself is extremely hard, pulverization is difficult. Due to the difficulty, it was not possible to produce a dense sintered material, and in order to obtain a mixed powder with even finer grain size,
If pulverization is carried out for a long time, the sintered material becomes contaminated with the components constituting the pulverization container due to the hardness of the TiB 2 powder, resulting in embrittlement. It is undesirable to mix TiB 2 powder as a raw material powder because problems such as
Through the reaction with the powder, TiB 2 is formed as an intermediate layer between the CBN particles and the binder phase, suppressing contact between CBN and CBN particles, and improving the bonding strength between the CBN particles and the binder phase. It is necessary to Next, regarding the CBN-based ultra-high pressure sintered material of the present invention, the reason why the preliminary sintering conditions and component composition are limited as described above will be explained. A Preliminary sintering conditions A part of CBN particles is decomposed to generate B and N, and ultrafine TiC particles are activated, and CBN
In order to efficiently form TiB 2 , which constitutes the intermediate layer between the particles and the binder phase, the degree of vacuum in the pre-sintering atmosphere must be at least 10 -2 torr, preferably at least 10 -4 torr. Therefore, 10 -2 torr
TiB 2 cannot be formed efficiently at low vacuums below 1200°C, and this also applies to the pre-sintering temperature.
Formation of TiB 2 cannot be expected. On the other hand, the pre-sintering temperature is
When the temperature exceeds 1,400°C, CBN transforms back into a hexagonal system and is no longer able to exhibit the excellent properties of CBN particles. Also, regarding the preliminary sintering time, if the holding time is less than 5 minutes,
If the amount of TiB 2 formed is not sufficient and on the other hand, it is held for a long time exceeding 60 minutes, the amount of TiB 2 formed will be too large and the sintered material's toughness, especially fracture resistance, will deteriorate. , its retention time is 5~
It was set as 60 minutes. B Composition (a) CBN CBN forms a dispersed phase, and due to its own high hardness, excellent chemical stability, and high thermal conductivity, the sintered material has these excellent properties. However, if the content is less than 70%, it will not be possible to sufficiently impart the above characteristics to the sintered material, while if the content exceeds 95%, the sinterability will deteriorate significantly,
The content was set at 70-95% because CBN particles tend to fall off and cause a significant deterioration of wear resistance. (b) TiC TiC itself has a high melting point and high hardness, and has the effect of improving the wear resistance and heat resistance of sintered materials.As mentioned above, TiC reacts with CBN particles during pre-sintering. , has the effect of suppressing bridge formation between CBN-CBN particles, which causes toughness deterioration, and forming TiB 2 , which improves the bonding between CBN particles and the binder phase, but if the content is less than 1%, the above-mentioned On the other hand, if the content exceeds 20%, the hardness of the sintered material will decrease and a tendency to embrittlement will appear, so the content should be reduced to 1%. ~20%. (c) Intermetallic compounds These components include
In addition to promoting the reaction between CBN particles and ultrafine TiC powder, it imparts these properties to sintered materials due to its own high toughness and excellent high-temperature wear resistance and welding resistance. However, if the content is less than 1%, the desired effect cannot be obtained;
If the content exceeds 10%, the hardness of the sintered material will tend to decrease, and the wear resistance will decrease in practical use.
Its content was set at 1 to 10%. (d) TiCN TiCN has the effect of significantly improving the heat resistance of sintered materials, and therefore is included as necessary, especially when used under cutting conditions that involve high-temperature heating. If the amount is less than 1%, the desired effect of improving heat resistance cannot be obtained, while if the content exceeds 10%, the hardness of the sintered material decreases and becomes brittle, as in the case of TiC. Therefore, the content is 1 to 10
%. (e) TiB 2 TiB 2 is formed as an intermediate layer between CBN particles and the binder phase during pre-sintering as described above, and is a hexagonal crystal system of CBN resulting from bridge formation between CBN-CBN particles. It has the effect of improving the toughness of the sintered material by suppressing the reverse conversion to CBN and the generation of micropores, and also increasing the bond strength between the CBN particles and the binder phase. but,
The amount of TiB 2 formed is extremely small,
Since it cannot be measured by quantitative analysis or microscopic observation, the amount formed was measured by X-ray diffraction. That is, in X-ray diffraction, CBN
The peak height appearing on the (111) plane (hereinafter referred to as Xc
) and the peak height (hereinafter referred to as Xt) that appears on the (101) plane of TiB 2 , and calculate Xt/Xc.
It is expressed as a percentage of Therefore, Xt/
If the ratio of Since the defectivity decreases, the content of TiB 2 is increased by increasing Xt/Xc.
The ratio was set at 0.1 to 0.5. (f) Contact frequency of CBN As mentioned above, unless the contact between CBN particles is suppressed, it is not possible to obtain a sintered material with high toughness and high strength. The contact frequency of CBN particles was limited using the contact frequency of the particles. In other words, as shown in Figure 1, the number of contact points (● marks) between CBN particles on a straight line: Nc, and the number of contact points (● marks) between CBN particles on the same straight line
The number of contact points (○ marks) of the CBN particles with the binder phase: Nb was measured, and the value calculated by the formula: 2Nc/Nb+2Nc was taken as the contact frequency of the CBN particles. Therefore, if this value exceeds 0.2,
There will be too much contact between the CBN particles and it will not be possible to obtain a sintered material with the desired high toughness and strength, while if the value is less than 0.05, excessive pre-sintering will occur and the TiB2 The amount formed becomes substantially too large, and on the other hand, the CBN particles themselves become thinner and thinner, and as a result, the properties provided by the CBN particles tend to deteriorate.
The CBN contact frequency was set at 0.05 to 0.2. The ultra-high pressure sintering conditions used to produce the CBN-based ultra-high pressure sintered material of this invention are: pressure: 70ton/cm 2 , temperature: 1200-1500°C,
Holding time: Normal conditions are 10 to 60 minutes. Next, the sintered material of the present invention will be specifically explained with reference to Examples. Example As raw material powder, CBN particles with an average particle size of 3 μm,
Formed by chemical vapor deposition with a thickness of 0.08μm
TiC powder, 0.8μm TiCN powder, 1μm CoAl
Powder (Co/Al=70/30, weight ratio, same below),
1μm NiAl powder (Ni/Al=70/30), 1μm (Co, Ni)Al powder (Co/Ni/Al=35/35/30)
were prepared, these raw material powders were blended into the composition shown in Table 1, and after mixing in a ball mill,
At a pressure of 2ton/ cm2 , diameter 110mmφ x thickness: 1mm
Formed into a disk-shaped green compact with dimensions, then,
A part of this green compact is pre-sintered in a vacuum furnace under the conditions shown in Table 1 to obtain a pre-sintered body, and subsequently this pre-sintered body and a green compact without pre-sintering are was stacked on a tungsten carbide-based cemented carbide sintered alloy (Co: 12% by weight, WC: remainder) chip of the same size and inserted into an ultra-high pressure container, and the pressure:
Sintered materials 1 to 20 of the present invention and comparative sintered materials 1 to 20 were produced by ultra-high pressure sintering under the conditions of 50 ton/cm 2 , temperature: 1300° C., and holding time: 15 minutes. In addition, comparative sintered materials 1 to 20

【表】【table】

【表】 は、いずれも予備焼結を行なわずに圧粉体から直
接高圧焼結により製造されたものである。 ついで、この結果得られた本発明焼結材料1〜
20および比較焼結材料1〜20から切削チツプを切
出し、炭化タングステン基超硬焼結合金製ホルダ
にろう付けし、研磨仕上げした後、 被削材:ダイス鋼(SKD−11、硬さ:HRC63)、 カツター径:160mm、 チツプ形状:JIS・SNP432、 切削速度:200m/min 切込み:0.5mm、 1刃当りの送り:0.2mm、 切削幅:100mm、 の条件での高硬度鋼フライス切削試験、 被削材:ダイス鋼(SKD−11、硬さ:HRC60)、 切込み:0.5mm、 送り:0.1mm、 切削速度:60m/min、 の条件での乾式高硬度旋削試験、および、 被削材:長さ方向対称位置に2本の断面型溝を
有するダイス鋼(SKD−61、硬さ:HRC51)
の丸棒、 切込み:0.3mm、 送り:0.1mm/rev.、 切削速度:70m/min、 切削時間:3min、 の条件での高硬度鋼断続切削試験を行ない、上記
フライス切削試験では切刃の逃げ面摩耗幅が0.3
mmに至るまでの切削時間、また上記旋削試験では
切刃の逃げ面摩耗幅が0.2mmに至るまでの切削時
間、さらに上記断続切削試験では6本の試験切刃
のうちの欠損発生数を測定した。これらの測定結
果を第1表に示した。また、第1表にはビツカー
ス硬さ(荷重:1Kg)、TiB2/CBNのX線高さ
比、およびCBNの接触頻度の測定結果も示した 第1表に示される結果から、本発明焼結材料1
〜20は、いずれも予備焼結を行なわず、したがつ
てTiB2の形成がない比較焼結材料1〜20に比し
て、高硬度鋼の高速切削および断続切削に際し
て、すぐれた耐摩耗性および耐衝撃性(靭性)を
示すことが明らかである。 上述のように、この発明のCBN基超高圧焼結
材料においては、CBN粒子と結合相の中間層と
してのTiB2の存在によつて、高硬度、高靭性、
および高強度を有するようになり、したがつて、
これをダイス鋼や高速度鋼などの高硬度鋼のフラ
イス切削は勿論のこと、苛酷な熱衝撃の加わる前
記高硬度鋼の断続切削、さらに普通鋳鉄やチルド
鋳鉄などの切削速度:500m/minを越える高速
切削などに切削工具として用いた場合に著しく長
期に亘つてすぐれた性能を発揮するのである。
[Table] All of the samples were manufactured directly from the green compact by high-pressure sintering without pre-sintering. Next, the resulting sintered materials of the present invention 1-
Cutting chips were cut from 20 and comparative sintered materials 1 to 20, brazed to a tungsten carbide-based cemented carbide sintered alloy holder, and polished. Work material: die steel (SKD-11, hardness: H). R C63), Cutter diameter: 160mm, Chip shape: JIS/SNP432, Cutting speed: 200m/min, Depth of cut: 0.5mm, Feed per tooth: 0.2mm, Cutting width: 100mm, High hardness steel milling under the following conditions. Test, Work material: die steel (SKD-11, hardness: H R C60), depth of cut: 0.5 mm, feed: 0.1 mm, cutting speed: 60 m/min, dry high-hardness turning test under the following conditions, and Work material: Die steel with two cross-sectional grooves at symmetrical positions in the length direction (SKD-61, hardness: H R C51)
An interrupted cutting test was conducted on a round bar of high hardness steel under the following conditions: depth of cut: 0.3 mm, feed rate: 0.1 mm/rev., cutting speed: 70 m/min, cutting time: 3 min. Flank wear width is 0.3
In addition, in the above turning test, the cutting time until the flank wear width of the cutting edge reaches 0.2 mm, and in the above intermittent cutting test, the number of breakages among the 6 test cutting edges was measured. did. The results of these measurements are shown in Table 1. Table 1 also shows the measurement results of the Vickers hardness (load: 1Kg), the X-ray height ratio of TiB 2 /CBN, and the contact frequency of CBN. Binding material 1
-20 have excellent wear resistance during high-speed cutting and interrupted cutting of high-hardness steel, compared to comparative sintered materials 1-20, which are not pre-sintered and therefore do not have TiB2 formation. and impact resistance (toughness). As mentioned above, the CBN - based ultra-high pressure sintered material of the present invention has high hardness, high toughness, and
and have high strength, therefore,
This is used not only for milling of high-hardness steels such as die steel and high-speed steel, but also for interrupted cutting of the above-mentioned high-hardness steels, which are subject to severe thermal shock, as well as cutting speeds of 500 m/min for ordinary cast iron and chilled cast iron. When used as a cutting tool for high-speed cutting, etc., it exhibits excellent performance over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCBN基超高圧焼結材料におけるCBN
の接触頻度の説明図である。
Figure 1 shows CBN in CBN-based ultra-high pressure sintered materials.
FIG. 2 is an explanatory diagram of contact frequency.

Claims (1)

【特許請求の範囲】 1 結合相形成成分として、炭化チタン:1〜20
%、 同じく結合相形成成分として、CoAl、NiAl、
および(Co、Ni)Alのうちの1種または2種以
上からなる金属間化合物:1〜10%、 を含有し、残りが分散相形成成分としての立方晶
窒化硼素と中間層形成成分としての二硼化チタ
ン、並びに不可避不純物(ただし立方晶窒化硼
素:70〜95%含有)からなる組成(以上容量%)
を有すると共に、立方晶窒化硼素と結合相の中間
層としての二硼化チタンの立方晶窒化硼素に対す
る割合が、X線回折により測定した場合、 二硼化チタンの(101)面のピーク高さ/立方晶
窒化硼素の(111)面のピーク高さ=0.1〜0.5、 を満足し、さらに直線上における立方晶窒化硼素
粒子同志の接触数をNcで現わし、かつ同一直線
上における立方晶窒化硼素の結合相との接触数を
Nbで現わした場合、 2Nc/Nb+2Nc=0.05〜0.2 を満足する立方晶窒化硼素の接触頻度を有するこ
とを特徴とする靭性のすぐれた切削工具用立方晶
窒化硼素基超高圧焼結材料。 2 結合相形成成分として、炭化チタン:1〜20
%、 同じく結合相形成成分として、CoAl、NiAl、
および(Co、Ni)Alのうちの1種または2種以
上からなる金属間化合物:1〜10%、 さらに同じく結合相形成成分として、炭窒化チ
タン:1〜10%、 を含有し、残りが分散相形成成分としての立方晶
窒化硼素と中間層形成成分としての二硼化チタ
ン、並びに不可避不純物(ただし立方晶窒化硼
素:70〜95%含有)からなる組成(以上容量%)
を有すると共に、立方晶窒化硼素と結合相の中間
層としての二硼化チタンの立方晶窒化硼素に対す
る割合が、X線回折により測定した場合、 二硼化チタンの(101)面のピーク高さ/立方晶
窒化硼素の(111)面のピーク高さ=0.1〜0.5、 を満足し、さらに直線上における立方晶窒化硼素
粒子同志の接触数をNcで現わし、かつ同一直線
上における立方晶窒化硼素の結合相との接触数を
Nbで現わした場合、 2Nc/Nb+2Nc=0.05〜0.2 を満足する立方晶窒化硼素の接触頻度を有するこ
とを特徴とする靭性のすぐれた切削工具用立方晶
窒化硼素基超高圧焼結材料。
[Claims] 1. Titanium carbide: 1 to 20 as a binder phase forming component
%, CoAl, NiAl,
An intermetallic compound consisting of one or more of (Co, Ni) Al and (Co, Ni) Al: 1 to 10%, and the rest is cubic boron nitride as a dispersed phase forming component and intermetallic compound as an intermediate layer forming component. Composition consisting of titanium diboride and unavoidable impurities (cubic boron nitride: 70-95%) (volume %)
In addition, when the ratio of titanium diboride to cubic boron nitride as an intermediate layer between cubic boron nitride and the binder phase is measured by X-ray diffraction, the peak height of the (101) plane of titanium diboride is /The peak height of the (111) plane of cubic boron nitride = 0.1 to 0.5, and further, the number of contacts between cubic boron nitride particles on a straight line is expressed as Nc, and the cubic boron nitride on the same straight line The number of contacts of boron with the bonded phase is
A cubic boron nitride-based ultra-high pressure sintered material for cutting tools with excellent toughness, characterized in that it has a contact frequency of cubic boron nitride that satisfies 2Nc/Nb+2Nc=0.05 to 0.2 when expressed as Nb. 2 Titanium carbide as a binder phase forming component: 1 to 20
%, CoAl, NiAl,
1 to 10% of an intermetallic compound consisting of one or more of (Co, Ni) Al, and 1 to 10% of titanium carbonitride as a bonding phase forming component, with the remainder being Composition (capacity %) consisting of cubic boron nitride as a dispersed phase forming component, titanium diboride as an intermediate layer forming component, and inevitable impurities (cubic boron nitride: 70 to 95% content)
In addition, when the ratio of titanium diboride to cubic boron nitride as an intermediate layer between cubic boron nitride and the binder phase is measured by X-ray diffraction, the peak height of the (101) plane of titanium diboride is /The peak height of the (111) plane of cubic boron nitride = 0.1 to 0.5, and further, the number of contacts between cubic boron nitride particles on a straight line is expressed as Nc, and the cubic boron nitride on the same straight line The number of contacts of boron with the bonded phase is
A cubic boron nitride-based ultra-high pressure sintered material for cutting tools with excellent toughness, characterized in that it has a contact frequency of cubic boron nitride that satisfies 2Nc/Nb+2Nc=0.05 to 0.2 when expressed as Nb.
JP59000221A 1984-01-06 1984-01-06 Ultra high pressure sintered material consisting essentially of cubic boron nitride for cutting tool and its production Granted JPS60145351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000221A JPS60145351A (en) 1984-01-06 1984-01-06 Ultra high pressure sintered material consisting essentially of cubic boron nitride for cutting tool and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000221A JPS60145351A (en) 1984-01-06 1984-01-06 Ultra high pressure sintered material consisting essentially of cubic boron nitride for cutting tool and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62280628A Division JPS63145726A (en) 1987-11-06 1987-11-06 Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool

Publications (2)

Publication Number Publication Date
JPS60145351A JPS60145351A (en) 1985-07-31
JPS6330983B2 true JPS6330983B2 (en) 1988-06-21

Family

ID=11467905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000221A Granted JPS60145351A (en) 1984-01-06 1984-01-06 Ultra high pressure sintered material consisting essentially of cubic boron nitride for cutting tool and its production

Country Status (1)

Country Link
JP (1) JPS60145351A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005298317A1 (en) * 2004-10-29 2006-05-04 Element Six (Production) (Pty) Ltd Cubic boron nitride compact
IN2012DN05018A (en) * 2010-10-19 2015-10-02 Sumitomo Elec Hardmetal Corp
CN107225238B (en) * 2016-03-23 2018-12-07 香港生产力促进局 A kind of manufacturing method of the mold based on lamination powder pressing forming technique

Also Published As

Publication number Publication date
JPS60145351A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
EP0598140B1 (en) Cubic boron nitride-base sintered ceramics for cutting tool
KR20090091803A (en) Cubic boron nitride compacts
JP5447844B2 (en) High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool
JPS601390B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPH0564691B2 (en)
JP2000044348A (en) High-hardness sintered compact for cutting working of cast iron
JPS644988B2 (en)
JPS6330983B2 (en)
JPS644989B2 (en)
JPS6335591B2 (en)
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPH06198504A (en) Cutting tool for high hardness sintered body
JP2003236710A (en) Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPS58164750A (en) Material sintered under superhigh pressure for cutting tool
JP2002029845A (en) Super-hard sintered compact
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JPS5861253A (en) High toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPH03131573A (en) Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JPH0377151B2 (en)
JPS6241306B2 (en)
JPS62983B2 (en)
JP2003145319A (en) Cutting tip of cubic boron nitride super-high pressure sintered material having excellent chipping resistance