JPH0564691B2 - - Google Patents

Info

Publication number
JPH0564691B2
JPH0564691B2 JP62280628A JP28062887A JPH0564691B2 JP H0564691 B2 JPH0564691 B2 JP H0564691B2 JP 62280628 A JP62280628 A JP 62280628A JP 28062887 A JP28062887 A JP 28062887A JP H0564691 B2 JPH0564691 B2 JP H0564691B2
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
powder
cbn
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62280628A
Other languages
Japanese (ja)
Other versions
JPS63145726A (en
Inventor
Kisho Miwa
Masami Kayukawa
Fumihiko Muroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP62280628A priority Critical patent/JPS63145726A/en
Publication of JPS63145726A publication Critical patent/JPS63145726A/en
Publication of JPH0564691B2 publication Critical patent/JPH0564691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、立方晶窒化硼素(Cubic Boron
Nitride、以下CBNと略記する)の含有量が70容
量%(以下%は容量%を示す)以上と高い超高圧
焼結材料にして、本来CBNによつてもたらされ
るすぐれた特性、すなわち、ダイヤモンドに次ぐ
高硬度、すぐれた化学的安定性、および高い熱伝
導度などを最大限に発揮せしめた状態で、高靭性
と高強度を具備せしめた超高圧焼結材料に係り、
特に苛酷な熱衝撃の加わるダイス鋼や高速度鋼の
断続切削、普通鋳鉄やチルド鋳鉄などの切削速
度:500m/minを越える高速切削、並びにフラ
イス切削などの切削に切削工具として用いた場合
にすぐれた性能を発揮するCBN基超高圧焼結材
料の製造法に関するものである。 〔従来の技術〕 先に、同一出願人は、特願昭56−100980号(特
開昭58−3903号)として、 結合相形成成分として、炭化チタン(以下TiC
で示す)および炭窒化チタン(以下TiCNで示
す)のうちの1種または2種:1〜20%、 同じく結合相形成成分として、CoAl、NiAl、
および(Co、Ni)Alのうちの1種または2種以
上からなる金属間化合物:1〜20%、 CBNおよび不可避不純物:75〜97%、 からなる組成を有する切削工具用CBN基超高圧
焼結材料を出願した。 〔発明が解決しようとする問題点〕 確かに、この先行発明のCBN基超高圧焼結材
料は、ダイス鋼や高速度鋼のフライス切削、並び
に各種難削材の切削に切削工具として用いた場合
にはすぐれた性能を発揮するが、反面、被削材
が、例えば溝付きの高硬度鋼である場合の断続切
削や、切削速度の高速化に伴ない、激しい熱衝撃
が繰り返し付加される条件での切削などに際して
は、十分な靭性および耐摩耗性を示さないもので
あつた。 〔問題点を解決するための手段〕 そこで、本発明者等は、上記の先行発明の
CBN基超高圧焼結材料に比して、すぐれた靭性
を有し、さらに耐摩耗性にもすぐれたCBN基超
高圧焼結材料を製造すべく研究を行なつた結果、 (a) CBNを70%以上含有するCBN基超高圧焼結
材料の場合、相対的に塑性変形能を有する結合
相形成成分の含有量は少なくなることから、そ
の製造に際して、混合工程で機械的混合を充分
に行なつて、結合相形成成分を均一に混合した
としても、充分に個々のCBN粒子の周りを結
合相形成成分で覆うことができないので、超高
圧焼結時に局所的にCBN−CBN粒子同志がブ
リツジを形成してしまい、この部分の局所的な
実効圧力が減じるようになり、この結果CBN
の一部が低圧相である六方晶窒化硼素
(Hexagonal Boron Nitride)に逆変換するこ
と、並びにCBN−CBN粒子ブリツジ間に生じ
る物理的な〓間に、結合相形成成分が廻り込め
ないことに起因してマイクロポアが発生し、粒
界強度が低下するようになること、などが主原
因となつて充分満足する靭性を具備することが
困難となること。 (b) しかし、原料粉末として、平均粒径:10μm
以下のCBN粉末、同0.2μm以下の超微粒TiC粉
末、同1μm以下のTiCN粉末、およびいずれも
同0.3μm以上にして、CBN粉末より粒径が小
さく、かつ1400℃以上の融点をもつた金属間化
合物粉末を用い、これら原料粉末を所定の配合
組成に配合し、混合し、プレス成形にて圧粉体
とした後、この圧粉体を、10-2torr以上の真空
中、1200〜1400℃の範囲内の所定温度に5〜60
分間保持の条件で予備焼結すると、前記金属間
化合物の存在下で、CBN粒子の表面部と超微
粒化により充分に括性化されたTiC粉末との間
で反応が起り、CBN粒子と結合相との中間層
として、その界面に二硼化チタン(以下TiB2
で示す)が形成されるようになり、このTiB2
中間層の形成によつてCBN−CBN粒子同志に
よるブリツジの発生頻度が極力抑制されると同
時に、CBN粒子と結合相との結合が一般と強
固になることから、この後工程で通常の条件で
超高圧焼結を施すと、製造されたCBN基超高
圧焼結材料は著しくすぐれた靭性と高強度をも
つようになること。 以上(a)および(b)に示される知見を得たのであ
る。 この発明は、上記知見にもとづいてなされたも
のであつて、 原料粉末として、平均粒径:10μm以下のCBN
粉末、同0.2μm以下の超微粒TiC粉末、同1μm以
下のTiCN粉末、さらにいずれも平均粒径が0.3μ
m以上にして、前記CBN粉末より微細な、金属
間化合物としてのCoAl粉末、NiAl粉末、および
(Co、Ni)Al粉末を用意し、これら原料粉末を
所定の配合組成に配合し、通常の条件で混合し、
プレス成形して圧粉体とした後、この圧粉体を、
10-2torr以上の真空中、1200〜1400℃の範囲内の
所定温度に5〜60分間保持の条件で予備焼結し、
ついでこの仮焼結体を通常の条件で超高圧焼結す
ることによつて、 結合相形成成分として、TiC:1〜20%、 同じく結合相形成成分として、CoAl、NiAl、
および(Co、Ni)Alのうちの1種または2種以
上からなる金属間化合物:1〜10%、を含有し、
さらに必要に応じて、 結合相形成成分として、TiCN:1〜10%、 を含有し、残りが分散相形成成分としてのCBN
と中間層形成成分としてのTiB2、並びに不可避
不純物(ただしCBN:70〜95%含有)からなる
組成を有すると共に、CBNと結合相の中間層と
してのTiB2のCBNに対する割合が、X線回折に
より測定した場合、 TiB2の(101)面のピーク高さ/CBNの(111)面のピー
ク高さ=0.1〜0.5、 を満足し、さらに直線上におけるCBN粒子同志
の接触数をNcで現わし、かつ同一直線上におけ
るCBNの結合相との接触数をNbで現わした場
合、 2Nc/Nb+2Nc=0.05〜0.2 を満足するCBNの接触頻度を有する靭性のすぐ
れた切削工具用高強度CBN基超高圧焼結材料を
製造する方法に特徴を有するものである。 さらに、この発明のCBN基超高圧焼結材料の
製造法について詳述すれば、原料粉末である超微
粒TiCの粒径は、予備焼結時に、CBN粒子と反
応してTiB2を形成する際の形成量を左右する重
要な因子であつて、十分満足なTiB2の形成量を
確保するためには、平均粒径:0.2μm以下、望ま
しくは0.05〜0.1μmとする必要がある。すなわ
ち、TiCの平均粒径が0.2μmを越えると、CBN粒
子の表面部との反応が不十分となり、CBN−
CBN粒子同志の接触を抑制し、かつCBN粒子と
結合相の結合を強固にする中間層としてのTiB2
の形成が不十分となるからである。また、原料粉
末として超微粒TiC粉末を用いることによつて、
通常の機械的混合によつて個々のCBN粒子の表
面に、これを被覆することが可能となり、これに
よつてもCBN粒子同志の接触頻度を軽減するこ
とができるので、超高圧焼結時におけるマイクロ
ポアの発生が阻止され、かつ局所的な実効圧力の
低下に関してもフイルム状TiCの存在によつて軽
減されるなどの副次的効果が得られるのである。
なお、これに関連して、他の原料粉末の平均粒径
を、それぞれCBN粉末:10μm以下、TiCN:1μ
m以下、および金属間化合物粉末:0.3μm以上と
する必要があるのであつて、いずれの粒径でも前
記粒径を越えると所望の高強度および高靭性を確
保することができなくなるからである。すなわ
ち、構成必須成分であるTiC粉末が平均粒径:
0.2μm以下の超微粉末であるため、他の結合相形
成成分であるTiCN粉末や金属間化合物粉末の粒
度が、それぞれ上記の上限値を越えて粗くなる
と、粉末混合時に活性化したTiC粉末が、それ時
体で凝集してしまつて、均一組織の焼結材料を得
ることができなくなるのである。また、金属間化
合物粉末は、CBN粒子の表面部を反応させる助
剤的役割を担うものであり、したがつてCBN粒
子に対する付きまわりを良くするために、少なく
ともCBN粉末の粒径より細かくする必要がある。
ところが、前記金属間化合物粉末を、機械的粉砕
などで平均粒径:0.3μm未満に微粉砕化すると、
粉砕容器の構成成分が粉砕粉末中に混入するよう
になつて、焼結材料が汚染されるようになるので
好ましくないのである。 さらに、この発明のCBN基超高圧焼結材料の
製造法において、原料粉末として、Co粉末、Ni
粉末、およびAl粉末を用い、これらを適当量配
合し、予備焼結および超高圧焼結を経てCoAl、
NiAl、あるいは(Co、Ni)Alとするのは望まし
くなく、あくまでも原料粉末として、1400℃以上
の融点を有するCoAl、ZiAl、あるいは(Co、
Ni)Alのうちの1種または2種以上からなる金
属間化合物粉末を用いる必要がある。 その第1の理由は、個々の元素形態の金属粉末
の形で配合すると、1200〜1400℃の温度で行なわ
れる予備焼結に際して、低融点を有し、かつ反応
性の大きいAlがすばやく溶融し、直ちにCBN粒
子と液相反応を起してAlNやAlB2を形成してし
まい、超微粒TiC粉末はCBN粒子との反応にあ
ずかることができず、しかもこの結果形成された
AlNは硬さがマイクロビツカース硬さ(MHv)で
1200程度と低く、またAlB2は硬さがMHv:2400
程度と高いものの、非常に脆く、耐熱性に劣るも
のであるため、高硬度および高靭性を有する超高
圧焼結材料を得ることができなくなることにあ
る。ことにAlNは、蒸気圧が高く、かつ安定な
化合物であるために、後工程の超高圧焼結におい
て焼結性阻害因子として働くことと合まつて、こ
れらの化合物の形成は望ましくないのである。 また、第2の理由は、Co−AlおよびNi−Al2
元合金状態図に見られるように、例えば重量割合
でCo/Al=68/32の金属間化合物:CoAlは1645
℃、同じくNi/Al=68/32の金属間化合物:
NiAlは1636℃の高融点を有するので、切削工具
の刃先温度が1000℃を越えるような高温条件下で
使用されても容易に軟化することはなく、これら
金属間化合物のもつすぐれた靭性と合まつて、超
高圧焼結材料はすぐれた高温耐摩耗性と耐溶着性
をもつようになることにある。 さらに、第3の理由は、個々の元素形態の金属
粉末の形で配合した場合、これを平均粒径:0.2μ
m以下を有する超微粒TiC粉末とボールミルなど
の機械的混合によつて充分均一に混合することは
不可能であり、したがつて、これらの元素が焼結
材料中に偏析され易くなるが、金属間化合物の形
で配合すると、粉砕が容易となるばかりでなく、
均一混合が可能となり、焼結性向上に寄与するよ
うになることにある。 以上の結果から、この発明の超高圧焼結材料を
製造するに際しては、原料粉末として金属間化合
物粉末を使用することが不可欠の要件となるので
ある。 また、この発明のCBN基超高圧焼結材料を製
造するに際して、TiB2を予備焼結により形成し
ないで、原料粉末として最初から配合使用するこ
とも考えられるが、TiB2粉末を配合した場合、 (a) TiB2粉末が超微粒TiCと共に均一に分散し
てしまい、CBN粒子に対する結合相の結合効
果が低減する。 (b) 超微粒のTiB2粉末を得ることはきわめて難
かしく、したがつて比較的粗粒のTiB2粉末を
使用することになるが、TiB2粉末自体きわめ
て硬質であるために、微粉化が困難であること
から、緻密な焼結材料を製造することができ
ず、さらに粒度の細かい混合粉末を得るため、
長時間粉砕を施した場合、TiB2粉末が硬いこ
とに原因して、粉砕容器を構成する成分によつ
て焼結材料が汚染されるようになり、脆化をき
たすようになる。 などの問題点の発生を避けることができないの
で、原料粉末としてTiB2粉末を配合するのは望
ましくなく、あくまで、CBN粒子と超微粒TiC
粉末との反応によつて、CBN粒子と結合相との
中間層としてTiB2を形成し、CBN−CBN粒子同
志の接触を抑制し、かつCBN粒子と結合相との
結合強度を向上させるようにする必要がある。 つぎに、この発明のCBN基超高圧焼結材料に
関して、予備焼結条件および成分組成を上記の通
りに限定した理由を説明する。 A 予備焼結条件 CBN粒子の一部を分解してBとNを生成さ
せ、かつ超微粒TiCを活性化し、もつてCBN
粒子と結合相の中間層を組成するTiB2を効率
よく形成するためには、予備焼結雰囲気の真空
度を10-2torr以上、望ましくは10-4Torr以上の
高真空にする必要があるのであつて、10-2torr
未満の低真空ではTiB2の効率的形成ができな
いものであり、このことは予備焼結温度にも云
えることで、1200℃未満の温度では十分な
TiB2の形成は望めない。一方予備焼結温度が
1400℃を越えると、CBNが六方晶系に逆変換
し、CBN粒子のもつすぐれた特性を発揮する
ことができなくなるのである。また、予備焼結
時間についても、その保持時間が5分未満では
TiB2の形成量が十分でなく、一方60分を越え
た長時間保持すると、TiB2の形成量が多くな
りすぎて焼結材料の靭性、特に耐欠損性が劣化
するようになることから、その保持時間を5〜
60分と定めた。 B 成分組成 (a) CBN CBNは分散相を形成し、これ自体のもつ
高硬度すぐれた化学的安定性、および高い熱
伝導度によつて、焼結材料がこれらのすぐれ
た特性を具備するようになるが、その含有量
が70%未満では焼結材料に前記の特性を十分
に付与せしめることができず、一方95%を越
えて含有させると、焼結性が著しく劣化し、
CBN粒子が脱落し易くなり、耐摩耗性の著
しい劣化を招くようになることから、その含
有量を70〜95%と定めた。 (b) TiC TiCは、それ自体高融点および高硬度を有
し、焼結材料の耐摩耗性および耐熱性を向上
させる作用があるほか、上記のように予備焼
結時にCBN粒子と反応して、靭性劣化の原
因となるCBN−CBN粒子同志のブリツジ形
成を抑制し、かつCBN粒子と結合相との結
合を向上させるTiB2を形成する作用がある
が、その含有量が1%未満では前記作用に所
望の効果が得られず、一方20%を越えて含有
させると、焼結材料の硬さが低下するように
なると共に、脆化傾向が現われるようになる
ことから、その含有量を1〜20%と定めた。 (c) 金属間化合物 これらの成分には、予備焼結時における
CBN粒子と超微粒TiC粉末との反応を促進
する作用があるほか、これ自体のもつ高靭
性、並びにすぐれた高温耐摩耗性および耐溶
着性によつて、焼結材料にこれらの特性を付
与する作用があるが、その含有量が1%未満
では前記作用に所望の効果が得られず、一方
10%を越えて含有させると、焼結材料に硬さ
低下傾向が現われるようになり、実用に際し
て耐摩耗性が低下するようになることから、
その含有量を1〜10%と定めた。 (d) TiCN TiCNには焼結材料の耐熱性を著しく向上
させる作用があり、したがつて特に高温加熱
を伴う切削条件下で使用される場合に、必要
に応じて含有されるが、その含有量が1%未
満では所望の耐熱性向上効果が得られず、一
方10%を越えて含有させると、TiCの場合と
同様に焼結材料の硬さが低下し、かつ脆化す
るようになることから、その含有量を1〜10
%と定めた。 (e) TiB2 TiB2は、上記の通り予備焼結時にCBN粒
子と結合相の中間層として形成されるもので
あつて、CBN−CBN粒子同志のブリツジ形
成に帰因するCBNの六方晶系への逆変換お
よびマイクロポアの発生を抑制して焼結材料
の靭性を向上させ、かつCBN粒子と結合相
との結合強度を高める作用がある。しかし、
このTiB2の形成量はきわめて微量であつて、
定量的分析および顕微鏡観察では測定不能で
あるので、その形成量をX線回折により測定
した。すなわち、X線回折において、CBN
の(111)面に現われるピーク高さ(以下Xc
で示す)とTiB2の(101)面に現われるピー
ク高さ(以下Xtで示す)を測定し、Xt/Xc
の割合でもつて現わした。したがつてXt/
Xcの比が0.1未満ではTiB2の形成量が少なす
ぎて前記作用に所望の効果が得られず、一方
その比が0.5を越えると、TiB2の形成量が多
くなりすぎて靭性、特に耐欠損性が低下する
ようになるのでTiB2の含有量を、Xt/Xcの
比で0.1〜0.5と定めた。 (f) CBNの接触頻度 上記の様にCBN粒子同志の接触が抑制さ
れなければ高靭性と高強度をもつた焼結材料
を得ることができないので、WC−Co系超硬
合金などにおいて用いられている粒子の接触
頻度を用いて、CBN粒子の接触頻度を限定
した。すなわち、第1図に示されるように、
直線上におけるCBN粒子同志の接触点(●
印)の数:Ncと、同一直線上におけるCBN
粒子の結合相との接触点(〇印)の数:Nb
とを測定し、式: 2Nc/Nb+2Nc によつて算出される値をCBN粒子の接触頻
度とした。したがつて、この値が0.2を越え
ると、CBN粒子同志の接触が多くなりすぎ
て、所望の高靭性および高強度を有する焼結
材料を得ることができず、一方その値が0.05
未満では、過剰な予備焼結が行なわれ、
TiB2の形成量が実質的に多くなり過ぎ、反
面CBN粒子自体が細くやせてしまうことに
なり、この結果CBN粒子によつてもたらさ
れる特性に劣化傾向が現われるようになるこ
とから、その値、すなわちCBNの接触頻度
を0.05〜0.2と定めた。 なお、この発明のCBN基超高圧焼結材料を製
造するに際して採用される超高圧焼結条件は、圧
力:70ton/cm2、温度:1200〜1500℃、保持時
間:10〜60分の通常の条件である。 〔実施例〕 つぎに、この発明の方法を実施例により具体的
に説明する。 原料粉末として、平均粒径:3μmのCBN粉末、
同0.08μmの化学気相蒸着法により形成された
TiC粉末、同0.8μmのTiCN粉末、同1μmのCoAl
粉末(Co/Al=70/30、重量比、以下同じ)、同
1μmのNiAl粉末(Ni/Al=70/30)、同1μmの
(Co、Ni)Al粉末(Co/Ni/Al=35/35/30)
を用意し、これら原料粉末を第1表に示される配
合組成に配合し、ボールミルにて混合した後、
2ton/cm2の圧力にて、直径:10mmφ×厚さ:1mm
の寸法をもつた円板状圧粉体に成形し、ついで、
この圧粉体の一部を同じく第1表に示される条件
で真空炉内で予備焼結して仮焼結体とし、
[Industrial Application Field] This invention is based on cubic boron nitride.
This is an ultra-high pressure sintered material with a high content of Nitride (hereinafter abbreviated as CBN) of over 70% by volume (hereinafter % indicates volume%), and the excellent properties originally brought about by CBN, that is, diamond. This is an ultra-high pressure sintered material that has the second highest hardness, excellent chemical stability, high thermal conductivity, and has high toughness and strength.
Excellent when used as a cutting tool for intermittent cutting of die steel and high-speed steel, which are particularly subject to severe thermal shock, high-speed cutting of ordinary cast iron and chilled cast iron, etc. at a cutting speed exceeding 500 m/min, and cutting such as milling. This paper relates to a method for manufacturing CBN-based ultra-high pressure sintered materials that exhibit excellent performance. [Prior art] Previously, the same applicant disclosed in Japanese Patent Application No. 56-100980 (Japanese Unexamined Patent Publication No. 58-3903) that titanium carbide (hereinafter referred to as TiC) was used as a binder phase forming component.
) and titanium carbonitride (hereinafter referred to as TiCN): 1 to 20%; CoAl, NiAl,
CBN-based ultra-high pressure sintering for cutting tools with a composition consisting of an intermetallic compound consisting of one or more of (Co, Ni) Al and (Co, Ni) Al: 1 to 20%, CBN and unavoidable impurities: 75 to 97%. I applied for a binding material. [Problems to be solved by the invention] It is true that the CBN-based ultra-high pressure sintered material of this prior invention has problems when used as a cutting tool for milling die steel and high-speed steel, as well as cutting various difficult-to-cut materials. However, on the other hand, it can be used in interrupted cutting when the workpiece is made of grooved high-hardness steel, or in conditions where severe thermal shock is repeatedly applied as the cutting speed increases. It did not exhibit sufficient toughness and abrasion resistance when being cut with a treadmill or the like. [Means for solving the problem] Therefore, the present inventors have solved the above-mentioned prior invention.
As a result of research to produce a CBN-based ultra-high pressure sintered material that has superior toughness and wear resistance compared to CBN-based ultra-high pressure sintered materials, we found that (a) CBN In the case of CBN-based ultra-high pressure sintered materials containing 70% or more, the content of binder phase-forming components that have plastic deformability is relatively small, so sufficient mechanical mixing must be carried out in the mixing process during production. Even if the binder phase-forming components are mixed uniformly, it is not possible to sufficiently cover each CBN particle with the binder phase-forming component, so that CBN-CBN particles may locally bridge together during ultra-high pressure sintering. is formed, and the local effective pressure in this area is reduced, resulting in CBN
This is due to the fact that a part of the CBN is converted back into hexagonal boron nitride, which is a low-pressure phase, and that the binder phase forming components cannot go around the physical gap that occurs between CBN and CBN particle bridges. The main causes of this are the generation of micropores and a decrease in grain boundary strength, which makes it difficult to provide sufficient toughness. (b) However, as a raw material powder, average particle size: 10 μm
The following CBN powders, ultrafine TiC powders of 0.2 μm or less, TiCN powders of 1 μm or less, and metals with particle sizes smaller than CBN powders and melting points of 1400°C or higher, all of which are 0.3 μm or more. Using intermediate compound powder, these raw material powders are blended into a predetermined composition, mixed , and press-molded to form a green compact. 5 to 60℃ to a specified temperature within the range of
When pre-sintering is carried out under conditions of holding for a minute, in the presence of the intermetallic compound, a reaction occurs between the surface of the CBN particles and the TiC powder, which has been sufficiently sintered by ultra-fine granulation, and bonds with the CBN particles. Titanium diboride (hereinafter referred to as TiB 2
) is now formed, and this TiB 2
By forming the intermediate layer, the frequency of bridging caused by CBN-CBN particles is suppressed as much as possible, and at the same time, the bond between the CBN particles and the binder phase becomes generally strong. When subjected to ultra-high pressure sintering, the manufactured CBN-based ultra-high pressure sintered material has significantly superior toughness and high strength. The findings shown in (a) and (b) above were obtained. This invention was made based on the above knowledge, and uses CBN with an average particle size of 10 μm or less as a raw material powder.
Powder, ultra-fine TiC powder of 0.2 μm or less, TiCN powder of 1 μm or less, and all with an average particle size of 0.3 μm.
CoAl powder, NiAl powder, and (Co, Ni)Al powder as intermetallic compounds, which are finer than the CBN powder, are prepared, and these raw material powders are blended into a predetermined composition, and then heated under normal conditions. Mix with
After press-forming to make a green compact, this green compact is
Preliminary sintering is carried out in a vacuum of 10 -2 torr or more at a predetermined temperature within the range of 1200 to 1400°C for 5 to 60 minutes,
Next, by sintering this pre-sintered body under ultra-high pressure under normal conditions, TiC: 1 to 20% as a binder phase forming component, CoAl, NiAl,
and an intermetallic compound consisting of one or more of (Co, Ni) Al: 1 to 10%,
Furthermore, if necessary, TiCN: 1 to 10% is contained as a binder phase forming component, and the remainder is CBN as a dispersed phase forming component.
It has a composition consisting of TiB 2 as an intermediate layer forming component, and unavoidable impurities (CBN: 70 to 95% content), and the ratio of TiB 2 to CBN as an intermediate layer between CBN and a binder phase is determined by X-ray diffraction. When measured by, the peak height of the (101) plane of TiB 2 / the peak height of the (111) plane of CBN = 0.1 to 0.5, and the number of contacts between CBN particles on a straight line is expressed by Nc. A high-strength CBN base for cutting tools with excellent toughness that has a CBN contact frequency that satisfies 2Nc/Nb+2Nc=0.05 to 0.2, where the number of contacts of CBN with the binder phase on the same straight line is expressed as Nb. This method is characterized by a method of manufacturing ultra-high pressure sintered material. Furthermore, in detailing the manufacturing method of the CBN-based ultra-high pressure sintered material of the present invention, the particle size of the ultra-fine TiC that is the raw material powder is such that it reacts with CBN particles to form TiB 2 during preliminary sintering. is an important factor that influences the amount of TiB 2 formed, and in order to ensure a sufficiently satisfactory amount of TiB 2 formed, the average particle size must be 0.2 μm or less, preferably 0.05 to 0.1 μm. In other words, when the average particle size of TiC exceeds 0.2 μm, the reaction with the surface of CBN particles becomes insufficient, and CBN-
TiB 2 as an intermediate layer that suppresses contact between CBN particles and strengthens the bond between CBN particles and the binder phase.
This is because the formation of is insufficient. In addition, by using ultrafine TiC powder as the raw material powder,
It is possible to coat the surfaces of individual CBN particles through normal mechanical mixing, and this also reduces the frequency of contact between CBN particles, so it is possible to reduce the frequency of contact between CBN particles during ultra-high pressure sintering. The generation of micropores is prevented, and the presence of the film-like TiC also provides secondary effects such as reducing the local effective pressure drop.
In connection with this, the average particle diameters of other raw material powders were set to 10μm or less for CBN powder and 1μm for TiCN.
The particle size of the intermetallic compound powder needs to be 0.3 μm or less, and if any particle size exceeds the above-mentioned particle size, it will not be possible to secure the desired high strength and high toughness. In other words, the average particle size of TiC powder, which is an essential component, is:
Since it is an ultrafine powder of 0.2 μm or less, if the particle size of TiCN powder or intermetallic compound powder, which are other binder phase forming components, becomes coarser than the above upper limit, the TiC powder activated during powder mixing will At that time, they aggregate in the body, making it impossible to obtain a sintered material with a uniform structure. In addition, the intermetallic compound powder plays the role of an auxiliary agent that causes the surface part of the CBN particles to react, and therefore, in order to improve the coverage of the CBN particles, it is necessary to make the particle size at least smaller than that of the CBN powder. There is.
However, when the intermetallic compound powder is pulverized to an average particle size of less than 0.3 μm by mechanical pulverization or the like,
This is undesirable because the constituent components of the grinding vessel become mixed into the ground powder and the sintered material becomes contaminated. Furthermore, in the method for producing the CBN-based ultra-high pressure sintered material of the present invention, Co powder, Ni
CoAl powder and Al powder are mixed in appropriate amounts and subjected to preliminary sintering and ultra-high pressure sintering to produce CoAl,
It is undesirable to use NiAl or (Co, Ni)Al, and only use CoAl, ZiAl, or (Co, Ni), which has a melting point of 1400℃ or higher, as a raw material powder.
It is necessary to use an intermetallic compound powder consisting of one or more of Ni)Al. The first reason is that when mixed in the form of metal powder in the form of individual elements, Al, which has a low melting point and is highly reactive, melts quickly during preliminary sintering at a temperature of 1200 to 1400°C. , a liquid phase reaction immediately occurred with the CBN particles to form AlN and AlB 2 , and the ultrafine TiC powder could not participate in the reaction with the CBN particles, and as a result,
The hardness of AlN is microbits hardness ( M Hv).
The hardness of AlB 2 is low at around 1200, and the hardness of AlB 2 is M Hv: 2400.
Although it is of a high degree, it is very brittle and has poor heat resistance, making it impossible to obtain an ultra-high pressure sintered material with high hardness and high toughness. In particular, since AlN is a stable compound with high vapor pressure, the formation of these compounds is undesirable since it acts as a sinterability inhibiting factor in the ultra-high pressure sintering process in the subsequent process. . The second reason is that Co-Al and Ni-Al2
As seen in the original alloy phase diagram, for example, an intermetallic compound with a weight ratio of Co/Al = 68/32: CoAl is 1645
℃, also an intermetallic compound with Ni/Al = 68/32:
NiAl has a high melting point of 1636°C, so it does not easily soften even when used under high-temperature conditions where the cutting tool edge temperature exceeds 1000°C. Moreover, the ultra-high pressure sintered material has excellent high-temperature wear resistance and welding resistance. Furthermore, the third reason is that when compounded in the form of metal powder in the form of individual elements, the average particle size: 0.2μ
It is impossible to sufficiently uniformly mix ultrafine TiC powder having a particle size of less than When mixed in the form of an intermediate compound, it not only becomes easier to grind, but also
The purpose is to enable uniform mixing and contribute to improved sinterability. From the above results, when producing the ultra-high pressure sintered material of the present invention, it is essential to use intermetallic compound powder as the raw material powder. In addition, when manufacturing the CBN-based ultra-high pressure sintered material of the present invention, it is possible to mix and use TiB 2 as a raw material powder from the beginning without forming it by preliminary sintering, but if TiB 2 powder is mixed, (a) TiB 2 powder is uniformly dispersed together with ultrafine TiC particles, reducing the binding effect of the binder phase on CBN particles. (b) It is extremely difficult to obtain ultra-fine TiB 2 powder, so relatively coarse-grained TiB 2 powder is used, but since TiB 2 powder itself is extremely hard, pulverization is difficult. Due to the difficulty, it was not possible to produce a dense sintered material, and in order to obtain a mixed powder with even finer grain size,
If pulverization is carried out for a long time, the sintered material becomes contaminated with the components constituting the pulverization container due to the hardness of the TiB 2 powder, resulting in embrittlement. It is undesirable to mix TiB 2 powder as a raw material powder because problems such as
By reacting with the powder, TiB 2 is formed as an intermediate layer between the CBN particles and the binder phase, suppressing contact between CBN and CBN particles, and improving the bonding strength between the CBN particles and the binder phase. There is a need to. Next, regarding the CBN-based ultra-high pressure sintered material of the present invention, the reason why the preliminary sintering conditions and component composition are limited as described above will be explained. A Preliminary sintering conditions A part of CBN particles is decomposed to generate B and N, and ultrafine TiC particles are activated.
In order to efficiently form TiB 2 , which composes the intermediate layer between the particles and the binder phase, the degree of vacuum in the pre-sintering atmosphere must be at a high vacuum of 10 -2 Torr or higher, preferably 10 -4 Torr or higher. Therefore, 10 -2 torr
TiB 2 cannot be formed efficiently at low vacuums below 1200°C, and this also applies to the pre-sintering temperature.
Formation of TiB 2 cannot be expected. On the other hand, the pre-sintering temperature is
When the temperature exceeds 1,400°C, CBN transforms back into a hexagonal system and is no longer able to exhibit the excellent properties of CBN particles. Also, regarding the preliminary sintering time, if the holding time is less than 5 minutes,
If the amount of TiB 2 formed is insufficient and on the other hand held for a long time exceeding 60 minutes, the amount of TiB 2 formed will be too large and the toughness of the sintered material, especially the fracture resistance, will deteriorate. Its retention time is 5~
It was set as 60 minutes. B Composition (a) CBN CBN forms a dispersed phase, and its own high hardness, excellent chemical stability, and high thermal conductivity make it possible for sintered materials to possess these excellent properties. However, if the content is less than 70%, it will not be possible to sufficiently impart the above characteristics to the sintered material, while if the content exceeds 95%, the sinterability will deteriorate significantly,
The content was set at 70-95% because CBN particles tend to fall off and cause a significant deterioration of wear resistance. (b) TiC TiC itself has a high melting point and high hardness, and has the effect of improving the wear resistance and heat resistance of sintered materials.As mentioned above, TiC reacts with CBN particles during pre-sintering. , has the effect of suppressing bridge formation between CBN-CBN particles, which causes toughness deterioration, and forming TiB 2 , which improves the bonding between CBN particles and the binder phase, but if the content is less than 1%, the above-mentioned On the other hand, if the content exceeds 20%, the hardness of the sintered material will decrease and a tendency to embrittlement will appear, so the content should be reduced to 1%. ~20%. (c) Intermetallic compounds These components include
In addition to promoting the reaction between CBN particles and ultrafine TiC powder, it imparts these properties to sintered materials due to its own high toughness and excellent high-temperature wear resistance and welding resistance. However, if the content is less than 1%, the desired effect cannot be obtained;
If the content exceeds 10%, the hardness of the sintered material will tend to decrease, and the wear resistance will decrease in practical use.
Its content was set at 1-10%. (d) TiCN TiCN has the effect of significantly improving the heat resistance of sintered materials, and therefore is included as necessary, especially when used under cutting conditions that involve high-temperature heating. If the amount is less than 1%, the desired effect of improving heat resistance cannot be obtained, while if the content exceeds 10%, the hardness of the sintered material decreases and becomes brittle, as in the case of TiC. Therefore, the content is 1 to 10
%. (e) TiB 2 TiB 2 is formed as an intermediate layer between CBN particles and the binder phase during pre-sintering as described above, and is a hexagonal crystal system of CBN resulting from bridge formation between CBN-CBN particles. It has the effect of improving the toughness of the sintered material by suppressing the reverse conversion to CBN and the generation of micropores, and increasing the bond strength between CBN particles and the binder phase. but,
The amount of TiB 2 formed is extremely small,
Since it cannot be measured by quantitative analysis or microscopic observation, the amount formed was measured by X-ray diffraction. That is, in X-ray diffraction, CBN
The peak height appearing on the (111) plane (hereinafter referred to as Xc
) and the peak height (hereinafter referred to as Xt) that appears on the (101) plane of TiB 2 , and calculate Xt/Xc.
It also appeared at a rate of . Therefore, Xt/
If the ratio of The content of TiB 2 was determined to be 0.1 to 0.5 in terms of the Xt/Xc ratio, since this reduces the defectiveness. (f) Contact frequency of CBN If the contact between CBN particles is not suppressed as described above, it is not possible to obtain a sintered material with high toughness and strength. The contact frequency of CBN particles was limited using the contact frequency of the particles. That is, as shown in Figure 1,
Point of contact between CBN particles on a straight line (●
Number of marks): Nc and CBN on the same straight line
Number of contact points (○ marks) of particles with the binder phase: Nb
The value calculated by the formula: 2Nc/Nb+2Nc was taken as the contact frequency of CBN particles. Therefore, if this value exceeds 0.2, there will be too much contact between CBN particles, making it impossible to obtain a sintered material with the desired high toughness and strength;
If it is less than
The amount of TiB 2 formed becomes substantially too large, and on the other hand, the CBN particles themselves become thinner and thinner, and as a result, the properties provided by the CBN particles tend to deteriorate. In other words, the CBN contact frequency was set at 0.05 to 0.2. The ultra-high-pressure sintering conditions used to produce the CBN-based ultra-high-pressure sintered material of this invention are: pressure: 70 ton/cm 2 , temperature: 1200-1500°C, holding time: 10-60 minutes. It is a condition. [Example] Next, the method of the present invention will be specifically explained with reference to Examples. As raw material powder, CBN powder with average particle size: 3μm,
Formed by chemical vapor deposition with a thickness of 0.08μm
TiC powder, 0.8μm TiCN powder, 1μm CoAl
Powder (Co/Al=70/30, weight ratio, same below),
1μm NiAl powder (Ni/Al=70/30), 1μm (Co, Ni)Al powder (Co/Ni/Al=35/35/30)
were prepared, these raw material powders were blended into the composition shown in Table 1, and after mixing in a ball mill,
At a pressure of 2ton/ cm2 , diameter: 10mmφ x thickness: 1mm
Formed into a disc-shaped green compact with dimensions, then,
A part of this green compact is pre-sintered in a vacuum furnace under the conditions shown in Table 1 to obtain a temporary sintered body.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜20に
よつて製造されたCBN基超高圧焼結材料は、い
ずれも予備焼結を行なわず、したがつてTiB2
形成がない比較法1〜20によつて製造された
CBN基超高圧焼結材料に比して、高硬度鋼の高
速切削および断続切削に際して、すぐれた耐摩耗
性および耐衝撃性(靭性)を示すことが明らかで
ある。 上述のように、この発明の方法によれば、
CBN粒子と結合相の中間層としてのTiB2の存在
によつて、高硬度、高靭性、および高強度を有す
るCBN基超高圧焼結材料を製造することができ、
したがつて、これをダイス鋼や高速度鋼などの高
硬度鋼のフライス切削は勿論のこと、苛酷な熱衝
撃の加わる前記高硬度鋼の断続切削、さらに普通
鋳鉄やチルド鋳鉄などの切削速度:500m/min
を越える高速切削などに切削工具として用いた場
合に著しく長期に亘つてすぐれた性能を発揮する
のである。
From the results shown in Table 1, it can be seen that the CBN-based ultra-high pressure sintered materials produced by methods 1 to 20 of the present invention do not undergo any preliminary sintering, and therefore, compared to the comparative method in which no TiB 2 is formed. Manufactured by 1-20
It is clear that compared to CBN-based ultra-high pressure sintered materials, it exhibits superior wear resistance and impact resistance (toughness) during high-speed cutting and interrupted cutting of high-hardness steel. As mentioned above, according to the method of this invention,
Due to the presence of TiB2 as an intermediate layer between CBN particles and the binder phase, CBN-based ultra-high pressure sintered materials with high hardness, high toughness, and high strength can be produced,
Therefore, this can be applied not only to milling of high-hardness steel such as die steel and high-speed steel, but also to interrupted cutting of the above-mentioned high-hardness steel, which is subject to severe thermal shock, as well as cutting speeds of ordinary cast iron, chilled cast iron, etc. 500m/min
When used as a cutting tool for high-speed cutting, etc., it exhibits excellent performance over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCBN基超高圧焼結材料におけるCBN
の接触頻度の説明図である。
Figure 1 shows CBN in CBN-based ultra-high pressure sintered materials.
FIG. 2 is an explanatory diagram of contact frequency.

Claims (1)

【特許請求の範囲】 1 原料粉末として、平均粒径:10μm以下の立
方晶窒化硼素粉末、同0.2μm以下の超微粒炭化チ
タン粉末、さらにいずれも平均粒径が0.3μm以上
にして、前記立方晶窒化硼素粉末より微細な金属
間化合物粉末であるCoAl粉末、NiAl粉末、およ
び(Co、Ni)Al粉末を用意し、これら原料粉末
を所定の配合組成に配合し、通常の条件で混合
し、プレス成形した後、この結果得られた圧粉体
を、10-2torr以上の真空中、1200〜1400℃の温度
範囲内の所定温度に5〜60分の範囲内の時間保持
の条件で予備焼結して、前記金属間化合物の存在
下で、立方晶窒化硼素と超微粒炭化チタンとを充
分に反応させて、立方晶窒化硼素と結合相の中間
層を構成する二硼化チタンを形成し、ついで、こ
の仮焼結体を、超高圧装置を用い、通常の条件で
超高圧焼結することによつて、 結合相形成成分として、炭化チタン:1〜20
%、 同じく結合相形成成分として、CoAl、NiAl、
および(Co、Ni)Alのうちの1種または2種以
上からなる金属間化合物:1〜10%、を含有し、
残りが分散相形成成分としての立方晶窒化硼素と
中間層形成成分としての二硼化チタン、並びに不
可避不純物(ただし立方晶窒化硼素:70〜95%含
有)からなる組成(以上容量%)を有すると共
に、立方晶窒化硼素と結合相の中間層としての二
硼化チタンの立方晶窒化硼素に対する割合が、X
線回折により測定した場合、 二硼化チタンの(101)面のピーク高さ/立方晶窒化硼
素の(111)面のピーク高さ =0.1〜0.5、 を満足し、さらに直線上における立方晶窒化硼素
粒子同志の接触数をNcで現わし、かつ同一直線
上における立方晶窒化硼素の結合相との接触数を
Nbで現わした場合、 2Nc/Nb+2Nc=0.05〜0.2 を満足する立方晶窒化硼素の接触頻度を有する立
方晶窒化硼素基超高圧焼結材料を製造することを
特徴とする靭性のすぐれた切削工具用立方晶窒化
硼素基超高圧焼結材料の製造法。 2 原料粉末として、平均粒径:10μm以下の立
方晶窒化硼素粉末、同0.2μm以下の超微粒炭化チ
タン粉末、同1μm以下の炭窒化チタン粉末、さ
らにいずれも平均粒径が0.3μm以上にして、前記
立方晶窒化硼素粉末より微細な金属間化合物粉末
であるCoAl粉末、NiAl粉末、および(Co、Ni)
Al粉末を用意し、これら原料粉末を所定の配合
組成に配合し、通常の条件で混合し、プレス成形
した後、この結果得られた圧粉体を、10-2torr以
上の真空中、1200〜1400℃の温度範囲内の所定温
度に5〜60分の範囲内の時間保持の条件で予備焼
結して、前記金属間化合物の存在下で、立方晶窒
化硼素と超微粒炭化チタンとを充分に反応させ
て、立方晶窒化硼素と結合相の中間層を構成する
二硼化チタンを形成し、ついで、この仮焼結体
を、超高圧装置を用い、通常の条件で超高圧焼結
することによつて、 結合相形成成分として、炭化チタン:1〜20
%、 同じく結合相形成成分として、CoAl、NiAl、
および(Co、Ni)Alのうちの1種または2種以
上からなる金属間化合物:1〜10%、 さらに同じく結合相形成成分として、炭窒化チ
タン:1〜10%、 を含有し、残りが分散相形成成分としての立方晶
窒化硼素と中間層形成成分としての二硼化チタ
ン、並びに不可避不純物(ただし立方晶窒化硼
素:70〜95%含有)からなる組成(以上容量%)
を有すると共に、立方晶窒化硼素と結合相の中間
層としての二硼化チタンの立方晶窒化硼素に対す
る割合が、X線回折により測定した場合、 二硼化チタンの(101)面のピーク高さ/立方晶窒化硼
素の(111)面のピーク高さ =0.1〜0.5、 を満足し、さらに直線上における立方晶窒化硼素
粒子同志の接触数をNcで現わし、かつ同一直線
上における立方晶窒化硼素の結合相との接触数を
Nbで現わした場合、 2Nc/Nb+2Nc=0.05〜0.2 を満足する立方晶窒化硼素の接触頻度を有する立
方晶窒化硼素基超高圧焼結材料を製造することを
特徴とする靭性のすぐれた切削工具用立方晶窒化
硼素基超高圧焼結材料の製造法。
[Scope of Claims] 1. As raw material powders, cubic boron nitride powder with an average particle size of 10 μm or less, ultrafine titanium carbide powder with an average particle size of 0.2 μm or less, and furthermore, the cubic boron nitride powder has an average particle size of 0.3 μm or more. CoAl powder, NiAl powder, and (Co, Ni)Al powder, which are intermetallic compound powders finer than crystalline boron nitride powder, are prepared, and these raw material powders are blended into a predetermined composition and mixed under normal conditions. After press forming, the resulting green compact is preliminarily maintained at a predetermined temperature within a temperature range of 1200 to 1400°C for a period of 5 to 60 minutes in a vacuum of 10 -2 torr or more. Sintering to sufficiently react cubic boron nitride and ultrafine titanium carbide in the presence of the intermetallic compound to form titanium diboride that constitutes an intermediate layer between the cubic boron nitride and the binder phase. Then, this pre-sintered body is subjected to ultra-high pressure sintering using an ultra-high pressure device under normal conditions to obtain titanium carbide: 1 to 20% as a binder phase forming component.
%, CoAl, NiAl,
and an intermetallic compound consisting of one or more of (Co, Ni) Al: 1 to 10%,
The remainder has a composition (volume %) consisting of cubic boron nitride as a dispersed phase forming component, titanium diboride as an intermediate layer forming component, and unavoidable impurities (cubic boron nitride: 70 to 95% content). In addition, the ratio of titanium diboride as an intermediate layer between cubic boron nitride and the binder phase to cubic boron nitride is
When measured by line diffraction, the peak height of the (101) plane of titanium diboride/the peak height of the (111) plane of cubic boron nitride = 0.1 to 0.5, and the cubic nitridation on a straight line The number of contacts between boron particles is expressed as Nc, and the number of contacts with the bonding phase of cubic boron nitride on the same straight line is expressed as:
A cutting tool with excellent toughness characterized by producing a cubic boron nitride-based ultra-high pressure sintered material having a cubic boron nitride contact frequency satisfying 2Nc/Nb+2Nc=0.05 to 0.2 when expressed in Nb. A manufacturing method for cubic boron nitride-based ultra-high pressure sintered materials. 2. As raw material powders, cubic boron nitride powder with an average particle size of 10 μm or less, ultrafine titanium carbide powder with an average particle size of 0.2 μm or less, and titanium carbonitride powder with an average particle size of 1 μm or less, all of which have an average particle size of 0.3 μm or more. , CoAl powder, NiAl powder, and (Co, Ni) which are intermetallic compound powders finer than the cubic boron nitride powder.
After preparing Al powder, blending these raw material powders into a predetermined composition, mixing under normal conditions, and press forming, the resulting green compact is heated at 1200 m Cubic boron nitride and ultrafine titanium carbide are pre-sintered at a predetermined temperature in the temperature range of ~1400°C for a period of 5 to 60 minutes to form cubic boron nitride and ultrafine titanium carbide in the presence of the intermetallic compound. A sufficient reaction is caused to form titanium diboride, which constitutes an intermediate layer between the cubic boron nitride and the binder phase.Then, this pre-sintered body is subjected to ultra-high pressure sintering under normal conditions using an ultra-high pressure device. By doing so, titanium carbide: 1 to 20 as a binder phase forming component.
%, CoAl, NiAl,
1 to 10% of an intermetallic compound consisting of one or more of (Co, Ni) Al, and 1 to 10% of titanium carbonitride as a bonding phase forming component, with the remainder being Composition (capacity %) consisting of cubic boron nitride as a dispersed phase forming component, titanium diboride as an intermediate layer forming component, and inevitable impurities (cubic boron nitride: 70 to 95% content)
In addition, when the ratio of titanium diboride to cubic boron nitride as an intermediate layer between cubic boron nitride and the binder phase is measured by X-ray diffraction, the peak height of the (101) plane of titanium diboride is /The peak height of the (111) plane of cubic boron nitride = 0.1 to 0.5, and further, the number of contacts between cubic boron nitride particles on a straight line is expressed as Nc, and the cubic boron nitride on the same straight line The number of contacts of boron with the bonded phase is
A cutting tool with excellent toughness characterized by producing a cubic boron nitride-based ultra-high pressure sintered material having a cubic boron nitride contact frequency satisfying 2Nc/Nb+2Nc=0.05 to 0.2 when expressed in Nb. A manufacturing method for cubic boron nitride-based ultra-high pressure sintered materials.
JP62280628A 1987-11-06 1987-11-06 Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool Granted JPS63145726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280628A JPS63145726A (en) 1987-11-06 1987-11-06 Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280628A JPS63145726A (en) 1987-11-06 1987-11-06 Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59000221A Division JPS60145351A (en) 1984-01-06 1984-01-06 Ultra high pressure sintered material consisting essentially of cubic boron nitride for cutting tool and its production

Publications (2)

Publication Number Publication Date
JPS63145726A JPS63145726A (en) 1988-06-17
JPH0564691B2 true JPH0564691B2 (en) 1993-09-16

Family

ID=17627697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280628A Granted JPS63145726A (en) 1987-11-06 1987-11-06 Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool

Country Status (1)

Country Link
JP (1) JPS63145726A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA975386B (en) * 1996-07-03 1998-01-05 Gen Electric Ceramic bonded CBN compact.
US8007552B2 (en) 2004-10-29 2011-08-30 Element Six (Production) (Pty) Ltd Cubic boron nitride compact
SE529290C2 (en) * 2005-10-28 2007-06-19 Sandvik Intellectual Property Cut off cubic boron nitride resistant to chipping and breaking
JP6355124B2 (en) * 2014-04-25 2018-07-11 住友電工ハードメタル株式会社 Surface coated boron nitride sintered body tool
JP6634647B2 (en) 2014-11-27 2020-01-22 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping and wear resistance
WO2016084939A1 (en) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 Surface-coated cutting tool with excellent chipping resistance and wear resistance
KR101664882B1 (en) * 2014-12-05 2016-10-12 현대오트론 주식회사 Head-up display device
WO2018061724A1 (en) 2016-09-28 2018-04-05 富士フイルム株式会社 Projection-type display device and operation method and operation program for projection-type display device
CN109803847B (en) 2016-09-28 2022-01-14 富士胶片株式会社 Projection display device, method for operating projection display device, and recording medium
JP6550544B2 (en) 2016-12-12 2019-07-24 富士フイルム株式会社 Projection display device, control method for projection display device, control program for projection display device
GB202001369D0 (en) 2020-01-31 2020-03-18 Element Six Ltd Polycrystalline cubic boron nitride material

Also Published As

Publication number Publication date
JPS63145726A (en) 1988-06-17

Similar Documents

Publication Publication Date Title
EP0598140B1 (en) Cubic boron nitride-base sintered ceramics for cutting tool
JP5226522B2 (en) Cubic boron nitride compact
JP5447844B2 (en) High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
CN114351026B (en) Polycrystalline cubic boron nitride composite material
US5569862A (en) High-pressure phase boron nitride sintered body for cutting tools and method of producing the same
JP2019006662A (en) Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same
JPH0564691B2 (en)
US20050226691A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing same
JPS627149B2 (en)
JPS644988B2 (en)
JPS6330983B2 (en)
JPS6335591B2 (en)
JP5008789B2 (en) Super hard sintered body
JPS644989B2 (en)
JP2747358B2 (en) High hardness microcrystalline sintered body and method for producing the same
JPH0742170B2 (en) Cubic boron nitride based sintered body
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP2003081677A (en) Dispersion-enhanced cbn-based sintered compact and method of producing the same
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPH0377151B2 (en)
JPH03131573A (en) Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JP2932738B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material having high toughness
JPS644986B2 (en)
JPS6241306B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term