JPS644986B2 - - Google Patents

Info

Publication number
JPS644986B2
JPS644986B2 JP59199746A JP19974684A JPS644986B2 JP S644986 B2 JPS644986 B2 JP S644986B2 JP 59199746 A JP59199746 A JP 59199746A JP 19974684 A JP19974684 A JP 19974684A JP S644986 B2 JPS644986 B2 JP S644986B2
Authority
JP
Japan
Prior art keywords
cbn
sintered body
cutting
tin
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59199746A
Other languages
Japanese (ja)
Other versions
JPS6177670A (en
Inventor
Itsuro Tajima
Fumihiro Ueda
Kaoru Kawada
Kisho Miwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59199746A priority Critical patent/JPS6177670A/en
Publication of JPS6177670A publication Critical patent/JPS6177670A/en
Publication of JPS644986B2 publication Critical patent/JPS644986B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、きわめて優れた靭性と耐摩耗性を
有し、特に鋳物材料やダイス鋼、高速度鋼などの
高硬度鋼の切削等に切削工具として使用するのに
適した立方晶窒化硼素(以下、CBNで示す)基
焼結の製造方法に関する。 〔従来の技術〕 ここ数年の間に、金属加工の分野では鋳鉄切削
の高速化、ダイス鋼や高速度鋼などの高硬度鋼の
研削加工から切削加工への切り換えが急速に進行
しつつあり、その成否の鍵を握る材料として
CBN基焼結体が開発されている。 その1つに、80容量%以下のCBNと、窒化珪
素(以下、Si3N4で示す)及び酸化アルミニウム
(以下、Si3N4で示す)及び酸化アルミニウム
(以下Al2O3で示す)のうちの1種又は2種と、
窒化チタン(以下、TiNで示す)の3〜4成分
からなる配合組成物を用いて超高圧焼結して得ら
れたCBN基焼結体がある。 〔発明が解決しようとする問題点〕 ところで、鋳鉄は、一般の鋼材料と異なり、ほ
とんどの場合、内部に黒鉛が析出したり、鋳物砂
のかみ込みなどにより、組織的な不均一性が甚だ
しいし、一方、ダイス鋼や高速度鋼は熱処理され
たもので、全体としてロツクウエルC硬さが60以
上の高硬度を有する上に、表面は黒皮状態を呈し
ている。これらの材料を切削加工する場合、硬さ
の異なる部分を一度に除去しなければならず、強
いせん断応力が切削工具に作用するのである。 前記の従来公知のCBN基焼結体を鋳鉄あるい
はダイス鋼や高速度鋼の切削に用いると、靭性が
不足するために、刃先が欠けやすい欠点があつ
た。特に、切り込みが深い場合には前記の傾向が
助長され、更に、切削形態が断続切削の場合に
は、衝撃が加わるために、直ぐに刃先が欠けて使
用できないものであつた。したがつて、前記の従
来公知のCBN基焼結体からなる切削工具は、鋳
鉄あるいは高硬度鋼の軽負荷状態での連続切削、
即ち最終仕上げ切削という狭い範囲の用途にのみ
用いられていた。 よつて、この発明の目的は、きわめて優れた靭
性及び耐摩耗性を有し、鋳鉄あるいはダイス鋼や
高速度鋼などの高硬度鋼の切削工具として使用し
た場合に、優れた切削性能を発揮するCBN基焼
結体を製造する方法を確立することである。 〔問題点を解決するための手段〕 本発明者らは、各成分の特性から、切削工具と
して優れた特性を示すと思われるCBN、Si3N4
びAl2O3のうちの1種又は2種、並びにTiNの3
〜4成分からなる配合組成物を用いて超高圧焼結
したものについて、所望の靭性及び耐摩耗性が得
られない原因を種々検討した結果、この方法によ
り得られる焼結体は、CBNの結合材としてSi3N4
及びAl2O3のうちの1種又は2種とTiNが混在す
る構造である(第1図参照)ので、これら粒子相
互の界面強度が低く、靭性も低いこと、及びその
ために、上記焼結体を切削工具として使用中に各
構成成分粒子が脱落や剥離を起こしやすく、耐摩
耗性が低いことがわかつたのである。 一方、本発明者らは先に二チタンアルミニウム
窒化物(以下、Ti2AlNで示す)の製造方法を出
願している(特願昭59−25768号)。このTi2AlN
の性質を種々検討したところ、1200℃以上の温度
で急激に分解反応を生じ、TiNが析出すること
がわかつた。 そこで、本発明者らは、上記のCBN、Si3N4
びAl2O3のうちの1種又は2種、TiNからなる配
合組成物のTiNの代りにTi2AlNを配合して、超
高圧焼結時にTi2AlNを分解させてTiNを析出・
供給する方法について検討したところ、驚くべき
ことに、 CBN、Si3N4及びAl2O3のうちの1種又は2
種、並びにTiNからなる配合組成物を用いて
得られた従来公知の焼結体の前記構造とは異な
り、この方法により得られた焼結体において
は、分解時に析出したTiNは、CBN粒子と、
Si3N4粒子及び/又はAl2O3粒子の界面に廻り
込んでおり、詳言すれば、TiNを主体とし、
TiB2(分解生成TiNとCBNとの反応により生
成)をも含む結合相が連続した構造をとり、各
粒子を強固に結合している焼結体が得られるこ
と(第2図参照)。 したがつて、この焼結体は界面強度が高いた
めに、すぐれた靭性を有し、しかも切削工具と
して用いたときに、粒子の脱落や剥離がなく、
優れた耐摩耗性を有すること、 更に、CBNの配合量が従来公知のものより
も多い場合でも、前記〜が成り立ち、この
場合には、そのこととCBN配合量が多いこと
とが相俟つて、耐摩耗性がより一層向上するこ
と、 しかしながら、Ti2AlNの代りに、同一組成
となるようにTiNとTiとAlあるいはTiNと
TiAlなどの金属間化合物の組み合わせ等を用
いた場合は、CBNとの超高圧焼結時にAlNが
形成され、このAlN成分が焼結性を阻害し、
かつ焼結体の耐摩耗性が低下すること、 以上〜の知見を得たものである。 この発明は、上記知見に基づいてなされたもの
であり、 窒化珪素粉末及び酸化アルミニウム粉末のうち
の1種類又は2種:3.5〜15%、 Ti2AlN粉末:1.5〜22%、 CBN粉末:残り からなる配合組成(以上、重量%)を有する組成
物を、常法により、混合し、プレス成形して圧粉
体とし、この圧粉体を単独で、又は他の圧粉体若
しくは焼結体と重ね合わせた状態で、CBNの安
定な温度−圧力条件で超高圧焼結することを特徴
とする切削工具用CBN基焼結体の製造方法であ
る。 以下、この発明の構成を詳細に説明する。 () 原料粉末の粒度 Ti2AlN粉末の平均粒径は0.5〜10μmの範囲
が好ましい。そして、CBN粉末の平均粒径は
1〜20μm、Si3N4粉末及びAl2O3粉末の平均粒
径はCBN粉末と同等もしくはそれより小さい
方が良く0.5μm以下が好ましい。 () 配合組成 (a) Si3N4及びAl2O3 これらの成分は、切削工具として用いられ
る焼結体に、耐溶着性(被削材の切削工具へ
の溶着のしにくさ、即ち、切削工具が被削材
と反応しにくいこと)及び高温での強度低下
の減少の効果を付与し、ひいては耐摩耗性を
向上させるとともに、耐熱性を付与する効果
を有するが、その配合量が3.5%未満では前
記の所望の効果が得られず、一方、15%を越
えると、得られる焼結体がもろくなつて靭性
が低下してしまうことから、その配合量を
3.5〜15%と定めた。 (b) Ti2AlN Ti2AlNは、超高圧焼結時にTiNを分解反
応により生成させ、ひいては結合相を生成さ
せるために配合される成分である。詳しく
は、この分解生成TiNはCBNと反応し、
TiB2を生成させ、結局Ti2AlNはこれらの
TiNやTiB2を含有する結合相を生じさせる
のである。この結合相はCBN粒とSi3N4及び
Al2O3のうちの1種又は2種の粒子の間に網
目的連続構造をなすために、CBN粒とSi3N4
及びAl2O3のうちの1種又は2種の粒子との
界面強度が上昇し、焼結体中の上記成分が強
固に結合するのである。その配合量が1.5%
未満では、所望の効果が得られず、一方、22
%を越えると、結合相の生成量が多すぎて結
果的に耐摩耗性をそこねることから、その配
合量を1.5〜22%と定めた。なかでも4〜12
%の範囲にあるときに最良の効果が得られ
る。 () 混合−プレス成形−超高圧焼結工程 これらの工程は常法により行なえばよい。例
えば、プレス成形は約1〜5t/cm2の成形圧で行
なえばよい。そして、超高圧焼結の前に
10-4torr以下の真空中あるいは不活性ガス中に
おいて200〜800℃の範囲内の温度で仮焼結し、
圧粉体の強度を上げてもよい。超高圧焼結の際
に重ね合わせる他の圧粉体若しくは焼結体とし
ては、常法のように超硬合金やサーメツトなど
が挙げられる。超高圧焼結する際のCBNの安
定な温度−圧力条件とは、圧力20〜70kb、温
度1200〜1500℃の条件であり、保持時間は10〜
60分である。 〔実施例〕 以下、実施例を示すことにより、この発明の構
成と効果を詳細に説明する。 実施例 原料粉末として、平均粒径3μmのCBN粉末、
同2μmのSi3N4粉末、同0.5μmのAl2O3粉末およ
び同1μmのTi2AlN粉末の各粉末を用い、第1表
に示す各組成に配合後、ボールミルにて20時間混
合し、ついで2t/cm2の圧力でプレス成形して圧粉
体とし、この圧粉体を超硬合金焼結体(組成は
WC−10%Co)円板の上に重ね合わせた後、超高
圧装置にて第1表に示す条件で30分保持後、冷
却・降圧することにより、本発明焼結体1〜12を
製造した。 比較のために、その他の配合組成は本発明焼結
体5の場合と同じであるが、Ti2AlNを用いない
でTi2AlNを生成しそうな化合物の組み合わせを
用いた比較焼結体1〜2、及び配合組成がこの発
明の配合組成から外れる比較焼結体3〜8並びに
Ti2AlNの代りにTiNを用いた従来焼結体を同様
に製造した。 これらの本発明焼結体、比較焼結体及び従来焼
結体について、(TiN+TiB2)量をX線回折のピ
ークの強度から定量して、その値を第1表に示し
た。又、これらの焼結体の抗折力を測定し、その
値も第1表に示した。 又、これらの焼結体の組織を電子顕微鏡で調
べ、そのうちの従来焼結体の組織を示す写真を第
1図に、そして本発明焼結体4の組織を示す写真
を第2図に示した。 次いで、実施例で製造された本発明焼結体1〜
12、比較焼結体1〜8及び従来焼結体をそれぞれ
切断、ロー付加工後、これらにそれぞれ研削、研
磨仕上げを施し、SNP432の形状を有する切削工
具を作製した。 これらの切削工具を用いて、下記条件の切削試
験を行なつた。 <切削試験条件> 被削材:焼結高速度鋼(ロツクウエルC硬さ:
70) 切削速度:40m/分 切込み:0.1mm 送り:0.1mm/rev. そして、逃げ面摩耗幅が0.1mmになつたときに
寿命とし、寿命になるまでの時間を計測し、その
結果を第1表に示した。 〔発明の効果〕 本発明焼結体の組織はすべて、第2図に示すよ
うにCBNと、Si3N4及びAl2O3のうちの1種又は
2種との間に、TiNを主体とする結合相が廻り
込んだ構造をしており、一方、TiNを用いて得
られる従来焼結体の組織は、第1図に示すよう
に、CBNの結合材としてSi3N4およびAl2O3のう
ちの1種又は2種とTiNが混在する構造である。 したがつて、第1表からもわかるように、前記
のような構造を有する本発明焼結体は、上記のよ
うな構造を有する従来焼結体はもとより、
Ti2AlNを生成しそうな化合物の組み合わせ
(Field of Industrial Application) This invention has extremely excellent toughness and wear resistance, and is particularly suitable for use as a cutting tool for cutting cast materials, high-hardness steels such as die steel, and high-speed steel. The present invention relates to a method for producing cubic boron nitride (hereinafter referred to as CBN)-based sinter. [Conventional technology] Over the past few years, in the field of metal processing, there has been a rapid increase in the speed of cutting cast iron, and a rapid shift from grinding to cutting of high-hardness steels such as die steel and high-speed steel. , as the material that holds the key to its success or failure.
CBN-based sintered bodies have been developed. One of them is CBN of 80% by volume or less, silicon nitride (hereinafter referred to as Si 3 N 4 ), aluminum oxide (hereinafter referred to as Si 3 N 4 ) and aluminum oxide (hereinafter referred to as Al 2 O 3 ). One or two of the following:
There is a CBN-based sintered body obtained by ultra-high pressure sintering using a blended composition consisting of three to four components of titanium nitride (hereinafter referred to as TiN). [Problems to be solved by the invention] However, unlike general steel materials, cast iron, in most cases, has severe structural non-uniformity due to graphite precipitated inside or encroachment of foundry sand. On the other hand, die steel and high-speed steel are heat-treated steels, and have a high hardness as a whole with a Rockwell C hardness of 60 or more, and their surfaces exhibit a black crust. When cutting these materials, parts of different hardness must be removed at once, and strong shear stress acts on the cutting tool. When the above-mentioned conventionally known CBN-based sintered body is used for cutting cast iron, die steel, or high-speed steel, there is a drawback that the cutting edge is easily chipped due to insufficient toughness. In particular, when the cut is deep, the above-mentioned tendency is exacerbated, and furthermore, when the cutting mode is interrupted cutting, the cutting edge is easily chipped and cannot be used due to the impact applied. Therefore, the above-mentioned conventionally known cutting tools made of CBN-based sintered bodies are suitable for continuous cutting of cast iron or high-hardness steel under light load conditions.
That is, it was used only in a narrow range of applications, such as final finishing cutting. Therefore, an object of the present invention is to have extremely excellent toughness and wear resistance, and to exhibit excellent cutting performance when used as a cutting tool for high-hardness steel such as cast iron, die steel, and high-speed steel. The objective is to establish a method for manufacturing CBN-based sintered bodies. [Means for Solving the Problems] The present inventors have discovered that one of CBN, Si 3 N 4 and Al 2 O 3 or Type 2 and TiN 3
As a result of various studies on the reasons why the desired toughness and wear resistance could not be obtained for ultra-high pressure sintered products using a blended composition consisting of ~4 components, we found that the sintered bodies obtained by this method have a combination of CBN. Si 3 N 4 as material
Since the structure is a mixture of TiN and one or two of Al 2 O 3 and Al 2 O 3 (see Figure 1), the interfacial strength and toughness between these particles is low, and for this reason, the above sintering It was found that when the body is used as a cutting tool, the constituent particles tend to fall off or peel off, resulting in low wear resistance. On the other hand, the present inventors have previously filed an application for a method for producing dititanium aluminum nitride (hereinafter referred to as Ti 2 AlN) (Japanese Patent Application No. 59-25768). This Ti 2 AlN
After various studies on the properties of TiN, it was found that a rapid decomposition reaction occurs at temperatures above 1200°C, leading to the precipitation of TiN. Therefore, the present inventors blended Ti 2 AlN in place of TiN in the above-mentioned blended composition consisting of one or two of CBN, Si 3 N 4 and Al 2 O 3 , and TiN. During high-pressure sintering, Ti 2 AlN is decomposed to precipitate TiN.
When we considered the supply method, we surprisingly found that one or both of CBN, Si 3 N 4 and Al 2 O 3
Unlike the above-mentioned structure of the conventionally known sintered body obtained using a blended composition consisting of seeds and TiN, in the sintered body obtained by this method, the TiN precipitated during decomposition is separated from the CBN particles. ,
It wraps around the interface of Si 3 N 4 particles and/or Al 2 O 3 particles, and to be more specific, it mainly consists of TiN,
A sintered body can be obtained in which the binder phase, which also contains TiB 2 (produced by the reaction between decomposed TiN and CBN), has a continuous structure and firmly bonds each particle (see Figure 2). Therefore, since this sintered body has high interfacial strength, it has excellent toughness, and when used as a cutting tool, particles do not fall off or peel off.
It has excellent wear resistance.Furthermore, even if the amount of CBN blended is higher than that of conventionally known products, the above-mentioned ~ holds true, and in this case, this and the large amount of CBN blended together. However, instead of Ti 2 AlN, TiN and Ti and Al or TiN can be used to have the same composition.
When a combination of intermetallic compounds such as TiAl is used, AlN is formed during ultra-high pressure sintering with CBN, and this AlN component inhibits sinterability.
We have obtained the above knowledge that the wear resistance of the sintered body is reduced. This invention was made based on the above findings, and includes: one or both of silicon nitride powder and aluminum oxide powder: 3.5 to 15%, Ti 2 AlN powder: 1.5 to 22%, CBN powder: remainder A composition having a compounding composition (the above, weight %) is mixed by a conventional method and press-molded to form a green compact, and this green compact can be used alone or with other green compacts or sintered bodies. This is a method for manufacturing a CBN-based sintered body for a cutting tool, which is characterized by performing ultra-high pressure sintering under stable temperature-pressure conditions for CBN in a superimposed state. Hereinafter, the configuration of the present invention will be explained in detail. () Particle size of raw material powder The average particle size of the Ti 2 AlN powder is preferably in the range of 0.5 to 10 μm. The average particle size of the CBN powder is 1 to 20 μm, and the average particle size of the Si 3 N 4 powder and Al 2 O 3 powder is preferably equal to or smaller than the CBN powder, and preferably 0.5 μm or less. () Blend composition (a) Si 3 N 4 and Al 2 O 3 These components give a sintered body used as a cutting tool welding resistance (difficulty in welding of the workpiece to the cutting tool, i.e. , the cutting tool is less likely to react with the work material) and reduces strength loss at high temperatures, which in turn improves wear resistance and imparts heat resistance. If it is less than 3.5%, the desired effect described above cannot be obtained, while if it exceeds 15%, the resulting sintered body becomes brittle and its toughness decreases, so
It was set at 3.5% to 15%. (b) Ti 2 AlN Ti 2 AlN is a component that is blended to generate TiN through a decomposition reaction during ultra-high pressure sintering and, in turn, to generate a binder phase. In detail, this decomposed TiN reacts with CBN,
TiB 2 is produced, and eventually Ti 2 AlN is
This creates a bonded phase containing TiN or TiB2 . This binder phase consists of CBN grains, Si 3 N 4 and
In order to form a continuous network structure between one or two types of Al 2 O 3 particles, CBN particles and Si 3 N 4
The strength of the interface with one or two particles of Al 2 O 3 and Al 2 O 3 increases, and the above components in the sintered body are firmly bonded. Its blending amount is 1.5%
If it is less than 22, the desired effect cannot be obtained;
%, the amount of binder phase produced is too large and wear resistance is impaired as a result, so the blending amount was set at 1.5 to 22%. Among them, 4 to 12
The best effect is obtained when the amount is within the range of %. () Mixing-press forming-ultra-high pressure sintering process These steps may be performed by conventional methods. For example, press molding may be performed at a molding pressure of about 1 to 5 t/cm 2 . And before ultra-high pressure sintering
Preliminarily sintered at a temperature within the range of 200 to 800°C in a vacuum of 10 -4 torr or less or in an inert gas,
The strength of the powder compact may be increased. Other green compacts or sintered compacts to be superimposed during ultra-high pressure sintering include cemented carbide, cermet, etc. as in the conventional method. Stable temperature-pressure conditions for CBN during ultra-high pressure sintering are pressure 20-70kb, temperature 1200-1500℃, and holding time 10-1500℃.
It is 60 minutes. [Example] Hereinafter, the structure and effects of the present invention will be explained in detail by showing examples. Example As raw material powder, CBN powder with an average particle size of 3 μm,
Si 3 N 4 powder of 2 μm, Al 2 O 3 powder of 0.5 μm, and Ti 2 AlN powder of 1 μm were blended into the compositions shown in Table 1 and mixed for 20 hours in a ball mill. , then press-formed at a pressure of 2t/cm 2 to form a green compact, and this green compact is made into a cemented carbide sintered body (composition is
Sintered bodies 1 to 12 of the present invention are produced by stacking the WC-10% Co) disk on top of the disk, holding it for 30 minutes under the conditions shown in Table 1 in an ultra-high pressure device, and then cooling and lowering the pressure. did. For comparison, comparative sintered bodies 1 to 1 were prepared using a combination of compounds likely to produce Ti 2 AlN without using Ti 2 AlN, except that the other compounding compositions were the same as in the case of sintered body 5 of the present invention. 2, and comparative sintered bodies 3 to 8 whose blending composition deviates from that of the present invention.
A conventional sintered body using TiN instead of Ti 2 AlN was similarly produced. For these sintered bodies of the present invention, comparative sintered bodies, and conventional sintered bodies, the amount of (TiN+TiB 2 ) was determined from the intensity of the X-ray diffraction peak, and the values are shown in Table 1. The transverse rupture strengths of these sintered bodies were also measured and the values are also shown in Table 1. In addition, the structures of these sintered bodies were examined using an electron microscope, and a photograph showing the structure of the conventional sintered body is shown in FIG. 1, and a photograph showing the structure of the sintered body 4 of the present invention is shown in FIG. Ta. Next, sintered bodies 1 to 1 of the present invention manufactured in Examples
12. After cutting and brazing the comparative sintered bodies 1 to 8 and the conventional sintered body, they were respectively ground and polished to produce a cutting tool having the shape of SNP432. Using these cutting tools, cutting tests were conducted under the following conditions. <Cutting test conditions> Work material: Sintered high speed steel (Rockwell C hardness:
70) Cutting speed: 40 m/min Depth of cut: 0.1 mm Feed: 0.1 mm/rev. Then, the life is determined when the flank wear width reaches 0.1 mm, the time until the end of the life is measured, and the results are It is shown in Table 1. [Effects of the Invention] As shown in FIG. 2, the structure of the sintered body of the present invention consists of mainly TiN between CBN and one or two of Si 3 N 4 and Al 2 O 3 . On the other hand, as shown in Figure 1, the structure of conventional sintered bodies obtained using TiN is composed of Si 3 N 4 and Al 2 as binding materials for CBN. It has a structure in which one or two of O 3 and TiN are mixed. Therefore, as can be seen from Table 1, the sintered body of the present invention having the above-mentioned structure is superior to the conventional sintered body having the above-mentioned structure.
Combinations of compounds likely to produce Ti 2 AlN

【表】 を用いた比較焼結体及び配合組成がこの発明の配
合組成から外れる比較焼結体に比べても、抗折力
が優れており、又、例えば焼結高速度鋼の切削に
用いたとき、刃先が欠けることもないし、しかも
切削寿命も格段に長く、耐摩耗性の点でも格段に
優れているのである。 即ち、この発明の製造方法によれば、きわめて
優れた靭性と耐摩耗性を有し、特に鋳物材料やダ
イス鋼、高速度鋼などの高硬度鋼に切削等に切削
工具として使用するのに適したCBN基焼結体を
得ることができるのである。
[Table] Comparative sintered bodies using the same composition and comparative sintered bodies whose composition deviates from the composition of the present invention have superior transverse rupture strength, and can be used, for example, in cutting sintered high-speed steel. When cut, the cutting edge will not chip, the cutting life is much longer, and the wear resistance is also much better. That is, according to the manufacturing method of the present invention, it has extremely excellent toughness and wear resistance, and is particularly suitable for use as a cutting tool for cutting cast materials, high-hardness steels such as die steel, and high-speed steel. Therefore, a CBN-based sintered body can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来焼結体の組織を示す電子顕微鏡
写真であり、第2図は、この発明の製造方法で得
られた焼結体(実施例の本発明焼結体4)の組織
を示す電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the structure of a conventional sintered body, and FIG. 2 is an electron micrograph showing the structure of a sintered body obtained by the manufacturing method of the present invention (sintered body 4 of the present invention in Example). It is an electron micrograph shown.

Claims (1)

【特許請求の範囲】 1 窒化珪素粉末及び酸化アルミニウム粉末のう
ちの1種又は2種:3.5〜15%、 二チタンアルミニウム窒化物粉末:1.5〜22%、 立方晶窒化硼素粉末:残り からなる配合組成(以上、重量%)を有する組成
物を、常法により、混合し、プレス成形して圧粉
体とし、この圧粉体を単独で、又は他の圧粉体若
しくは焼結体と重ね合わせた状態で、立方晶窒化
硼素の安定な温度−圧力条件で超高圧焼結するこ
とを特徴とする切削工具用立方晶窒化硼素基焼結
体の製造方法。
[Claims] 1. A composition consisting of one or two of silicon nitride powder and aluminum oxide powder: 3.5 to 15%, dititanium aluminum nitride powder: 1.5 to 22%, and cubic boron nitride powder: the remainder. A composition having the above composition (weight%) is mixed by a conventional method, press-formed to form a green compact, and this green compact is stacked alone or with another green compact or sintered body. 1. A method for producing a cubic boron nitride-based sintered body for a cutting tool, the method comprising sintering cubic boron nitride at a stable temperature and pressure under ultra-high pressure conditions.
JP59199746A 1984-09-25 1984-09-25 Manufacture of cubic boron nitride base sintered body for cutting tool Granted JPS6177670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59199746A JPS6177670A (en) 1984-09-25 1984-09-25 Manufacture of cubic boron nitride base sintered body for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59199746A JPS6177670A (en) 1984-09-25 1984-09-25 Manufacture of cubic boron nitride base sintered body for cutting tool

Publications (2)

Publication Number Publication Date
JPS6177670A JPS6177670A (en) 1986-04-21
JPS644986B2 true JPS644986B2 (en) 1989-01-27

Family

ID=16412938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59199746A Granted JPS6177670A (en) 1984-09-25 1984-09-25 Manufacture of cubic boron nitride base sintered body for cutting tool

Country Status (1)

Country Link
JP (1) JPS6177670A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806602A1 (en) * 1988-03-02 1988-07-07 Krupp Gmbh CARBIDE BODY
CN1321939C (en) * 2004-07-15 2007-06-20 中国科学院金属研究所 Al2O3 dispersion-strengthened Ti2AlN ceramic composite materials and method for preparing same

Also Published As

Publication number Publication date
JPS6177670A (en) 1986-04-21

Similar Documents

Publication Publication Date Title
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
KR20180075502A (en) Sintered body and manufacturing method thereof
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JPH0564691B2 (en)
JPS6225631B2 (en)
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPS644986B2 (en)
JPS644989B2 (en)
JPS5861255A (en) High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JPH01122971A (en) Cubic boron nitride sintered product
JPS6335591B2 (en)
JPS60187659A (en) Cubic boron nitride-base ultrahigh-pressure sintered material for cutting tool
JPH0215515B2 (en)
JPS6225632B2 (en)
JPS621348B2 (en)
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPS644987B2 (en)
JPH0225871B2 (en)
JP3458533B2 (en) Manufacturing method of WC-based cemented carbide cutting tool
JPS6026066B2 (en) Ceramic with high toughness
JPH075384B2 (en) Cubic boron nitride based sintered body
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JPS6134130A (en) Manufacture of high strength cermet having superior chipping resistance
JPS60131867A (en) High abrasion resistance superhard material
JPS5861256A (en) High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear resistant tool