JPS6335591B2 - - Google Patents

Info

Publication number
JPS6335591B2
JPS6335591B2 JP59031958A JP3195884A JPS6335591B2 JP S6335591 B2 JPS6335591 B2 JP S6335591B2 JP 59031958 A JP59031958 A JP 59031958A JP 3195884 A JP3195884 A JP 3195884A JP S6335591 B2 JPS6335591 B2 JP S6335591B2
Authority
JP
Japan
Prior art keywords
powder
less
particle size
average particle
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59031958A
Other languages
Japanese (ja)
Other versions
JPS60176973A (en
Inventor
Kisho Miwa
Masami Kayukawa
Fumihiko Muroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59031958A priority Critical patent/JPS60176973A/en
Publication of JPS60176973A publication Critical patent/JPS60176973A/en
Publication of JPS6335591B2 publication Critical patent/JPS6335591B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐摩耗性と高靭性、さら
に真密度を有し、特にこれらの特性が要求される
高硬度鋼や表面部の硬さ勾配が急激な浸炭焼入れ
鋼などの切削に切削工具として用いた場合にすぐ
れた切削性能を示す立方晶窒化硼素(以下CBN
で示す)基超高圧焼結材料の製造法に関するもの
である。 先に同一出願人は、特願昭53−100932号(特開
昭55−31517号)として、 周期律表の4a、5a、および6a族金属の炭化物、
窒化物、炭窒化物、炭酸化物、または炭窒化物か
らなる高融点化合物:5〜50%、 酸化アルミニウム(以下Al2O3で示す):10〜
70%、 CBNおよび不可避不純物:25〜85%、 からなる組成(以上容量%、以下%は容量%を示
す)を有し、特に高硬度鋼やNi基耐熱合金など
の切削に切削工具として用いた場合にすぐれた切
削性能を発揮するCBN基超高圧焼結材料を特許
出願した。 確かに、上記の先行発明のCBN基超高圧焼結
材料は、通常の条件での切削に際してはすぐれた
切削性能を示すものの、生産性向上をはかる目的
で、例えば高硬度鋼を深切り込み、あるいは高送
り切削する際に見られるような切削工具に相対的
に過大な切削抵抗(殊に背分力)が加わる場合
や、より耐熱特性が要求される場合、さらに被削
材の表面部の硬さ勾配が急激な浸炭焼入れ鋼など
を切削する場合には、強度および靭性不足が原因
して所望の安定した切削性能を示さず、必ずしも
信頼性の高いものではなかつた。 そこで、本発明者等は、上記先行発明のCBN
基超高圧焼結材料に着目し、これに高強度と高靭
性を付与すべく研究を行なつた結果、 原料粉末として、平均粒径:10μm以下のCBN
粉末、同0.2μm以下の超微粒炭化チタン(以下
TiCで示す)粉末、同1μm以下の窒化チタン(以
下TiNで示す)粉末、同0.2μm以下の超微粒
Al2O3粉末、および同1μm以下のTi2AlN粉末を
用意し、これら原料粉末を、 CBN:20〜80%、 TiC、またはTiC+TiN(ただし、容量比で、
TiN/(TiC+TiN)=0.05〜0.5):5〜50%、 Al2O3:10〜70%、 Ti2AlN:5〜20%、 からなる配合組成に配合し、この配合粉末を混合
した後、プレス成形にて圧粉体に成形し、 ついで、この圧粉体に、10-2torr以下の真空
中、温度:1200〜1400℃、保持時間:5〜60分の
条件で予備焼結を施すと、この予備焼結時に、
Ti2AlNが焼結助剤として働き、これより分解生
成したTiNが超微粒TiCと反応して活性に富んだ
超微粒炭窒化チタン(以下TiCNで示す)を形成
し、一方、通常結晶構造が主としてγ構造で、そ
の一部がδ構造よりなる超微粒Al2O3がα構造に
結晶変態し、粒子再配列による緻密化過程を経
て、著しく活性化したものとなることから、この
結果得られた予備焼結体は、前記活性化した超微
粒TiCNとα−Al2O3の間で、堅固に絡み合つて
強固に結合し、かつマイクロボイドのきわめて少
ない高密度にして高強度の三次元スケルトン組織
を形成するようになるので焼結材料の耐熱特性が
一段と向上するようになり、 引続いて、この予備焼結体に、超高圧装置を用
い、CBNの安定な温度−圧力条件、すなわち温
度:1200〜1500℃、圧力:40〜70KB、保持時
間:5〜60分の条件で超高圧焼結を施すと、耐摩
耗性にすぐれ、かつ高強度および高靭性を有する
真密度の焼結材料が得られるようになるという知
見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に製造条件を上記の通りに限定
した理由を説明する。 A 原料粉末の平均粒径 (1) CBN粉末 CBN粉末の平均粒径が10μmを越えると、
比表面積が少なくなることに原因してCBN
相と、活性化した超微粒TiCNおよび超微粒
Al2O3とが強固に結合して形成されたスケル
トン組織からなる結合相との間でのつきまわ
りが不充分になり、この結果充分な界面強度
が得られず、切削時にCBN粒子の脱落によ
るチツピング等の損傷が発生しやすくなるこ
とから、CBN粉末の平均粒径を10μm以下と
した。 (2) 超微粒TiC粉末 上記の通り、超微粒TiCは、予備焼結に際
して、焼結助剤であるTi2AlNと反応し、よ
り耐熱特性にすぐれ、かつ活性化した超微粒
TiCNを形成する成分であり、この反応を完
全に行なわしめるためには、その平均粒径を
0.2μm以下、望ましくは0.05〜0.1μmにする
必要がある。すなわち超微粒TiCの平均粒径
が0.2μmを越えると、前記の反応が不十分と
なり、未反応のTiCが残存するようになつ
て、材料が高温で安定した切刃強度を示さな
くなるのである。なお、超微粒TiC粉末とし
ては化学気相蒸着法により製造したものを使
用するのがよい。 (3) 超微粒Al2O3粉末 超微粒Al2O3は、上記の通り通常結晶構造
が主としてγ構造で、その一部がδ構造より
なるが、予備焼結時に、α結晶構造に変態
し、粒子再配列による緻密化過程を経て、活
性化したものとなり、この活性化した超微粒
Al2O3と同じく活性化した超微粒TiCNとが
強固に結合したスケルトン組織を形成し、マ
イクロボイドの少ない高密度にして強固な予
備焼結体を製造するのに、前記超微粒TiCN
と共に不可欠の成分であるが、その平均粒径
が0.2μmを越えると、マイクロボイドが形成
しやすくなるばかりでなく、スケルトン構造
の形成も不十分となつて、所望の高靭性およ
び高強度を有する予備焼結体の製造が困難に
なることから、その平均粒径が0.2μmを越え
てはならない。なお、市販の無水塩化アルミ
ニウムより高温加水分解法によつて製造した
Al2O3粉末は、0.2μm以下の平均粒径を有し、
かつ結晶構造が主としてγ構造からなり、そ
の一部がδ構造からなるもので構成されてい
るので、原料粉末として理想的である。 (4) Ti2AlN粉末 Ti2AlN粉末は、Tiの窒化物とTi−Al金属
間化合物を原料とし、これを真空中あるいは
不活性ガス中で加熱反応させることにより製
造されるものであり、上記のように予備焼結
時に、焼結助剤として作用し、CBN間で
TiCN−Al2O3の三次元スケルトン組織を形
成するのに不可欠の原料粉末であるが、その
平均粒径が1μmを越えると、相対的に表面
積の減少をきたし、上記の分解反応が緩慢に
なり、粒子間相互の結合が強固にして高密度
のスケルトン組織を形成することが困難にな
ることから、その平均粒径を1μm以下と定
めた。 (5) TiN粉末 超微粒TiN粉末の一部を、TiN自体のも
つすぐれた高温安定性を生かすため、必要に
応じてTiN粉末で置換した場合、前記の超
微粒TiCNと超微粒Al2O3とが強固に結合し
たスケルトン組織中にTiNが分散あるいは
一部固溶した組織をもつようになるが、その
平均粒径が1μmを越えると、超微粒TiCと
Ti2AlNとの反応が阻害されるようになるば
かりでなく、均一に絡み合つたスケルトン組
織を形成することが困難になることから、そ
の平均粒径を1μm以下と定めた。 B 配合組成 (1) CBN CBNは、ダイヤモンドに次ぐ硬さ(ビツ
カース硬さで6000〜7000Kg/mm2)を有し、か
つダイヤモンドより高温まで安定した性質を
もつほか、鉄族金属に対して反応しにくい性
質をもつものであり、したがつてその配合量
が20%未満では、所望の耐摩耗性を確保する
ことができず、一方その配合量が80%を越え
ると、相対的にCBNの量が多くなり過ぎて
スケルトン組織の形成が不十分となり、この
結果靭性低下をもたらし、切削時にチツピン
グ摩耗を生じやすくなることから、その配合
量を20〜80%と定めた。 (2) TiC TiCには、上記のように焼結助剤である
Ti2AlNと反応し、より耐熱特性にすぐれ、
かつ活性化した超微粒TiCNを形成し、かつ
これがスケルトン組織の一員を構成して焼結
材料の靭性を向上させる作用があるが、その
配合量が5%未満では前記作用に所望の効果
が得られず、一方50%を越えた配合量になる
と、TiCが残留するようになり、安定した高
温強度を得ることが困難になことから、その
配合量を5〜50%と定めた。また、この場
合、その一部をTiNで置換すると耐熱特性
が一段と向上するようになるので、例えば切
削用途として、高い発熱を伴う場合や熱衝撃
の加わる場合などに必要に応じて配合される
が、その置換量がTiCに対する割合で5%未
満では、所望の特性向上効果が得られず、一
方同50%を越えると、超微粒TiCNの形成が
減少し、強固な結合力をもつたスケルトン組
織の形成が困難となることから、TiNの置
換量は、TiCに対する割合で5〜50%、すな
わちTiN/(TiC+TiN)=0.05〜0.5%とし
なければならない。 (3) Al2O3 Al2O3には、上記の通り予備焼結時に、活
性化したα−結晶構造に変態し、もつて活性
化した超微粒TiCNと靭性に富んだスケルト
ン組織を形成する作用があるが、その配合量
が10%未満では前記作用に所望の効果が得ら
れず、一方70%を越えた配合になると、相対
的にCBNの配合量が少なくなりすぎて、所
望のすぐれた耐摩耗性を確保することができ
なくなることから、その配合量を10〜70%と
定めた。 (4) Ti2AlN Ti2AlNは、上記の通り予備焼結時に焼結
助剤として働き、超微粒TiCと反応して超微
粒TiCNを形成し、これと超微粒Al2O3との
間で結合力の強固なスケルトン組織を形成す
るのに不可欠のものである。したがつて、そ
の配合量が5%未満では超微粒TiCNの形成
が不十分で、所望の著しく靭性に富んだスケ
ルトン組織を形成することができず、一方そ
の配合量が20%を越えると、TiNやAlNが
焼結材料中に残存するようになり、これら
TiNやAlNは安定な化合物であるため、反
応性に乏しく、強固な結合力をもつたスケル
トン組織を形成するのに阻害成分として作用
するようになることから、この配合量を5〜
20%と定めた。なお、この場合、Ti2AlNに
代つて、TiN、AlN、TiAl、あるいはTiAl3
などを焼結助剤として用いてもTi2AlNと同
じ作用効果が得られるものではない。すなわ
ち、TiNの場合、それ自体が安定な耐熱酸
化物であるために、構成成分であるCBN、
超微粒TiC、および超微粒Al2O3を結びつけ
る反応を生じさせることは不可能である。ま
た、AlNも同様に蒸気圧が高く、安定な化
合物であるため、反応性に乏しく、かつ予備
焼結後の超高圧焼結において、焼結阻害因子
として作用するものである。さらに、TiAl
やTiAl3は、予備焼結時に容易に分解する
が、この場合相対的に過剰なAlが発生し、
前記のAlNを形成するようになるものであ
り、したがつて、金属Alも低融点で液相反
応によりAlNを生じるようになるものであ
り、このように予備焼結時に、AlNを形成
するTiAlやTiAl3、さらに金属Alを焼結助
剤として用いるのは望ましくない。 C 予備焼結条件 予備焼結は、各構成成分粒子の脱酸およびク
リーニングなどの副次効果が考えられるが、主
体は、超微粒TiCとTi2AlNとを反応させて活
性に富んだ超微粒TiCNを生成させ、同時に活
性化した超微粒α−Al2O3との間で、微細にし
てマイクロボイドが少なく、かつ堅固に絡み合
つた、結合強度の高いスケルトン組織を形成す
ることにあるが、これらの反応は、雰囲気の真
空度を10-2torr以下、望ましくは10-4torr以下
とした状態で、CBNが六方晶型に完全に逆変
態してしまわない範囲内のできるだけ高い温度
にして、完全に変態したα−Al2O3が得られる
温度、すなわち1200〜1400℃に加熱することに
より行なうことができるものであり、かつ反応
保持時間も5〜60分で十分である。 D 超高圧焼結条件 超高圧焼結は、上記の予備焼結によつて得ら
れたマイクロボイドが少く、初期密度の高い、
高強度の予備焼結体を真密度にするために行な
われるものであり、したがつてCBNの安定な
圧力および温度範囲で焼結する必要があり、そ
の圧力−温度条件として、圧力:40〜70KB、
温度:1200〜1500℃を定めたものであり、また
焼結時間についても、5分未満では焼結が不十
分であり、一方60分を越えた焼結時間は不必要
であることから、5〜60分と定めたのである。 つぎに、この発明の方法を実施例により具体的
に説明する。 実施例 原料粉末として、平均粒径:3μmのCBN粉末、
通常の化学蒸着法により形成された同0.08μmを
有する超微粒TiC粉末、機械的粉砕により調製さ
れた同0.6μmのTiN粉末、無水塩化アルミニウム
の高温加水分解により製造された同0.1μmの超微
粒Al2O3粉末、および機械的粉砕により調製され
た同0.9μmのTi2AlN粉末を用意し、これら原料
粉末をそれぞれ第1表に示される配合組成に配合
し、ボールミルにて混合した後、3ton/cm2の圧力
で、直径:10mmφ×厚さ:1mmの寸法をもつた円
板状圧粉体にプレス成形し、ついで同じく第1表
に示される条件で、前記圧粉体を予備焼結し、引
続いて、この結果得られた予備焼結体を、同一寸
法の炭化タングステン(WC)基超硬合金(Co:
12重量%、WC:残り)製チツプに重ね合わせた
状態で超高圧装置に装入し、同じく第1表に示さ
れる条件で超高圧焼結を行なうことによつて本発
明超高圧焼結材料1〜12をそれぞれ製造した。ま
た、比較の目的で、上記の予備焼結を
This invention has excellent wear resistance, high toughness, and true density, and is particularly useful for cutting high-hardness steels that require these properties, as well as carburized and hardened steels that have a steep hardness gradient on the surface. Cubic boron nitride (CBN) exhibits excellent cutting performance when used as
The present invention relates to a method for producing ultra-high pressure sintered materials (denoted by ). Previously, the same applicant filed a patent application No. 53-100932 (Japanese Unexamined Patent Publication No. 55-31517) on carbides of metals of groups 4a, 5a, and 6a of the periodic table;
High melting point compound consisting of nitride, carbonitride, carbonate, or carbonitride: 5-50% Aluminum oxide (hereinafter referred to as Al 2 O 3 ): 10-50%
70%, CBN and unavoidable impurities: 25-85% (the above is volume %, the following % is volume %), and is especially used as a cutting tool for cutting high hardness steel and Ni-based heat-resistant alloys. We have filed a patent application for a CBN-based ultra-high pressure sintered material that exhibits excellent cutting performance when It is true that the CBN-based ultra-high pressure sintered material of the above-mentioned prior invention shows excellent cutting performance when cutting under normal conditions, but for the purpose of improving productivity, for example, it is difficult to make deep cuts into high-hardness steel or In cases where a relatively excessive cutting force (especially thrust force) is applied to the cutting tool, such as occurs during high-feed cutting, or when higher heat resistance is required, and when the surface of the workpiece is hard. When cutting carburized and hardened steel, etc., which has a steep gradient, the desired stable cutting performance was not achieved due to insufficient strength and toughness, and the cutting performance was not necessarily highly reliable. Therefore, the present inventors proposed CBN of the above-mentioned prior invention.
Focusing on ultra-high pressure sintered materials, we conducted research to give them high strength and toughness, and as a result, we developed CBN with an average particle size of 10 μm or less as a raw material powder.
Powder, ultrafine titanium carbide of 0.2 μm or less (hereinafter referred to as
TiC) powder, titanium nitride powder (hereinafter referred to as TiN) of 1 μm or less, ultrafine particles of 0.2 μm or less
Prepare Al 2 O 3 powder and Ti 2 AlN powder of 1 μm or less, and mix these raw powders with CBN: 20 to 80%, TiC, or TiC + TiN (however, in terms of volume ratio,
TiN/(TiC+TiN)=0.05-0.5): 5-50%, Al 2 O 3 : 10-70%, Ti 2 AlN: 5-20%, and after mixing this blended powder. , it is formed into a green compact by press molding, and then this green compact is pre-sintered under the conditions of a vacuum of 10 -2 torr or less, a temperature of 1200 to 1400°C, and a holding time of 5 to 60 minutes. When applied, during this preliminary sintering,
Ti 2 AlN acts as a sintering aid, and the TiN decomposed from this reacts with ultrafine TiC to form highly active ultrafine titanium carbonitride (hereinafter referred to as TiCN). The result is that the ultrafine Al 2 O 3 , which mainly has a γ structure and a part of it has a δ structure, undergoes a crystal transformation into an α structure and becomes extremely activated through a densification process due to particle rearrangement. The pre-sintered body is a high-density, high-strength tertiary body in which the activated ultrafine TiCN particles and α-Al 2 O 3 are tightly intertwined and strongly bonded, and have extremely few microvoids. As the original skeleton structure is formed, the heat resistance properties of the sintered material are further improved.Subsequently, this preliminary sintered body is subjected to ultra-high pressure equipment to maintain stable temperature-pressure conditions for CBN. In other words, if ultra-high pressure sintering is performed under the conditions of temperature: 1200-1500℃, pressure: 40-70KB, and holding time: 5-60 minutes, true density sintering with excellent wear resistance, high strength, and high toughness can be achieved. They obtained the knowledge that it became possible to obtain a binding material. This invention was made based on the above knowledge, and the reason why the manufacturing conditions were limited as described above will be explained below. A. Average particle size of raw material powder (1) CBN powder If the average particle size of CBN powder exceeds 10 μm,
Due to the decrease in specific surface area, CBN
phase and activated ultrafine TiCN and ultrafine particles
The throwing power between the binder phase, which is a skeleton structure formed by strong bonding with Al 2 O 3 , is insufficient, and as a result, sufficient interfacial strength cannot be obtained, and CBN particles may fall off during cutting. The average particle size of the CBN powder was set to 10 μm or less because damage such as chipping is likely to occur. (2) Ultra-fine TiC powder As mentioned above, ultra-fine TiC reacts with the sintering aid Ti 2 AlN during pre-sintering to form activated ultra-fine particles with superior heat resistance properties.
It is a component that forms TiCN, and in order to complete this reaction, the average particle size must be
It needs to be 0.2 μm or less, preferably 0.05 to 0.1 μm. That is, when the average particle size of ultrafine TiC exceeds 0.2 μm, the above reaction becomes insufficient, unreacted TiC remains, and the material no longer exhibits stable cutting edge strength at high temperatures. Note that as the ultrafine TiC powder, it is preferable to use one produced by chemical vapor deposition. (3) Ultra-fine-grained Al 2 O 3 powder As mentioned above, the crystal structure of ultra-fine-grained Al 2 O 3 is usually mainly a γ structure, with a part of it consisting of a δ structure, but it transforms into an α crystal structure during pre-sintering. Then, through a densification process due to particle rearrangement, it becomes activated, and this activated ultrafine particle
The activated ultrafine TiCN forms a skeleton structure in which Al 2 O 3 and activated ultrafine TiCN form a strong bond, and the ultrafine TiCN is used to produce a high-density, strong pre-sintered body with few microvoids.
However, if the average particle size exceeds 0.2 μm, not only microvoids are likely to be formed, but also the formation of a skeleton structure is insufficient, resulting in a lack of the desired high toughness and high strength. The average grain size should not exceed 0.2 μm, as this will make it difficult to manufacture the pre-sintered body. In addition, it was manufactured from commercially available anhydrous aluminum chloride by a high-temperature hydrolysis method.
The Al 2 O 3 powder has an average particle size of 0.2 μm or less,
Moreover, since the crystal structure is mainly composed of γ structure and a part of it is composed of δ structure, it is ideal as a raw material powder. (4) Ti 2 AlN powder Ti 2 AlN powder is produced by heating and reacting Ti nitride and Ti-Al intermetallic compound in vacuum or inert gas. As mentioned above, during pre-sintering, it acts as a sintering aid, and between CBN.
It is a raw material powder that is essential for forming the three-dimensional skeleton structure of TiCN-Al 2 O 3 , but when its average particle size exceeds 1 μm, the surface area decreases relatively and the above decomposition reaction becomes slow. Therefore, it is difficult to form a high-density skeleton structure by strengthening the bonds between the particles, so the average particle size was set at 1 μm or less. (5) TiN powder When a part of the ultra-fine TiN powder is replaced with TiN powder as necessary to take advantage of the excellent high-temperature stability of TiN itself, the above-mentioned ultra-fine TiCN and ultra-fine Al 2 O 3 A structure in which TiN is dispersed or partially dissolved in a skeleton structure in which TiN is strongly combined with TiC is formed, but when the average particle size exceeds 1 μm, it becomes ultrafine TiC.
The average particle size was set at 1 μm or less because not only would the reaction with Ti 2 AlN be inhibited, but also it would be difficult to form a uniformly intertwined skeleton structure. B. Composition (1) CBN CBN has a hardness second only to diamond (6000 to 7000 Kg/mm 2 in terms of Bitkers hardness), is more stable than diamond at high temperatures, and is reactive with iron group metals. Therefore, if the amount of CBN is less than 20%, the desired wear resistance cannot be achieved, while if the amount exceeds 80%, the relative If the amount is too large, the formation of a skeleton structure will be insufficient, resulting in a decrease in toughness and chipping wear during cutting, so the blending amount was set at 20 to 80%. (2) TiC TiC is a sintering aid as mentioned above.
Reacts with Ti 2 AlN and has better heat resistance,
In addition, activated ultrafine TiCN particles are formed, which constitute a member of the skeleton structure and have the effect of improving the toughness of the sintered material, but if the content is less than 5%, the desired effect is not obtained. On the other hand, if the content exceeds 50%, TiC will remain and it will be difficult to obtain stable high temperature strength, so the content was set at 5 to 50%. In addition, in this case, replacing part of it with TiN will further improve the heat resistance properties, so it may be added as necessary, for example, in cutting applications where high heat generation is involved or thermal shock is applied. If the amount of substitution is less than 5% relative to TiC, the desired property improvement effect cannot be obtained, while if it exceeds 50%, the formation of ultrafine TiCN decreases, resulting in a skeleton structure with strong bonding strength. Therefore, the amount of TiN substituted must be 5 to 50% relative to TiC, that is, TiN/(TiC+TiN) = 0.05 to 0.5%. (3) As mentioned above, Al 2 O 3 Al 2 O 3 transforms into an activated α-crystalline structure during pre-sintering, and forms a skeleton structure rich in toughness with activated ultrafine TiCN particles. However, if the amount of CBN is less than 10%, the desired effect cannot be obtained, while if it exceeds 70%, the amount of CBN is relatively too small to achieve the desired effect. Since it would no longer be possible to ensure excellent wear resistance, the blending amount was set at 10 to 70%. (4) Ti 2 AlN As mentioned above, Ti 2 AlN acts as a sintering aid during preliminary sintering, reacts with ultrafine TiC to form ultrafine TiCN, and forms a bond between this and ultrafine Al 2 O 3 . It is essential for forming a skeleton structure with strong cohesion. Therefore, if the blending amount is less than 5%, the formation of ultrafine TiCN particles is insufficient, and the desired skeleton structure with extremely high toughness cannot be formed. On the other hand, if the blending amount exceeds 20%, TiN and AlN now remain in the sintered material, and these
Since TiN and AlN are stable compounds, they have poor reactivity and act as inhibitors to the formation of a skeleton structure with strong bonding strength.
It was set at 20%. In this case, instead of Ti 2 AlN, TiN, AlN, TiAl, or TiAl 3
Even if Ti 2 AlN is used as a sintering aid, the same effects as Ti 2 AlN cannot be obtained. In other words, in the case of TiN, since it is a stable heat-resistant oxide, the constituent CBN,
It is not possible to create a reaction that binds ultrafine TiC and ultrafine Al 2 O 3 . Furthermore, since AlN is also a stable compound with a high vapor pressure, it has poor reactivity and acts as a sintering inhibiting factor during ultra-high pressure sintering after preliminary sintering. Furthermore, TiAl
and TiAl3 are easily decomposed during pre-sintering, but in this case relatively excess Al is generated,
The above-mentioned AlN is formed. Therefore, metal Al also has a low melting point and generates AlN through a liquid phase reaction. In this way, during pre-sintering, TiAl, which forms AlN, It is undesirable to use TiAl 3 or metal Al as a sintering aid. C Pre-sintering conditions Pre-sintering may have secondary effects such as deoxidation and cleaning of each component particle, but the main effect is to react ultra-fine TiC and Ti 2 AlN to form highly active ultra-fine particles. The purpose is to generate TiCN and form a skeleton structure with high bonding strength, which is fine, has few microvoids, and is tightly intertwined with the ultrafine α-Al 2 O 3 activated at the same time. These reactions are carried out at a temperature as high as possible within the range that does not completely reverse transform CBN into a hexagonal crystal form, with the degree of vacuum in the atmosphere kept at 10 -2 torr or less, preferably 10 -4 torr or less. This can be carried out by heating to a temperature at which completely transformed α-Al 2 O 3 is obtained, that is, 1200 to 1400° C., and a reaction holding time of 5 to 60 minutes is sufficient. D Ultra-high-pressure sintering conditions Ultra-high-pressure sintering produces fewer microvoids and a higher initial density than those obtained by the preliminary sintering described above.
This is done to make a high-strength pre-sintered body true density, so it is necessary to sinter in a stable pressure and temperature range for CBN, and the pressure-temperature conditions are: pressure: 40 to 70KB,
Temperature: 1,200 to 1,500℃, and sintering time of less than 5 minutes is insufficient for sintering, while sintering time of more than 60 minutes is unnecessary. It was set at ~60 minutes. Next, the method of the present invention will be specifically explained using examples. Example As raw material powder, CBN powder with average particle size: 3 μm,
Ultra-fine TiC powder with a diameter of 0.08 μm formed by ordinary chemical vapor deposition, TiN powder with a diameter of 0.6 μm prepared by mechanical crushing, and ultra-fine grains with a diameter of 0.1 μm manufactured by high-temperature hydrolysis of anhydrous aluminum chloride. Al 2 O 3 powder and 0.9 μm Ti 2 AlN powder prepared by mechanical grinding were prepared, and these raw material powders were blended into the composition shown in Table 1, and mixed in a ball mill. It was press-formed into a disk-shaped green compact with dimensions of diameter: 10 mmφ x thickness: 1 mm at a pressure of 3 ton/cm 2 , and then the green compact was pre-sintered under the conditions shown in Table 1. The resulting pre-sintered body is then fused to a tungsten carbide (WC)-based cemented carbide (Co:
The ultra-high-pressure sintered material of the present invention was obtained by charging the ultra-high-pressure equipment with chips made of 12% by weight (WC: the remainder) and performing ultra-high-pressure sintering under the conditions shown in Table 1. 1 to 12 were produced respectively. Also, for comparison purposes, the above pre-sintering

【表】【table】

【表】 (*印:ノーズ部にチツピングの発生あり)
行なわない以外は、同一の条件で比較超高圧焼結
材料1〜12を製造した。 ついで、この結果得られた本発明超高圧焼結材
料1〜12および比較超高圧焼結材料1〜12から、
切削チツプを切出し、WC基超硬合金製ホルダに
ろう付けし、研麿仕上げした後、 被削材:SCM−415の浸炭焼入れ材(表面硬
さ:HRC60±1、浸炭層深さ:0.7mm以上)、 切削速度:120m/min、 切り込み:0.3mm、 送 り:0.2mm/rev、 切削時間:20min、 の条件で連続切削試験を行ない、切刃の逃げ面摩
耗幅を測定した。この結果を第1表に示した。 第1表に示される結果から、高強度と高靭性が
要求される表面部の硬さ勾配が急激な浸炭焼入れ
材の切削に際して、本発明超高圧焼結材料1〜12
は、いずれもすぐれた耐摩耗性を有し、かつさら
に引続いての切削が可能であるのに対して、予備
焼結を行なわず、圧粉体をそのまま超高圧焼結し
た比較超高圧焼結材料1〜12は、いずれも3〜15
分で切刃のすくい面に剥離現象が現われ、中には
ノーズ部にチツピングが発生したものもあり、短
時間で使用寿命に至るものであつた。 上述のように、この発明のCBN基超高圧焼結
材料は、高強度および高靭性、並びに真密度を有
するので、相対的に過大な切削抵抗が加わる高硬
度鋼などの深切り込みや高送り切削、さらに表面
部の硬さ勾配が急激な浸炭焼入れ鋼などの切削に
切削工具として用いた場合にすぐれた耐摩耗性と
安定した切削性能を示し、長期に亘る使用を可能
とするものである。
[Table] (*mark: Chipping occurs on the nose)
Comparative ultra-high pressure sintered materials 1 to 12 were manufactured under the same conditions except that no sintering was performed. Next, from the ultra-high pressure sintered materials 1 to 12 of the present invention and comparative ultra-high pressure sintered materials 1 to 12 obtained as a result,
After cutting the cutting chip, brazing it to a WC-based cemented carbide holder, and polishing it, workpiece material: SCM-415 carburized and quenched material (surface hardness: H R C60±1, carburized layer depth: A continuous cutting test was conducted under the following conditions: cutting speed: 120 m/min, depth of cut: 0.3 mm, feed: 0.2 mm/rev, cutting time: 20 min, and the flank wear width of the cutting edge was measured. The results are shown in Table 1. From the results shown in Table 1, the ultra-high pressure sintered materials 1 to 12 of the present invention can be
Both have excellent wear resistance and are capable of subsequent cutting, whereas comparative ultra-high-pressure sintering, in which the green compact is directly ultra-high-pressure sintered without pre-sintering, Binding materials 1 to 12 are all 3 to 15
Within a few minutes, a peeling phenomenon appeared on the rake face of the cutting blade, and in some cases, chipping occurred on the nose, and the service life was reached in a short period of time. As mentioned above, the CBN-based ultra-high pressure sintered material of the present invention has high strength, high toughness, and true density, so it is suitable for deep cutting and high-feed cutting of high-hardness steel, etc., which are subject to relatively excessive cutting resistance. Furthermore, when used as a cutting tool for cutting carburized and hardened steel, which has a steep hardness gradient on the surface, it exhibits excellent wear resistance and stable cutting performance, making it possible to use it for a long time.

Claims (1)

【特許請求の範囲】 1 原料粉末として、平均粒径:10μm以下の立
方晶窒化硼素粉末、同0.2μm以下の超微粒炭化チ
タン粉末、同1μm以下の窒化チタン粉末、同0.2μ
m以下の超微粒酸化アルミニウム粉末、および
1μm以下の平均粒径を有し、窒化チタンと、Ti
−Alの金属間化合物とを反応させることにより
生成させた焼結助剤としてのTi2AlN粉末を用意
し、 これら原料粉末を、容量%で、 立方晶窒化硼素:20〜80%、 炭化チタン、または炭化チタンと窒化チタン
(ただし窒化チタン/(炭化チタン+窒化チタン)
=0.05〜0.5、容量比):5〜50%、 酸化アルミニウム:10〜70%、 Ti2AlN:5〜20%、 からなる配合組成に配合し、 この配合粉末を混合した後、プレス成形にて圧
粉体に成形し、 ついで、この圧粉体に、10-2torr以下の真空
中、温度:1200〜1400℃、保持時間:5〜60分の
条件で予備焼結を施すことによつて、Ti2AlNの
分解により生成したTiNと超微粒炭化チタンと
を反応させて耐熱特性のすぐれた微細な炭窒化チ
タンを形成すると共に、この超微粒炭窒化チタン
と超微粒酸化アルミニウムとが強固に絡み合つた
高強度および高靭性を有し、かつマイクロボイド
のきわめて少ないスケルトン組織を形成し、 引続いて、この予備焼結体に、温度:1200〜
1500℃、圧力:40〜70KB、保持時間:5〜60分
の立方晶窒化硼素の安定な温度−圧力条件で超高
圧焼結を施して真密度とすることを特徴とするす
ぐれた耐摩耗性および高靭性を有する切削工具用
立方晶窒化硼素基超高圧焼結材料の製造法。 2 化学気相蒸着法により製造された平均粒径:
0.05〜0.1μmを有する超微粒炭化チタン粉末を原
料粉末として使用することを特徴とする特許請求
の範囲第1項記載の切削工具用立方晶窒化硼素基
超高圧焼結材料の製造法。 3 無水塩化アルミニウムを高温加水分解するこ
とにより製造された平均粒径:0.2μm以下を有
し、かつ結晶構造が主としてγ構造で、一部がδ
構造よりなる超微粒酸化アルミニウム粉末を原料
粉末として使用することを特徴とする特許請求の
範囲第1項記載の切削工具用立方晶窒化硼素基超
高圧焼結材料の製造法。
[Claims] 1. Raw material powders include cubic boron nitride powder with an average particle size of 10 μm or less, ultrafine titanium carbide powder with an average particle size of 0.2 μm or less, titanium nitride powder with an average particle size of 1 μm or less, and cubic boron nitride powder with an average particle size of 0.2 μm or less.
ultrafine aluminum oxide powder of less than m, and
It has an average particle size of 1 μm or less, and contains titanium nitride and Ti.
Prepare Ti 2 AlN powder as a sintering aid produced by reacting -Al with an intermetallic compound. , or titanium carbide and titanium nitride (titanium nitride/(titanium carbide + titanium nitride)
= 0.05 to 0.5, volume ratio): 5 to 50%, aluminum oxide: 10 to 70%, Ti 2 AlN: 5 to 20%, and after mixing this powder mixture, press molding. This green compact is then pre-sintered in a vacuum of 10 -2 torr or less at a temperature of 1200 to 1400°C and a holding time of 5 to 60 minutes. Then, TiN produced by the decomposition of Ti 2 AlN and ultrafine titanium carbide are reacted to form fine titanium carbonitride with excellent heat resistance, and the ultrafine titanium carbonitride and ultrafine aluminum oxide are strengthened. This pre-sintered body is then heated to a temperature of 1200~
Excellent wear resistance characterized by ultra-high pressure sintering of cubic boron nitride at 1500℃, pressure: 40-70KB, holding time: 5-60 minutes under stable temperature and pressure conditions to achieve true density. and a method for producing a cubic boron nitride-based ultra-high pressure sintered material for cutting tools with high toughness. 2 Average particle size produced by chemical vapor deposition method:
The method for producing a cubic boron nitride-based ultra-high pressure sintered material for cutting tools according to claim 1, characterized in that ultrafine titanium carbide powder having a particle diameter of 0.05 to 0.1 μm is used as the raw material powder. 3 Manufactured by high-temperature hydrolysis of anhydrous aluminum chloride, the average particle size is 0.2 μm or less, and the crystal structure is mainly γ structure, with some δ
2. A method for producing a cubic boron nitride-based ultra-high pressure sintered material for cutting tools according to claim 1, characterized in that an ultra-fine aluminum oxide powder having a structure is used as a raw material powder.
JP59031958A 1984-02-22 1984-02-22 Manufacture of cubic boron nitride base super high pressure sintering material for cutting tool Granted JPS60176973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031958A JPS60176973A (en) 1984-02-22 1984-02-22 Manufacture of cubic boron nitride base super high pressure sintering material for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031958A JPS60176973A (en) 1984-02-22 1984-02-22 Manufacture of cubic boron nitride base super high pressure sintering material for cutting tool

Publications (2)

Publication Number Publication Date
JPS60176973A JPS60176973A (en) 1985-09-11
JPS6335591B2 true JPS6335591B2 (en) 1988-07-15

Family

ID=12345464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031958A Granted JPS60176973A (en) 1984-02-22 1984-02-22 Manufacture of cubic boron nitride base super high pressure sintering material for cutting tool

Country Status (1)

Country Link
JP (1) JPS60176973A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806602A1 (en) * 1988-03-02 1988-07-07 Krupp Gmbh CARBIDE BODY
CN1321939C (en) * 2004-07-15 2007-06-20 中国科学院金属研究所 Al2O3 dispersion-strengthened Ti2AlN ceramic composite materials and method for preparing same
JP5504519B2 (en) * 2010-03-30 2014-05-28 住友電工ハードメタル株式会社 Composite sintered body
CN109534799B (en) * 2018-12-24 2021-08-27 深圳市商德先进陶瓷股份有限公司 Alumina ceramic and preparation method and application thereof
EP4001241A4 (en) * 2019-07-18 2022-08-24 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body

Also Published As

Publication number Publication date
JPS60176973A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
JP5447844B2 (en) High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool
US20080226897A1 (en) Cubic Boron Nitride Compacts
EP1013379A1 (en) Diamond-containing stratified composite material and method of manufacturing the same
JPH0564691B2 (en)
JP2000044348A (en) High-hardness sintered compact for cutting working of cast iron
KR980009199A (en) Ceramic Bonded Cubic Boron Nitride Green Sheet
JPS6132275B2 (en)
JPS6335591B2 (en)
JPS644988B2 (en)
JPS644989B2 (en)
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPS6330983B2 (en)
JPH0742170B2 (en) Cubic boron nitride based sintered body
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JPS6141873B2 (en)
JPS644986B2 (en)
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPS644987B2 (en)
JPH0377151B2 (en)
JPH04297507A (en) Manufacture of cutting tool made of hard layer-coated tungsten carbide base-sintered hard alloy
JPS6261105B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term