JPH0377151B2 - - Google Patents

Info

Publication number
JPH0377151B2
JPH0377151B2 JP58006950A JP695083A JPH0377151B2 JP H0377151 B2 JPH0377151 B2 JP H0377151B2 JP 58006950 A JP58006950 A JP 58006950A JP 695083 A JP695083 A JP 695083A JP H0377151 B2 JPH0377151 B2 JP H0377151B2
Authority
JP
Japan
Prior art keywords
volume
boron nitride
less
pressure phase
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58006950A
Other languages
Japanese (ja)
Other versions
JPS59131581A (en
Inventor
Katsuhiro Mitsusaka
Tetsuo Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58006950A priority Critical patent/JPS59131581A/en
Publication of JPS59131581A publication Critical patent/JPS59131581A/en
Publication of JPH0377151B2 publication Critical patent/JPH0377151B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明は切削工具等に用いる立方晶型窒化硼素
を主成分とする高硬度焼結体の性能、特に耐溶着
性、靱性、及び耐摩耗性の改善に関するものであ
る。 (ロ) 技術背景 立方晶型窒化硼素(Cubic Boron Nitride、以
下CBNと略す)はダイヤモンドに次ぐ高硬度の
物質であり、また、熱伝導性に優れ、高温におけ
る鉄族金属との反応性が少ない物質であり、超高
圧高温下で合成される。このCBNのみを焼結す
る試みは種々なされているが、これには例えば特
公昭39−8948号に記載されている如く、約70kb
以上、1900℃以上の超高圧高温下で焼結する必要
がある。現状の超高圧高温装置ではこのような高
圧高温条件を発生させることはできるが、工業的
規模に装置を大型化した場合、高圧高温発生部の
耐用回数が制約され実用的でない。 また、このCBN粒子を金属で結合した焼結体
が切削用途に一部市販されているが、切削工具と
して使用した場合、結合金属相の高温での軟化に
よる耐摩耗性の低下や、被削材金属の溶着による
工具の損傷が欠点となる。 (ハ) 発明の開示 本発明者らは、耐溶着性のみならず靱性と耐摩
耗性に優れた材質を開発すべく研究を重ねた。そ
の結果、2〜100μmのCBN粒子を20〜85体積%
含有し、残部の結合材が平均粒度1μm以下の超微
粒CBN粒子20〜90体積%、周期律表第4a,5a,
6a族遷移金属の炭化物、炭窒化物、窒化物また
はこれらの固溶体もしくは混合物結晶5〜50体積
%及びAl5〜30体積%より成る焼結体が目標を達
成することを発見した。 まず、本発明焼結体の靱性が優れているのいは
次の如く考えられる。 CBN焼結体の抗折力は、第1図に示す如く粒
度の増加に伴い低下する。 微粒CBN焼結体は、抗折力が高く、靱性に優
れているため、刃先は欠損しにくいものの、個々
の粒子の接合力は弱いため、アブレイシブな摩耗
の場合、切削中に個々の粒子が脱落しやすいた
め、耐摩耗性が劣るものと考えられる。一方粗粒
CBN焼結体は個々のCBN粒子の接合力は強いた
め、耐摩耗性は優れるものの、一度クラツクが発
生すると伝播しやすく、刃先が欠損するものと考
えられる。本発明焼結体は、2μm以上100μm以下
のCBN粒子を1μm以下の超微粒CBN焼結体で保
持しているものであるため、2μm以上100μm以下
のCBN粒子の耐摩耗性の良さと、超微粒CBN焼
結体の靱性の高さを有するものである。さらに本
発明の焼結体は結合材として超微粒のCBN粒子
と、周期律表第4a,5a,6a族の炭化物、窒化物、
炭窒化物を含有しているため、耐摩耗性、耐溶着
性も非常に優れている。 次にAlの添加により例えばWC−Co超硬合金
の液相焼結の如く、硬質粒子の結合相への溶解と
再析出現象があれば結合相と硬質粒子。又は硬質
粒子相互の結合強度の高いものが得られるが、本
発明の焼結体では結合材中にAlが存在すること
により、これと類似した現象が生じたと思われ
る。さらに、これらAlの化合物には硬度の高い
AlB2やAlNが生じるため強度の低下は起らない。 本発明焼結体に用いる粗粒のCBN粒子は2μm
以上がよい。2μm以下になると耐摩耗性に問題を
生じる。又100μmを越えると靱性が低下する。 2μm以上100μm以下のCBNの含有量は体積で
20〜85%が好ましい。特に耐摩耗性が必要な場合
は、2μm以上100μm以下のCBN粒子の含有量を
増せば良いが、この含有量が、焼結体中の体積で
85%を越えると切削中刃先が欠損したりする。ま
た、含有量を少なくすれば良いが、体積で20%未
満となると耐摩耗性が問題となる。結合材中の超
微粒のCBN粒子の粒度は1μm以下、好ましくは
0.5μm以下が良い。微粒のCBN粒子の粒度が1μm
を越すと靱性は低下する。 結合材中の微粒CBN粒子の含有量は体積で、
20〜90%が好ましい。微粒CBN粒子の含有量が
20%未満であると、結合相の耐摩耗性が低下し、
結合相が早期に摩耗し、2μm以上の粗粒CBN粒
子が脱落する。 一方、微粒CBN粒子の含有量が90%を越すと、
結合材が脆くなつたり、あるいは周期律表第4a,
5a,6a族の炭化物、窒化物、炭窒化物の含有量
が減るため、1μm以下のCBNが粒成長し、靱性
が低下する。 周期律表第4a,5a,6a族の炭化物、窒化物、
炭窒化物の含有量は体積で5%〜50%がよく、50
%を越えると微粒CBN量が減るため上記の効果
が出ない。5%未満では、周期律表第4a,5a,
6a族の炭化物、窒化物、炭窒化物の効果が出な
く性能が低下する。 また、Alの含有量は体積で5%〜30%がよく、
30%を越えると結合相の強度が弱まり切削性能は
低下する。5%未満ではAlの効果が出ない。 焼結体の製造に際しては予め1μm以下のCBN
粒子と周期律表第4a,5a,6a族遷移金属の炭化
物、窒化物、炭窒化物、またはこれらの固溶体も
しくは混合物粉末の1種又は2種以上及びAl粉
末を均一にボールミル等の手段を用いて混合し、
続いて2μm〜100μmのCBN粒子と混合する。こ
のAlは予め混合せずに焼結時に溶浸せしめても
良い。 混合した粉末を超高圧装置に入れ、高圧相型窒
化硼素が安定な条件下で焼結する。 このような優れた焼結体を切削工具として使用
する場合、高硬度焼結体は切れ刃となる部分にの
みあれば良く、この高硬度焼結体を強度、靱性、
熱伝導に優れた超硬合金に接合して使用すればそ
の性能を十分発揮することができる。 しかし超硬合金に直接接合すればCBNの含有
量が多い場合などは接合強度が弱く断続切削など
には使用できないこともある。十分な接合強度を
得るにはCBNを体積で70%未満含有し、残部が
Ti,Zr,Hfの炭化物、窒化物、炭窒化物の1種
もしくはこれらの混合物や相互固体化合物からな
る中間層を用いて接合すればよい。 また、高圧相型窒化硼素の別の形態であるウル
ツ鉱型窒化硼素についても同様の検討を行い、
CBNを用いた場合と類似した結果を得た。 以下実施例を述べる。 実施例 1 粒度0.5μのCBN粉末とTiC及びAl粉末を体積
で6:3:1の割合でWC−Co硬合金製のポツト
とボールを用いて粉砕混合した。この混合粉末と
平均粒度10μmのCBN粉末を体積で4:6の割合
いで混合した。この完成粉末を内径10mm外径14mm
のMo製の容器に充填した。次にこの容器を、超
高圧装置内に入れ、先ず圧力50kbを加え、引続
いて1300℃加熱して20分間保持した。Mo製の容
器を取り出してMoを除去し、焼結体の組織を観
察したところ、平均粒度10μmのCBNが均一に分
散しておりその周囲には超微粒CBN粒子を含有
する結合材が存在していた。 つぎに、この焼結体を用いて切削工具用のチツ
プを作成し、切削試験を行つた。尚、比較のため
市販のCBN粒子を金属で結合した焼結体からも
同様のチツプを作成し切削試験を行つた。被削材
は外径100mmで円周に4ケ所の溝を有するSKD11
ダイス鋼(HRC=62)を用い、切削速度100m/
min、切込み0.3mm、送り0.3mm/rev、乾式で試験
したところ、本発明品は刃先が欠損するまで22分
切削可能であつたのに対し、市販のものは、10分
切削した時点で、刃先は欠損した。 実施例 2 表1に示す結合材粉末を作成した。超微粒
CBNとしては平均粒度0.5μmのものを使用した。
(a) Technical field The present invention relates to the performance of a high-hardness sintered body containing cubic boron nitride as a main component used for cutting tools, etc., and in particular to improving the welding resistance, toughness, and wear resistance. (b) Technical background Cubic boron nitride (hereinafter abbreviated as CBN) is a substance with the highest hardness next to diamond, and also has excellent thermal conductivity and low reactivity with iron group metals at high temperatures. It is a substance that is synthesized under ultra-high pressure and high temperature. Various attempts have been made to sinter only this CBN; for example, as described in Japanese Patent Publication No. 39-8948,
As mentioned above, it is necessary to sinter at ultra-high pressure and high temperature of 1900℃ or higher. Although current ultra-high pressure and high temperature equipment can generate such high pressure and high temperature conditions, when the equipment is scaled up on an industrial scale, the number of service life of the high pressure and high temperature generating section is limited, making it impractical. In addition, some sintered bodies made of CBN particles bonded with metal are commercially available for cutting purposes, but when used as cutting tools, the bonding metal phase softens at high temperatures, resulting in a decrease in wear resistance and The disadvantage is damage to the tool due to welding of the material. (C) Disclosure of the Invention The present inventors have conducted repeated research in order to develop a material that has not only excellent welding resistance but also excellent toughness and wear resistance. As a result, 20 to 85 volume% of CBN particles with a size of 2 to 100 μm
Contains 20 to 90% by volume of ultrafine CBN particles with the remainder of the binder having an average particle size of 1 μm or less, Periodic Table 4a, 5a,
It has been discovered that a sintered body consisting of 5-50% by volume of carbides, carbonitrides, nitrides or solid solutions or mixtures of crystals of group 6a transition metals and 5-30% by volume of Al achieves this goal. First, the reason why the sintered body of the present invention has excellent toughness is considered as follows. The transverse rupture strength of a CBN sintered body decreases as the grain size increases, as shown in FIG. Fine-grained CBN sintered bodies have high transverse rupture strength and excellent toughness, so the cutting edge is less prone to breakage, but the bonding strength of individual particles is weak, so in the case of abrasive wear, individual particles may break during cutting. It is thought that the wear resistance is poor because it easily falls off. On the other hand, coarse grain
Although the CBN sintered body has excellent wear resistance because the bonding force between individual CBN particles is strong, once a crack occurs, it is likely to propagate and cause the cutting edge to break. The sintered body of the present invention has CBN particles of 2 μm or more and 100 μm or less held in an ultrafine CBN sintered body of 1 μm or less. It has the high toughness of a fine-grained CBN sintered body. Furthermore, the sintered body of the present invention uses ultrafine CBN particles as a binder, and carbides and nitrides of groups 4a, 5a, and 6a of the periodic table.
Since it contains carbonitrides, it has excellent wear resistance and welding resistance. Next, if the addition of Al causes the phenomenon of dissolution of hard particles into the binder phase and re-precipitation, as in liquid phase sintering of WC-Co cemented carbide, the binder phase and the hard particles will be separated. Alternatively, a product with high bonding strength between hard particles can be obtained, but it is thought that a phenomenon similar to this occurs in the sintered body of the present invention due to the presence of Al in the binder. Furthermore, these Al compounds have high hardness.
No decrease in strength occurs because AlB 2 and AlN are generated. The coarse CBN particles used in the sintered body of the present invention are 2 μm
The above is good. When the thickness is less than 2 μm, problems occur in wear resistance. Moreover, when the thickness exceeds 100 μm, the toughness decreases. The content of CBN with a size of 2 μm or more and 100 μm or less is by volume.
20-85% is preferred. In particular, if wear resistance is required, it is sufficient to increase the content of CBN particles with a size of 2 μm or more and 100 μm or less, but this content is determined by the volume of the sintered body.
If it exceeds 85%, the cutting edge may break during cutting. Further, although the content can be reduced, if the content is less than 20% by volume, wear resistance becomes a problem. The particle size of the ultrafine CBN particles in the binder is 1 μm or less, preferably
0.5μm or less is good. The particle size of fine CBN particles is 1μm
If it exceeds this, the toughness will decrease. The content of fine CBN particles in the binder is by volume,
20-90% is preferred. The content of fine CBN particles is
If it is less than 20%, the wear resistance of the binder phase will decrease,
The binder phase wears out prematurely, and coarse CBN particles larger than 2 μm fall off. On the other hand, when the content of fine CBN particles exceeds 90%,
The bonding material becomes brittle, or the periodic table 4a,
As the content of carbides, nitrides, and carbonitrides of groups 5a and 6a decreases, CBN grains of 1 μm or less grow and the toughness decreases. Carbides and nitrides of groups 4a, 5a, and 6a of the periodic table,
The content of carbonitride is preferably 5% to 50% by volume;
If it exceeds %, the above effect will not be produced because the amount of fine CBN will decrease. Below 5%, periodic table 4a, 5a,
Group 6a carbides, nitrides, and carbonitrides are not effective and performance deteriorates. In addition, the Al content is preferably 5% to 30% by volume.
If it exceeds 30%, the strength of the binder phase weakens and cutting performance deteriorates. If it is less than 5%, the effect of Al will not be produced. When manufacturing sintered bodies, CBN with a thickness of 1 μm or less is prepared in advance.
The particles and one or more of carbides, nitrides, carbonitrides, solid solutions or mixture powders of transition metals of groups 4a, 5a, and 6a of the periodic table, and Al powder are uniformly mixed using a means such as a ball mill. mix,
Subsequently, it is mixed with CBN particles of 2 μm to 100 μm. This Al may be infiltrated during sintering without being mixed in advance. The mixed powder is placed in an ultra-high pressure device and sintered under conditions where the high-pressure phase type boron nitride is stable. When using such an excellent sintered body as a cutting tool, the high hardness sintered body is only needed in the part that will become the cutting edge.
Its performance can be fully demonstrated by bonding it to cemented carbide, which has excellent thermal conductivity. However, if it is directly bonded to cemented carbide, the bonding strength may be weak and it may not be possible to use it for interrupted cutting, etc. if the CBN content is high. To obtain sufficient bonding strength, CBN must be contained at less than 70% by volume, with the remainder being
Bonding may be performed using an intermediate layer made of one of carbides, nitrides, and carbonitrides of Ti, Zr, and Hf, or a mixture thereof, or a mutual solid compound. In addition, we conducted a similar study on wurtzite boron nitride, which is another form of high-pressure phase boron nitride.
Similar results were obtained using CBN. Examples will be described below. Example 1 CBN powder with a particle size of 0.5μ, TiC and Al powder were pulverized and mixed in a volume ratio of 6:3:1 using a pot and ball made of WC-Co hard alloy. This mixed powder and CBN powder having an average particle size of 10 μm were mixed at a volume ratio of 4:6. This finished powder has an inner diameter of 10 mm and an outer diameter of 14 mm.
It was filled into a container made of Mo. Next, this container was placed in an ultra-high pressure device, and a pressure of 50 kb was first applied, followed by heating to 1300°C and holding for 20 minutes. When we took out the Mo container, removed the Mo, and observed the structure of the sintered body, we found that CBN with an average particle size of 10 μm was uniformly dispersed, and a binder containing ultrafine CBN particles was present around it. was. Next, a chip for a cutting tool was made using this sintered body, and a cutting test was conducted. For comparison, a similar chip was made from a sintered body of commercially available CBN particles bonded with metal, and a cutting test was conducted. The workpiece material is SKD11 with an outer diameter of 100 mm and four grooves around the circumference.
Using die steel (HRC=62), cutting speed 100m/
min, depth of cut 0.3 mm, feed rate 0.3 mm/rev, dry test, the product of the present invention could be cut for 22 minutes before the cutting edge broke, whereas the commercially available product could cut after 10 minutes. The cutting edge was missing. Example 2 A binder powder shown in Table 1 was prepared. Ultra fine particles
The CBN used had an average particle size of 0.5 μm.

【表】 この結合材と平均粒度4μmのCBN粒子を表2
に示す割合で混合して、完成粉末を作成した。
[Table] Table 2 shows this binder and CBN particles with an average particle size of 4 μm.
A finished powder was prepared by mixing in the proportions shown below.

【表】 これらの完成粉末を実施例2と同様にして焼結
した。ただし、No.イ、チは本発明焼結体ではな
い。次にこれら焼結体より実施例1と同様にして
切削用チツプを作成し切削試験を行つた。被削
材、条件は実施例1と同じである。欠損までの切
削可能時間を表2に示す。又、外径100mmの
SKD11ダイス鋼(HRC=62)を切削速度100m/
min、切込み0.2mm、送り0.1mm/rev、乾式で、切
削し、切削時間20分後の逃げ面摩耗巾を測定し
た。結果を表2に示す。 実施例 3 超微粒CBNとして平均粒度1μm以下のウルツ
鉱型窒化硼素粉末を用い、実施例2のNo.ハと同じ
組成に混合し、これを実施例1と同様にして焼結
を行つた後、切削用チツプを作成し、切削試験を
行つたところ、刃先が欠損するまで20分切削可能
であつた。 実施例 4 粗粒CBNとして平均粒度50μmと80μmのもの
を用い、各々実施例2のNo.ハと同じ組成に混合
し、これを実施例1と同様にして焼結を行つた後
切削用チツプを作成し、切削試験を行つたところ
刃先が欠損するまで各々18分と15分切削可能であ
つた。
[Table] These finished powders were sintered in the same manner as in Example 2. However, No. 1 and No. 3 are not the sintered bodies of the present invention. Next, cutting chips were prepared from these sintered bodies in the same manner as in Example 1, and a cutting test was conducted. The work material and conditions are the same as in Example 1. Table 2 shows the machining time until breakage. Also, with an outer diameter of 100 mm
Cutting speed of SKD11 die steel (HRC=62) 100m/
Min, depth of cut 0.2 mm, feed 0.1 mm/rev, dry cutting, and flank wear width was measured after 20 minutes of cutting time. The results are shown in Table 2. Example 3 Wurtzite type boron nitride powder with an average particle size of 1 μm or less was used as ultrafine CBN, mixed to the same composition as No. C of Example 2, and sintered in the same manner as Example 1. When a cutting chip was prepared and a cutting test was conducted, it was possible to cut for 20 minutes before the cutting edge broke. Example 4 Coarse-grained CBN with average particle sizes of 50 μm and 80 μm were mixed to the same composition as No. C of Example 2, and after sintering in the same manner as in Example 1, cutting chips were prepared. When a cutting test was conducted, cutting was possible for 18 minutes and 15 minutes, respectively, before the cutting edge broke.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCBN焼結体の折抗力と粒度との関係
を表わした図である。
FIG. 1 is a diagram showing the relationship between rupture force and grain size of a CBN sintered body.

Claims (1)

【特許請求の範囲】 1 2〜100μmの高圧相型窒化硼素粒子を、体積
で20〜85%含有し、残部の結合材が平均粒度1μm
以下の超微粒高圧相型窒化硼素粒子20〜90体積%
と1μm以下の周期律表第4a,5a,6a族遷移金属
の炭化物、窒化物、炭窒化物、またはこれらの固
溶体もしくは混合物結晶5〜50体積%およびAl5
〜30体積%よりなる工具用高硬度焼結体。 2 結合材が平均粒度1μm以下の超微粒高圧相型
窒化硼素粒子20〜90体積%、周期律表第4a,5a,
6a族遷移金属の炭化物5〜50体積%およびAl5〜
30体積%よりなる特許請求の範囲1の工具用高硬
度焼結体。 3 結合材が平均粒度1μm以下の超微粒高圧相型
窒化硼素粒子20〜90体積%とTiの炭化物、窒化
物、炭窒化物5〜50体積%およびAl5〜30体積%
より成る特許請求の範囲1または2の工具用高硬
度焼結体。 4 高圧相型窒化硼素が立方晶型窒化硼素である
ことを特徴とする特許請求の範囲第1項乃至第3
項の何れかの工具用高硬度焼結体。 5 2〜100μmの高圧相型窒化硼素粉末、1μm以
下の超微粒高圧相型窒化硼素粉末、1μm以下の周
期律表第4a,5a,6a族遷移金属の炭化物、窒化
物、炭窒化物またはこれらの固溶体もしくは混合
物結晶粉末の少なくとも一種、およびAl粉末の
混合粉末を作成し、超高圧高温装置を用いて高圧
相型窒化硼素が安定な高温高圧下でホツトプレス
することを特徴とする2〜100μmの高圧相型窒化
硼素粒子を体積で20〜85%含有し、残部が1μm以
下の超微粒高圧相型窒化硼素粒子20〜90体積%、
1μm以下の周期律表第4a,5a,6a族遷移金属の
炭化物、窒化物、炭窒化物、またはこれらの固溶
体もしくは混合物結晶5〜50体積%およびAl5〜
30体積%から構成される結合材よりなる工具用高
硬度焼結体の製造方法。 6 2〜100μmの高圧相型窒化硼素粉末、1μm以
下の超微粒高圧相型窒化硼素粉末、1μm以下の周
期律表第4a,5a,6a族遷移金属の炭化物、およ
びAlの混合粉末を用いることを特徴とする特許
請求の範囲第5項の工具用高硬度焼結体の製造方
法。 7 結合材形成粉末としてTiの炭化物、窒化物、
炭窒化物を用いることを特徴とする特許請求の範
囲5または第6項記載の工具用高硬度焼結体の製
造方法。 8 高圧相型窒化硼素が立方晶型窒化硼素である
ことを特徴とする特許請求範囲第5項乃至第7項
の何れかの工具用高硬度焼結体の製造方法。
[Claims] 1. Contains 20 to 85% by volume of high-pressure phase type boron nitride particles of 2 to 100 μm, and the remaining binder has an average particle size of 1 μm.
The following ultrafine high-pressure phase boron nitride particles 20-90% by volume
and carbides, nitrides, carbonitrides, or solid solutions or mixtures thereof of transition metals of Groups 4a, 5a, and 6a of the periodic table with a diameter of 1 μm or less, and 5 to 50% by volume of Al5.
High hardness sintered body for tools consisting of ~30% by volume. 2 The binder is 20-90% by volume of ultrafine high-pressure phase boron nitride particles with an average particle size of 1 μm or less, periodic table 4a, 5a,
5-50% by volume of carbides of group 6a transition metals and Al5-
The high hardness sintered body for tools according to claim 1, which comprises 30% by volume. 3 The binder is 20 to 90 volume % of ultrafine high-pressure phase boron nitride particles with an average particle size of 1 μm or less, 5 to 50 volume % of Ti carbides, nitrides, and carbonitrides, and 5 to 30 volume % of Al.
A high-hardness sintered body for a tool according to claim 1 or 2, comprising: 4 Claims 1 to 3, characterized in that the high-pressure phase boron nitride is cubic boron nitride.
A high-hardness sintered body for tools according to any of the items listed below. 5 High-pressure phase type boron nitride powder of 2 to 100 μm, ultrafine high-pressure phase type boron nitride powder of 1 μm or less, carbides, nitrides, carbonitrides of transition metals of groups 4a, 5a, and 6a of the periodic table of 1 μm or less, or these A mixed powder of Al powder and at least one solid solution or mixed crystal powder of Ultra-fine high-pressure phase type boron nitride particles containing 20-85% by volume of high-pressure phase type boron nitride particles, the remainder being 1 μm or less, 20-90% by volume,
5-50% by volume of carbides, nitrides, carbonitrides, or solid solutions or mixtures of transition metals of Groups 4a, 5a, and 6a of the periodic table of 1 μm or less, and Al5-
A method for manufacturing a high-hardness sintered body for tools made of a binder composed of 30% by volume. 6 Use a high-pressure phase type boron nitride powder of 2 to 100 μm, an ultrafine high-pressure phase type boron nitride powder of 1 μm or less, a carbide of a transition metal of group 4a, 5a, or 6a of the periodic table of 1 μm or less, and a mixed powder of Al. A method for producing a high-hardness sintered body for tools according to claim 5, characterized in that: 7 Ti carbide, nitride,
7. The method for manufacturing a high-hardness sintered body for tools according to claim 5 or 6, characterized in that carbonitride is used. 8. The method for producing a high-hardness sintered body for tools according to any one of claims 5 to 7, wherein the high-pressure phase boron nitride is cubic boron nitride.
JP58006950A 1983-01-18 1983-01-18 High hardness sintered body for tool and manufacture Granted JPS59131581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006950A JPS59131581A (en) 1983-01-18 1983-01-18 High hardness sintered body for tool and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006950A JPS59131581A (en) 1983-01-18 1983-01-18 High hardness sintered body for tool and manufacture

Publications (2)

Publication Number Publication Date
JPS59131581A JPS59131581A (en) 1984-07-28
JPH0377151B2 true JPH0377151B2 (en) 1991-12-09

Family

ID=11652504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006950A Granted JPS59131581A (en) 1983-01-18 1983-01-18 High hardness sintered body for tool and manufacture

Country Status (1)

Country Link
JP (1) JPS59131581A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887588B2 (en) * 2001-09-10 2012-02-29 株式会社タンガロイ Dispersion strengthened CBN-based sintered body and method for producing the same
JP5266587B2 (en) * 2009-03-30 2013-08-21 住友電工ハードメタル株式会社 CBN sintered body for cutting tools containing coarse cBN particles

Also Published As

Publication number Publication date
JPS59131581A (en) 1984-07-28

Similar Documents

Publication Publication Date Title
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
EP1309732B1 (en) Method of producing an abrasive product containing diamond
JP5680567B2 (en) Sintered body
CN101341268A (en) Cubic boron nitride compact
EP0181258A2 (en) Improved cubic boron nitride compact and method of making
JPH0621312B2 (en) Sintered body for high hardness tool and manufacturing method thereof
US5569862A (en) High-pressure phase boron nitride sintered body for cutting tools and method of producing the same
JPH0443874B2 (en)
EP0816304A2 (en) Ceramic bonded cubic boron nitride compact
JPS644988B2 (en)
JPH0377151B2 (en)
JPS6350401B2 (en)
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS6369760A (en) Sintered body for high hardness tools and manufacture
JPS6241306B2 (en)
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JPS62983B2 (en)
JPS6242989B2 (en)
JPS6330983B2 (en)
KR860002131B1 (en) Sintered compact for use in a tool
JPS5855111B2 (en) High hardness sintered body for tools and its manufacturing method
JPS58107468A (en) Sintered material for high hardness tool and preparation thereof
JPH0463607A (en) Cutting tool having cutting edge part formed of cubic boron nitride sintered substance
JPH0357171B2 (en)