JPS58107468A - Sintered material for high hardness tool and preparation thereof - Google Patents

Sintered material for high hardness tool and preparation thereof

Info

Publication number
JPS58107468A
JPS58107468A JP56207343A JP20734381A JPS58107468A JP S58107468 A JPS58107468 A JP S58107468A JP 56207343 A JP56207343 A JP 56207343A JP 20734381 A JP20734381 A JP 20734381A JP S58107468 A JPS58107468 A JP S58107468A
Authority
JP
Japan
Prior art keywords
powder
boron nitride
less
pressure
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56207343A
Other languages
Japanese (ja)
Inventor
Katsuhiro Mitsusaka
三坂 勝弘
Shuji Yatsu
矢津 修示
Tetsuo Nakai
哲男 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56207343A priority Critical patent/JPS58107468A/en
Publication of JPS58107468A publication Critical patent/JPS58107468A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a sintered material for a high hardness tool having high tenacity and anti-wear property, obtained by preparing the sintered material consisting of a specific ratio of high pressure phase type boron nitride, Al2O3, a ferrous metal, Cu, Al, MgO and Y2O3. CONSTITUTION:A sintered material, wherein high pressure phase type boron nitride is contained in an amount of 30-85% by volume, the remainder bonding phase is constituted of a mixture or a compound consisting of one kind or more of Al2O3, AlN, SiC, Si3N4 and B4C, on the wt. basis to the bonding phase, 5- 30% ferrous metal, 1-15% Cu, 5-30% Al and 0.1-5% MgO and/or Y2O3, is prepared. The high pressure phase type boron nitride is cubic crystal boron nitride or wurtzite type boron nitride and said sintered material is obtained by a method wherein various stock material powders are mixed and molded and the resulting molded mixture is sintered under pressure of 20kg/cm<2> or more at 900 deg.C or more by an ultra-high pressure apparatus.

Description

【発明の詳細な説明】 立方晶型窒化硼素(Cubic Boron N1tr
ide以下CBNと略す)は、ダイヤモンドに次ぐ高硬
度の物質であり、また耐熱性、耐摩耗性に優れた物質で
あり、超高圧高温下で合成される。
[Detailed description of the invention] Cubic boron nitride (Cubic Boron N1tr)
IDE (hereinafter abbreviated as CBN) is a substance with the second highest hardness next to diamond, and is also a substance with excellent heat resistance and wear resistance, and is synthesized under ultra-high pressure and high temperature.

このCBNのみを焼結する試みは種々なされているが、
これには例えば特公昭39−8948号に記載されてい
る如く、約70kb以上、190.0℃以上の超高圧高
温下で焼結する必要がある。現状の超高圧高温装置では
このような高圧高温条件を発生させることはできるが、
工業的規模に装置を大型化した場合、高圧高温発生部の
耐用回数が制約され、実用的でない。またCBNのみの
焼結体は硬度は高いが、工具として使用した場合の靭性
が劣る。
Various attempts have been made to sinter only this CBN, but
For this purpose, as described in Japanese Patent Publication No. 39-8948, for example, it is necessary to sinter about 70 kb or more under ultra-high pressure and high temperature of 190.0° C. or more. Although current ultra-high pressure and high temperature equipment can generate such high pressure and high temperature conditions,
When the equipment is enlarged to an industrial scale, the number of times the high pressure and high temperature generating section can be used is limited, making it impractical. Furthermore, although a sintered body made only of CBN has high hardness, it has poor toughness when used as a tool.

また、CBNをGoなどの金属で結合した焼結体が一部
に使用されている。このCBN焼結体全体削工具として
使用した場合、特に断続切削が存在する場合、初期の段
階で工具の刃先が欠損する欠点がある。これは結合金属
のCOの大部分がCBNと反応して脆いCOのポライド
を形成するためと思われる。
In addition, sintered bodies made of CBN bonded with metals such as Go are used in some parts. When this CBN sintered body is used as a whole-cutting tool, there is a drawback that the cutting edge of the tool is damaged at an early stage, especially when there is interrupted cutting. This seems to be because most of the binding metal CO reacts with CBN to form a brittle CO poride.

本発明者等はこのような金属で結合した焼結体でなく、
高強度で耐熱性に優れた硬質金属化合物を結合相とした
切削工具用途に適したCBN焼結体全体明し既に特許出
願した。この出願は、周期律表第4a、5a、6a族遷
移金属の炭化物、窒化物。
The present inventors did not create a sintered body bonded with such metals,
We have already applied for a patent for the complete specification of a CBN sintered body suitable for cutting tool applications, which uses a hard metal compound with high strength and excellent heat resistance as a binder phase. This application relates to carbides and nitrides of transition metals of groups 4a, 5a, and 6a of the periodic table.

釦化物、硅化物もしくはこれ等の相互固溶体化合物が連
続相をなしてCBN粒子を結合しているというものであ
り、強度耐熱性に富むと共に、高温でも高い熱伝導性を
維持し、特に熱衝撃特性に富む高硬度工具用焼結体を提
供したものである。
CBN particles are bonded together in a continuous phase of succinic compounds, silicides, or mutual solid solution compounds of these, which have high strength and heat resistance, maintain high thermal conductivity even at high temperatures, and are particularly resistant to thermal shock. This provides a sintered body for high-hardness tools with rich properties.

この発明ではCBNの優れた熱伝導性を最大限に生かす
ために結合材も熱伝導性のよい耐熱化合物とし、焼結体
全体として熱伝導性の非常に優れたものとした。しかし
ながら、工具の使用用途によっては熱伝導性は第1の要
求特性ではなく、むしろ強度や耐熱性が第1の要求特性
である場合もあり、このような用途に対しては本発明者
等は結合相がA!go、、 、 AJN、 SiC,S
i BH3、B4Cの1種又は2種以上の混合物あるい
はこれら゛の化合物を主体としたものから成り、これら
が焼結体組織中で連続した相をなすCBN焼結体全体明
し既に特許出願した。
In this invention, in order to make the most of the excellent thermal conductivity of CBN, the binder is also a heat-resistant compound with good thermal conductivity, and the sintered body as a whole has extremely excellent thermal conductivity. However, depending on the intended use of the tool, thermal conductivity may not be the first required characteristic, but rather strength or heat resistance may be the first required characteristic, and for such applications, the inventors have The bonded phase is A! go, , , AJN, SiC,S
i) A CBN sintered body consisting of one type or a mixture of two or more of BH3 and B4C, or a compound mainly composed of these compounds, which form a continuous phase in the sintered body structure, has been disclosed and a patent application has already been filed. .

本発明者らは、これらの焼結体を用いて各種の切削試験
を行いその結果画期的な工具特性を確認した。
The present inventors conducted various cutting tests using these sintered bodies and as a result confirmed innovative tool characteristics.

しかしながら、例えば複雑な形状の被剛材をフライス切
削するといったような場合にはやはり工具刃先の欠損が
生じ問題であった。この理由は以下の如く推定される。
However, when milling a rigid material with a complicated shape, for example, the cutting edge of the tool still suffers from chipping, which is a problem. The reason for this is presumed as follows.

CBNと結合相の界面では両者が反応してポライドが多
量に生成される。このポライドは硬度は高いが非常に脆
い物質であるためCBN焼結体全体性が低下したのであ
ろう。
At the interface between CBN and the binder phase, the two react to generate a large amount of polide. This polide has high hardness but is a very brittle substance, which probably lowered the overall integrity of the CBN sintered body.

本発明者等はCBN焼結体全体性を上げるためには、こ
のポライドの生成を抑制し、かつ結合相自体の靭性を上
げればよいと考え種々検討した。
The present inventors considered that in order to improve the overall quality of the CBN sintered body, it would be best to suppress the formation of this polide and increase the toughness of the binder phase itself, and conducted various studies.

その結果、結合材にCuを添加することによりポライド
の生成が抑制されかつ結合材の鉄族金属はCuとの化合
物として残ることで靭性が向上することを見い出した。
As a result, it has been found that by adding Cu to the binder, the formation of polide is suppressed, and the iron group metal of the binder remains as a compound with Cu, thereby improving toughness.

たとえば靭性向上のためにGoなどの金属を添加した場
合、COの大部分は脆いポライドを形成してしまい靭性
は向上しない。
For example, when a metal such as Go is added to improve toughness, most of the CO forms a brittle polide and the toughness does not improve.

しかし結合材にCuを添加すると、たとえ焼結中に液相
が発生してもポライドの発生は抑制され鉄族金属とCu
は固溶体あるいは化合物として焼結体中に残ることがわ
かった。この現象を利用して本発明者等は高靭性でかつ
耐摩耗性の優れたCBN焼結体全体発すべく研究を重ね
た。その結果、CBNをA!=Oa 、 AJN、 S
iC,Si3N4 、84Cのうちの1種又は2種以上
の混合物あるいは化合物および鉄族金属、Cu、AJの
化合物、およびMgOおよび/またはY2O3で結合し
た焼結体が従来にない高い靭性と耐摩耗性を有すること
がわかった。
However, when Cu is added to the binder, even if a liquid phase is generated during sintering, the generation of polide is suppressed, and the iron group metal and Cu
was found to remain in the sintered body as a solid solution or compound. Utilizing this phenomenon, the inventors of the present invention conducted repeated research in order to produce an entire CBN sintered body with high toughness and excellent wear resistance. As a result, CBN received an A! =Oa, AJN, S
The sintered body combined with one or more mixtures or compounds of iC, Si3N4, 84C, iron group metals, Cu, AJ compounds, and MgO and/or Y2O3 has unprecedented high toughness and wear resistance. It turns out that it has sex.

本発明焼結体が優れた性能を示すのは次の如く推測され
る。本発明焼結体において、ポライド相はその生成が抑
制されているため存在したとしても極めて薄いものであ
りCBNはこの薄いポライド相−鉄族金属、Cu、AJ
の化合、物を介してAノ2o3A1N、 SiC,5t
aN4. B4Cと接合していると見られるが、これら
各相間の接合強度は非常に高く、またポライド相が薄い
ためこの相内で亀裂が発生することは少なく、さらに鉄
族金属、Cu、AJ の化合物の靭性が高いためであろ
う。
The reason why the sintered body of the present invention exhibits excellent performance is presumed as follows. In the sintered body of the present invention, the formation of the polide phase is suppressed, so even if it exists, it is extremely thin.
Ano2o3A1N, SiC,5t
aN4. Although it appears to be bonded to B4C, the bonding strength between these phases is very high, and since the polide phase is thin, cracks rarely occur within this phase. This is probably due to its high toughness.

また、本発明焼結体はAJを添加することにより性能を
向上させている。これは例えばWC−Co超硬合金の液
相焼結の如く硬質粒子の結合相への溶解と再析出現象が
あれば結合相と硬質粒子又は硬質粒子相互の結合強度の
高いものが得られるが、本発明焼結体では結合相中にM
またはA!化合物が存在することによりこれと類似した
現象が生じたからであろう。またMは低融点であるため
AJの添加により焼結性が改善され、低温で焼結しても
高硬度の焼結体が得られる。MgOおよび/またはYl
108はAノBOs 、 AJN、 SiC,Si3N
4 、 B4Cの結晶あるいは2種以上の化合物の結晶
の粒成長抑制剤として作用する。
Further, the performance of the sintered body of the present invention is improved by adding AJ. This is because, for example, in liquid phase sintering of WC-Co cemented carbide, if there is a phenomenon of dissolution of hard particles into the binder phase and re-precipitation, a product with high bonding strength between the binder phase and the hard particles or between the hard particles can be obtained. , the sintered body of the present invention contains M in the binder phase.
Or A! This is probably because a phenomenon similar to this occurred due to the presence of the compound. Furthermore, since M has a low melting point, the addition of AJ improves sinterability, and a sintered body with high hardness can be obtained even when sintered at a low temperature. MgO and/or Yl
108 is AnoBOs, AJN, SiC, Si3N
4. Acts as a grain growth inhibitor for B4C crystals or crystals of two or more compounds.

鉄族金属の含有量は結合材中の重量で596以上30%
以下がよい。鉄族金属の含有量が596未満であると鉄
族金属、Cu、AJの化合物の強度が低下し、30%を
超えると相対的に結合材中のCuの含有量が減少しポラ
イドの形成を抑制することができない。Cuの含有量は
結合材中の重量で196以上15%以下がよい。Cuの
含有量が196未満ではポライドの形成を抑制すること
ができず、また15%を越えると鉄族金属、Cu、Mの
化合物の強度が低下する。M含有の効果が現われるのは
Mの含有量が結合材中の重量で596以上の場合である
。またMの含有量が結合材中の重量で8096を越える
と鉄族金属、Cu、AJの化合物の強度が低下するため
    □好ましくない。MgOおよび/またはY2O
3の含有量は重量で0.1%以上5%以下がよく、0.
1%未満では効果がなく5%を越えるとMgAJ20+
などのスピネル型化合物が粒界に析出して強度の低下を
招き切削性能が低下する。
The content of iron group metals is 596 or more and 30% by weight in the binder.
The following is good. If the content of iron group metals is less than 596, the strength of the compound of iron group metals, Cu, and AJ decreases, and if it exceeds 30%, the content of Cu in the binder decreases relatively, leading to the formation of polide. cannot be suppressed. The content of Cu in the binder is preferably 196 or more and 15% or less by weight. If the Cu content is less than 196%, the formation of polide cannot be suppressed, and if it exceeds 15%, the strength of the iron group metal, Cu, and M compound decreases. The effect of M inclusion appears when the M content is 596 or more by weight in the binder. Moreover, if the M content exceeds 8096% by weight in the binder, the strength of the iron group metal, Cu, and AJ compounds will decrease, which is not preferable. MgO and/or Y2O
The content of 3 is preferably 0.1% or more and 5% or less by weight, and 0.3% or more and 5% or less by weight.
Less than 1% has no effect, and more than 5% MgAJ20+
Spinel-type compounds such as these precipitate at grain boundaries, leading to a decrease in strength and cutting performance.

鉄族金属、Cu、 fiJを添加する方法は種々考えら
れる。例えば焼結前に金属粉末のまま、あるいは化合物
粉末の形で添加する方法は最も簡単である。
Various methods can be considered for adding iron group metals, Cu, and fiJ. For example, the simplest method is to add it as a metal powder or in the form of a compound powder before sintering.

また鉄族金属とCuを焼結時に焼結体外部から溶融させ
て溶浸させることもできる。
Further, during sintering, the iron group metal and Cu can be melted and infiltrated from the outside of the sintered body.

本発明で用いるCBN結晶の粒度は焼結体の工具として
の性能からみて10μ以下とする必要がある。結晶粒子
が粗いと焼結体の強度が低下し、ままた特に切削工具と
して使用する場合は結晶粒子の細かいものが良い加工面
を得られる。
The grain size of the CBN crystal used in the present invention needs to be 10 μm or less in view of the performance of the sintered body as a tool. If the crystal grains are coarse, the strength of the sintered body will be reduced, and when used as a cutting tool, finer crystal grains will provide a better machined surface.

焼結体の製造に当ってはダイヤモンド合成に用いられる
超高圧高温装置を使用して圧力20kb以上温度900
°C以上で行う。特に好ましい焼結圧力、温度条件は圧
力30kb〜70kb、温度1100°C〜1500°
Cである。この圧力、温度条件の上限はいずれも工業的
規模の超高圧高温装置の実用的な運転条件の範囲内であ
る。更に圧力、温度条件は第1図に示した高圧相型窒化
硼素の安定域内で行う必要がある。
In manufacturing the sintered body, we use an ultra-high pressure and high temperature equipment used for diamond synthesis, at a pressure of 20 kb or more and a temperature of 900 kb.
Perform at temperatures above °C. Particularly preferred sintering pressure and temperature conditions are a pressure of 30kb to 70kb and a temperature of 1100°C to 1500°.
It is C. The upper limits of these pressure and temperature conditions are both within the range of practical operating conditions for ultra-high pressure and high temperature equipment on an industrial scale. Further, the pressure and temperature conditions must be within the stable range of high-pressure phase type boron nitride shown in FIG.

このような優れた焼結体を切削工具として使用する場合
、高硬度焼結体は切れ刃となる部分にのみあれば良く、
この高硬度焼結体を強度、靭性。
When using such an excellent sintered body as a cutting tool, the high hardness sintered body only needs to be used in the part that will become the cutting edge.
This high hardness sintered body has strength and toughness.

熱伝導に優れた超硬合金に接合して使用すればその性能
を十分発揮することができる。
Its performance can be fully demonstrated by bonding it to cemented carbide, which has excellent thermal conductivity.

しかし超硬合金に直接接合すればCBNの含有量が多い
場合などは接合強度が弱く断続切削などには使用できな
いこともある。十分な接合強度を得るにはCBNを容積
で7096未満含有し、残部がTi、 Zr、 Hfの
炭化物、窒化物、炭窒化物の1種もしくはこれらの混合
物や相互固体化合物からなる中間層を用いて接合すれば
よい。
However, if it is directly bonded to cemented carbide, the bonding strength may be weak and it may not be possible to use it for interrupted cutting, etc. if the CBN content is high. In order to obtain sufficient bonding strength, an intermediate layer containing less than 7096 CBN by volume and the remainder consisting of one of carbides, nitrides, carbonitrides of Ti, Zr, and Hf, or a mixture thereof or a mutual solid compound is used. It is enough to join it.

また高圧相型窒化硼素の別の形態であるウルツ鉱型窒化
硼素についても同様の検討を行い、CBNを用いた場合
と類似した結果を得た。
Similar studies were also conducted on wurtzite boron nitride, which is another form of high-pressure phase boron nitride, and results similar to those obtained using CBN were obtained.

以下実施例を述べる。Examples will be described below.

実施例1゜ 平均粒度3μのCBN粉末を体積で65%含有し、残部
が結合材粉末からなる混合粉末を作成した。結合材粉末
はAfflgOs 、 AiN 、 Ni 、 Cu 
、 An 、 MgOを各々重量で60%、5%、15
%、8%、109/6,2%含有したものを真空炉中で
1000°C30分間加熱処理後、粉砕したものを用い
た。このCBN粉末と結合材粉末の混合粉末を外径14
IuL内径10鯨のM。
Example 1 A mixed powder containing 65% by volume of CBN powder with an average particle size of 3 μm and the remainder consisting of binder powder was prepared. The binder powder is AfflgOs, AiN, Ni, Cu
, An, and MgO by weight, respectively, 60%, 5%, and 15
%, 8%, 109/6, 2% were heat treated at 1000° C. for 30 minutes in a vacuum furnace, and then pulverized. This mixed powder of CBN powder and binder powder was
IuL inner diameter 10 whale M.

製の容器にWC−6%Co組成の超硬合金(外径10U
、高さ2.55IJL)を置いた後0.4 g充填した
。さらにこの上に超硬合金(外径IQa、高さ2 M)
を置きM。
WC-6% Co cemented carbide (outer diameter 10U)
, height 2.55 IJL) and then filled with 0.4 g. Furthermore, on top of this is a cemented carbide (outer diameter IQa, height 2M)
Place M.

製の栓をして、この容器全体をダイヤモンド合成に用い
る超高圧装置に入れた。圧力を50kbに加圧し、次い
で1300°Cまで加熱し20分間保持した。
The entire container was placed in an ultra-high pressure apparatus used for diamond synthesis. The pressure was increased to 50 kb, then heated to 1300°C and held for 20 minutes.

取り出した焼結体をダイヤモンド砥石を用いて高硬度焼
結体が現われるまで研削加工し、さらにダイヤモンドペ
ーストを用いて研摩した。光学顕微鏡で観察したところ
気孔もなく緻密な焼結体であった。この焼結体の生成物
をX線回折により調査した結果、微量のA7!B2およ
びNiのポライドが検出された。なお比較のため上記組
成のうちCuを除いた焼結体表1へ)も同条件で試作し
、X線回折により調べた。その結果、多量のAlB2お
よびNiのポライドが検出されたが、金属Niは検出さ
れなかった。これら2種類の焼結体と結合材がAj!2
0.のみの焼結体(B)を超硬合金のスローアウェイチ
ップの一角にロー付は後、加工して切削用チップを作成
し、切削試験を行った。被削材は外径100IuLで円
周に4ケ所の溝を有する5KDIIダイス鋼(HRC=
62)を用い、切削速度100 Tn/m I n +
切込み0.3題、送り0.5υし’rev  乾式で試
験したところ、本発明焼結体は刃先が切損するまで20
分切削可能であったのに対・し、焼結体(A)、[F]
)は各々10分、5分切削した時点で刃先は欠損してし
まった。
The removed sintered body was ground using a diamond grindstone until a highly hard sintered body appeared, and further polished using diamond paste. When observed under an optical microscope, it was found to be a dense sintered body with no pores. As a result of investigating the product of this sintered body by X-ray diffraction, it was found that a trace amount of A7! B2 and Ni polides were detected. For comparison, a sintered body (see Table 1) with the above composition excluding Cu was also produced under the same conditions and examined by X-ray diffraction. As a result, large amounts of AlB2 and Ni polide were detected, but metallic Ni was not detected. These two types of sintered bodies and binding materials are Aj! 2
0. The sintered body (B) of the chisel was brazed onto one corner of a cemented carbide indexable tip, and then processed to create a cutting tip, and a cutting test was conducted. The work material is 5KDII die steel (HRC=
62), cutting speed 100 Tn/m I n +
When tested in a dry method with a depth of cut of 0.3 and a feed of 0.5υ, the sintered body of the present invention was tested for 20 minutes until the cutting edge broke.
However, the sintered bodies (A) and [F]
), the cutting edge broke off after cutting for 10 minutes and 5 minutes, respectively.

実施例2゜ 表1の組成にCBN粉末と結合材粉末とを混合した。使
用したCBN粉末は平均粒度4μのものである。結合材
粉末は実施例1と同様に熱処理。
Example 2 CBN powder and binder powder were mixed in the composition shown in Table 1. The CBN powder used has an average particle size of 4μ. The binder powder was heat treated in the same manner as in Example 1.

粉砕したものを用い、混合粉末も実施例】と同様にして
焼結を行った。ただしNo、A、F、)(は本発明焼結
体ではない。次にこれらの焼結体より実施例1と同様に
して切削用チップを作成し切削試験を行った。被剛材5
条件は実施例1と同じである。
Using the pulverized powder, the mixed powder was also sintered in the same manner as in Example. However, No., A, F, ) (are not the sintered bodies of the present invention.Next, cutting chips were prepared from these sintered bodies in the same manner as in Example 1, and a cutting test was conducted.Rigid material 5
The conditions are the same as in Example 1.

表1゜ 速度100m/min、切込0.2坦、送り0.1訊/
rev乾式で切削し、切削時間10分後の逃げ面摩耗幅
を測定した。面切削試験結果も表1に示す。
Table 1゜Speed 100m/min, depth of cut 0.2 flat, feed 0.1cm/
Cutting was performed using the rev dry method, and the flank wear width was measured after 10 minutes of cutting time. Table 1 also shows the surface cutting test results.

実施例8゜ 平均粒度1μ以下の衝撃波法によって合成されたウルツ
鉱型窒化硼素粉末を用い、実施例2のNo、Dと同じ組
成の混合し、これを実施例1と同様にして焼結を行った
後、切削用チップを作成し、切削試験を行ったところ、
刃先が欠損するまで20分切削可能であった。
Example 8 Using wurtzite type boron nitride powder synthesized by the shock wave method with an average particle size of 1 μ or less, the same composition as No. and D of Example 2 was mixed, and this was sintered in the same manner as Example 1. After that, a cutting tip was made and a cutting test was conducted.
It was possible to cut for 20 minutes until the cutting edge broke.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明焼結体の製造条件を説明する為のもので
高圧相型窒化硼素の圧力一温度相図上における熱力学的
な安定領域を示したものである。 ■=立方晶−六方晶型窒化硼素平衡線 I:高圧相型窒化硼素安定域 ■:六六方型型窒化硼素安定
FIG. 1 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the thermodynamically stable region on the pressure-temperature phase diagram of high-pressure phase type boron nitride. ■ = Cubic - hexagonal boron nitride equilibrium line I: High pressure phase boron nitride stability region ■: Hexagonal boron nitride stable

Claims (1)

【特許請求の範囲】 (1)高圧相型窒化硼素を体積で80%以上8596以
下含有し、残部の結合相が、AノgQB 、 fiJ凸
1BN484Cのうち1種又は2種以上の混合物あるい
は化合物と、鉄族金属が重量で結合相の5%以上80%
以下、Cuが同じく1%以上15%以下、Aノが5%以
上80%以下、さらにMgOおよび/またはygosが
0.1%以上596以下であることを特徴とする高硬度
工具用焼結体。 (睦高圧相型窒化娠素が立方晶型窒化硼素又はウルツ鉱
型窒化硼素であることを特徴とする特許請求の範囲第1
項記載の高硬度工具用焼結体。 (3)高圧相型窒化硼素粉末とAノ2101 AIN、
 Si sN4゜SiC,B4Cのうち1種又は2種以
上の粉末あるいは化合物粉末および鉄族金属粉末、Cu
粉末、Aノ粉末およびMgOおよび/またはY2O3粉
末を混合し、これを粉末状もしくは型押成型後超高圧装
置を用いて圧力20kb以上、温度900°C以上で焼
結することを特徴とする高圧相型窒化硼素を体積で30
96以上85%以下含有し、残部の結合相がk120s
。 AItN、 SiC,5isN++ B4Cのうち1種
又は2種以上の混合物あるいは化合物と、鉄属金属が重
量で結合相の5%以上8096以下、Cuが同じく1%
以上1596以下、Aノが596以上30%以下、さら
にMgOおよび/またはY2O3がo、i96以上59
6以下である高硬度工具用焼結体の製造方法。 (4)高圧相型窒化硼素が立方晶型窒化硼素またはウル
ツ鉱型窒化硼素であることを特徴とする特許請求の範囲
第1項記載の高硬度工具用焼結体の製造方法。 (5)高圧相型窒化硼素粉末とAj!1to81A1N
、 5iBN4゜SiC,B4Cのうち1種又は2種以
上の粉末あるいは化合物粉末、 Cu粉末、Aノ粉末お
よびMgOおよび/またはy、o8粉末と混合し、これ
を粉末状もしくは型押成型後超高圧装置を用いて圧力2
0kb以上温度900°C以上で焼結させるとともに、
これに接するように配置した鉄属金属およびCuあるい
は鉄族金属とCuの合金をこの粉末中に溶浸させること
を特徴とする高圧相型窒化硼素を体積で30%以上85
%以下含有し、残部の結合相が、Aノ208A7N、 
SiC,5iBN4.84Cのうち1種又は2種以上の
混合物あるいは化合物と、鉄属金属が重量で結合相の5
%以上30%以下、Cuが同じく196以上15%以下
、AJが5%以上80%以下、さらにMgOおよび/ま
たはY2O3が0.1%以上5%以下である高硬度工具
用焼結体の製造方法。
[Scope of Claims] (1) Contains 80% or more and 8596 or less of high-pressure phase type boron nitride by volume, and the remaining binder phase is a mixture or compound of one or more of AnogQB and fiJ Convex 1BN484C. and the iron group metal is 5% or more and 80% of the binder phase by weight.
Hereinafter, a sintered body for a high hardness tool is characterized in that Cu is 1% or more and 15% or less, A is 5% or more and 80% or less, and MgO and/or ygos is 0.1% or more and 596 or less. . (Claim 1 characterized in that the high-pressure phase type nitride nitride is cubic boron nitride or wurtzite type boron nitride.
A sintered body for high-hardness tools as described in . (3) High-pressure phase type boron nitride powder and ANO2101 AIN,
Si sN4゜SiC, B4C powder or compound powder, iron group metal powder, Cu
High pressure, characterized by mixing powder, A powder, and MgO and/or Y2O3 powder, molding it into powder form or molding, and then sintering it using an ultra-high pressure device at a pressure of 20 kb or more and a temperature of 900°C or more. Volume of phase type boron nitride is 30
Contains 96 or more and 85% or less, with the remainder of the binder phase being k120s
. A mixture or compound of one or more of AItN, SiC, 5isN++ B4C, ferrous metal is 5% or more and 8096 or less of the binder phase by weight, and Cu is also 1%
1596 or more, A value is 596 or more and 30% or less, MgO and/or Y2O3 is o, i96 or more is 59
A method for manufacturing a sintered body for a high hardness tool having a hardness of 6 or less. (4) The method for producing a sintered body for a high-hardness tool according to claim 1, wherein the high-pressure phase boron nitride is cubic boron nitride or wurtzite boron nitride. (5) High pressure phase type boron nitride powder and Aj! 1to81A1N
, 5iBN4゜SiC, B4C, one or more powders or compound powders, Cu powder, A powder, and MgO and/or Y, O8 powder, and this is powdered or pressed and then subjected to ultra-high pressure. Pressure 2 using the device
0kb or more, sintered at a temperature of 900°C or more,
High-pressure phase type boron nitride, characterized by infiltrating into this powder a ferrous metal and Cu or an alloy of ferrous metal and Cu arranged so as to be in contact with the powder, in an amount of 30% or more by volume85
% or less, and the remaining binder phase is Ano208A7N,
A mixture or compound of one or more of SiC, 5iBN4.84C, and a ferrous metal is the binder phase by weight.
% or more and 30% or less, Cu is 196 or more and 15% or less, AJ is 5% or more and 80% or less, and MgO and/or Y2O3 is 0.1% or more and 5% or less. Method.
JP56207343A 1981-12-21 1981-12-21 Sintered material for high hardness tool and preparation thereof Pending JPS58107468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56207343A JPS58107468A (en) 1981-12-21 1981-12-21 Sintered material for high hardness tool and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56207343A JPS58107468A (en) 1981-12-21 1981-12-21 Sintered material for high hardness tool and preparation thereof

Publications (1)

Publication Number Publication Date
JPS58107468A true JPS58107468A (en) 1983-06-27

Family

ID=16538161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56207343A Pending JPS58107468A (en) 1981-12-21 1981-12-21 Sintered material for high hardness tool and preparation thereof

Country Status (1)

Country Link
JP (1) JPS58107468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108966A (en) * 1990-03-23 1992-04-28 Regents Of The University Of California Process for producing wurtzitic or cubic boron nitride
CN115044794A (en) * 2022-06-08 2022-09-13 合肥工业大学 Cu- (Y) with excellent performance 2 O 3 -HfO 2 ) Alloy and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108966A (en) * 1990-03-23 1992-04-28 Regents Of The University Of California Process for producing wurtzitic or cubic boron nitride
CN115044794A (en) * 2022-06-08 2022-09-13 合肥工业大学 Cu- (Y) with excellent performance 2 O 3 -HfO 2 ) Alloy and preparation method thereof
CN115044794B (en) * 2022-06-08 2022-12-20 合肥工业大学 Cu- (Y) with excellent performance 2 O 3 -HfO 2 ) Alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
EP1309732B1 (en) Method of producing an abrasive product containing diamond
KR960008726B1 (en) Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby
US4389465A (en) Sintered compact for use in a tool and the method for producing the same
JP2012131700A (en) Sintered compact
JPS61201751A (en) High hardness sintered body and its manufacture
EP0816304A2 (en) Ceramic bonded cubic boron nitride compact
JPS5823459B2 (en) High-density phase boron nitride-containing sintered body for cutting tools
JPS58107468A (en) Sintered material for high hardness tool and preparation thereof
JPS62271604A (en) Hard quality abrasive structure and its manufacture
CN112142481B (en) Binder for synthesis of polycrystalline cubic boron nitride material and use method thereof
JPS6335591B2 (en)
JPS6242989B2 (en)
JPS6241306B2 (en)
JPS62983B2 (en)
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JPS58176173A (en) High hardness sintered body for tool and manufacture
JPH0377151B2 (en)
JPS627259B2 (en)
KR860002131B1 (en) Sintered compact for use in a tool
JPS638072B2 (en)
JPS6247940B2 (en)
JPS5830266B2 (en) High hardness sintered body and its manufacturing method
JPH0463607A (en) Cutting tool having cutting edge part formed of cubic boron nitride sintered substance
JPH0357171B2 (en)