JPS6242989B2 - - Google Patents

Info

Publication number
JPS6242989B2
JPS6242989B2 JP55073128A JP7312880A JPS6242989B2 JP S6242989 B2 JPS6242989 B2 JP S6242989B2 JP 55073128 A JP55073128 A JP 55073128A JP 7312880 A JP7312880 A JP 7312880A JP S6242989 B2 JPS6242989 B2 JP S6242989B2
Authority
JP
Japan
Prior art keywords
sintered body
weight
powder
cbn
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55073128A
Other languages
Japanese (ja)
Other versions
JPS56169747A (en
Inventor
Tetsuo Nakai
Shuji Yatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7312880A priority Critical patent/JPS56169747A/en
Publication of JPS56169747A publication Critical patent/JPS56169747A/en
Publication of JPS6242989B2 publication Critical patent/JPS6242989B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

立方晶型窒化硼素(Cubic Boron Nitride、以
下CBNと略す)はダイヤモンドに次ぐ高硬度の
物質であり、超高圧高温下で合成される。現在既
に研削用砥粒として使用されており、また切削用
途にはCBNをCoなどで結合した焼結体が一部に
使用されている。このCBN焼結体は切削工具と
して使用した場合、特に断続切削が存在する場
合、初期の段階で工具の刃先が欠損するといつた
欠点があつた。本発明は、このような欠点を解消
した高靭性を有するとともに耐摩耗性の優れた新
しいCBN焼結体に関するものである。 CBNは前記した如く、高硬度であり、耐熱
性、耐摩耗性に優れた物質である。このCBNの
みを焼結する試みは種々なされているが、これに
は例えば特公昭39−8948に記載されている如く、
約70kb以上、1900℃以上の超高圧高温下で焼結
する必要がある。現状の超高圧高温装置ではこの
ような高圧高温条件を発生させることはできる
が、工業的規模に装置を大型化した場合、高圧高
温発生部の耐用回数が制約され、実用的でない。
またCBNのみの焼結体は硬度は高いが、工具と
して使用した場合の靭性が劣る。 発明者等はCBNの結合材として周期律表の第
a、a、a族の遷移金属であるTi、Zr、
Hf、V、Nb、Ta、Cr、Mo、Wの一種または二
種以上の混合物あるいは相互固溶体とAlを含む
化合物を主体としたものにCuまたはCuと鉄族金
属を含有したものを用い、さらに適切な製造条件
を見出すことによつて、従来にない耐摩性、靭性
を有するCBNの含有量が体積で20〜90%の高硬
度の焼結体を得ることができた。また高圧相型窒
化硼素の別の形態であるウルツ鉱型窒化硼素につ
いても同様の検討を行い、CBNを用いた場合と
類似した結果を得た。 以下、CBNを硬質耐摩耗成分として使用した
焼結体について詳細を述べるが、ウルツ鉱型もし
くはCBNとウルツ鉱型窒化硼素の混合物を用い
た場合も同様のことが言える。 CBNのみからなる焼結体は前記した如く製造
上の困難さと、焼結体そのものゝ強度不足といつ
た欠点を有している。この為にCBNに適当な結
合材を加えることによつてこのような欠点を改良
することが考えられる。 公知の方法の一つは金属結合材を用いる方法で
あり、市販のCBNを金属Coなどで結合した焼結
体がその例である。 このCoを結合材として用いた焼結体は前述し
た如く靭性が低い。この原因を調べるため、Co
結合材のCBN焼結体についてX線で組成を調査
した。その結果焼結体中にはCBN以外にCoのボ
ライドが多量に検出されたが、金属のCoは観察
されず、このCBN焼結体の結合材はCoのボライ
ドであることが判明した。通常、これらのボライ
ドは硬度は高いが非常にもろい物質であるため、
このような焼結体の靭性が低いものと推定され
る。 本発明者等は靭性のある結合相について検討
し、種々の焼結体を作成し、その靭性を調べた。
その結果、CBNの結合材として周期律表の第
a、a、a族遷移金属であるTi、Zr、Hf、
V、Nb、Ta、Cr、Mo、WとAl化合物とCuある
いはCuと鉄族金属のNiまたは/およびCoを用い
れば、靭性と耐摩耗性の優れた焼結体ができるの
を見出した。 本発明焼結体が高靭性を有する理由としては次
の如く推測される。すなわち、本発明焼結体はX
線回折の結果結合相中に周期律表の第a、
a、a族の遷移金属が金属の状態で存在してい
る部分と小量の遷移金属のボライドが存在してい
た。CBNと結合材の接着強度が高ければ、発生
した亀裂はCBNや結合相の粒内を伝播していく
が、結合相中の遷移金属は高靭性であるため焼結
体中に亀裂が発生しても、この金属で亀裂の伝播
が阻止されて亀裂は進展せず高靭性になつたもの
と考えられる。 実際ビツカース圧子により圧痕を焼結体に与え
亀裂の伝播の様子を観察したところ、亀裂の伝播
は非常に少なく亀裂はそのほとんどが結合相中の
遷移金属により止められていることが確認され
た。またCBN粒子と結合材の接合界面に沿つて
の亀裂は皆無であつた。 以上の如くCBNと結合材の結着強度を高め、
さらに結合材中に遷移金属を金属の状態で残存さ
せることにより靭性と耐摩耗性の優れた焼結体を
製造することができたが、この理由について以下
考察してみる。 本発明の焼結体の製造においては高圧中で温度
を上昇させるが、このときCuまたはCuと鉄族金
属M1はAlと遷移金属M2と反応し、低融点の液相
が生じ、CBNや遷移金属の界面に均一に侵入す
る。この界面に伸入したM2−Al−CuまたはM2
M1−Al−CuはCBNや遷移金属との親和性が良好
であり、さらにこの液相の一部とCBNや遷移金
属が反応し、CBNと遷移金属との接合強度を高
めたのであろう。 また焼結中にCuを含有した液相がCBNや遷移
金属を取り包むことにより、CBNと遷移金属の
直接接触を防ぎ、硼素の遷移金属内への拡散を抑
制するため遷移金属は金属の状態で結合相中に存
在することが可能になつたものと考えられる。実
際、CBNと遷移金属とAlあるいはこれに鉄族金
属を添加したようなCuを含有しない焼結体は遷
移金属のボライドが多量に発生し、靭性の劣つた
焼結体であつた。 本発明焼結体におけるCBNの含有量は体積で
20%以上90%以下が良い。CBNの含有量が20%
未満であると、CBN含有の効果を十分発揮する
ことができない。またCBNの含有量が90%を越
えると遷移金属の量が少なくなりすぎて、高靭性
の焼結体を得ることができない。次にAlの含有
量としては5%以上30%以下が好ましい。Alの
含有量が5%未満になると、CBN界面と液相の
親和性が失われCBNと遷移金属との接合強度が
低下する。また、Alの含有量が30%を越えると
焼結体の硬度が低下する。 またCuまたはCuと鉄族金属の含有量は重量で
1%以上50%以下が望ましい。CuまたはCuと鉄
族金属の含有量が1%未満であると、焼結体中の
遷移金属のボライドの発生を充分に抑制すること
ができず、50%を越えると焼結体の硬度が低下し
工具性能は悪くなる。特に遷移金属として周期律
表の第a族のCr、Mo、Wを用いた場合、Cuは
これらの遷移金属との親和性が良好でないため、
Cr、Mo、Wと親和性の良好な鉄族金属を含有さ
せることにより、これらの遷移金属との接着性が
改善され靭性耐摩耗性共向上する。含有される鉄
族金属の量は重量でCuの同量以下が良い。これ
を越えると鉄族金属とのボライドを多量に生成す
るため、靭性や耐摩耗性は低下する。 周期律表第a、a、a族金属の含有量は
20〜94重量%が良い。含有量が20%未満であると
強度の高いこれらの金属量が減るため結合材の強
度が低下する。一方94%を越えるとAl、Cu、
Ni、Co等の含有量が減少するため好ましくな
い。 Al、CuあるいはCuと鉄族金属を添加する方法
は種々考えられる。焼結前のCBNと遷移金属と
の混合粉末中に金属のまゝ、あるいは化合物の形
で添加する方法は最も簡単である。またAl、Cu
あるいはCuと鉄族金属を焼結時に焼結体外部か
ら溶融させて侵入させることもできる。 本発明で用いるCBN結晶の粒度は焼結体の工
具としての性能からみて10μ以下とする必要があ
る。結晶粒子が粗いと焼結体の強度が低下し、ま
た特に切削工具として使用する場合は結晶粒子の
細いものが良い加工面が得られる。 焼結体の製造に当つてはダイヤモンド合成に用
いられる超高圧高温装置を使用して圧力20kb以
上、温度900℃以上で行う。特に好ましい焼結圧
力、温度条件は圧力30kb〜70kb、温度1100℃〜
1500℃である。この圧力、温度条件の上限はいず
れも工業的規模の超高圧高温装置の実用的な運転
条件の範囲内である。更に圧力、温度条件は第1
図に示した高圧相型窒化硼素の安定域内で行う必
要がある。 このような優れた焼結体を切削工具として使用
する場合、高硬度焼結体は切れ刃となる部分にの
みあれば良く、この高硬度焼結体を強度、靭性、
熱伝導に優れた超硬合金に接合して使用すればそ
の性能を十分発揮することができる。 以下実施例により更に具体的に説明する。 実施例 1 平均粒度5μmのCBN粉末を体積%で70%と
残部結合材粉末からなる混合粉末を作成した。結
合材粉末はW、Al、Cu、Niを重量でそれぞれ80
%、10%、6%、4%の組成で混合したものを
1000℃30分間加熱後粉砕したものを用いた。この
CBNと結合材の混合粉末を、外径14mm、内径10
mmのMo製の容器にWC−6%Co組成の超硬合金
(外径10mm、高さ2.5mm)を置いた後0.4g充填し
た。さらにこの上に超硬合金(外径10mm、高さ2
mm)を置き、Mo製の栓をして、この容器全体を
ダイヤモンド合成に用いる超高圧装置に入れた。
圧力を50kbに加圧し、次いで温度1350℃まで加
熱し、20分間保持した。取り出した焼結体をダイ
ヤモンド砥石を用いて高硬度焼結体が現われるま
で研削加工し、さらにダイヤモンドペーストを用
いて研摩した。光学顕微鏡で観察したところ気孔
もなく緻密な焼結体であつた。この焼結体の生成
物をX線回折により調査した結果、CBN、W、
AlN、Cuの他に微量のNi、AlB2およびNi、Wの
ボライドが検出された。なお比較のため上記組成
のうちCuを抜いた焼結体も同条件で試作しX線
回折で調べた。 その結果CBN、W、AlN、AlB2と多量のNiWの
ボライドが観察された。これら2種類の焼結体と
市販の体積で90%のCBNを含有し、Coを主成分
とする金属で結合した焼結体の切削用チツプを作
成し、外径100mmで円周に4ケ所の溝を有する
SKD11ダイス鋼(HRC61)を、切削速度100m/
min、切込み0.3mm、送り0.5mm/rev乾式でテスト
した。 その結果、Cuを含有した本発明焼結体は刃先
が欠損するまで20分間切削可能であつたのに対
し、Cuを含有しない焼結体及び市販の焼結体は
双方共5分切削した時点で刃先は欠損してしまつ
た。 実施例 2 平均粒度5μmのCBN粉末を体積%で60%と
結合材粉末からなる混合粉末を作成した。結合材
粉末はMoとAlを重量でそれぞれ75%と25%の組
成で混合したものである。このCBNと結合材の
混合粉末を内面に50μmの厚さのTa箔を巻いた
外径14mm、内径10.1mmのMo製容器にWC−10%
Co組成の超硬合金台金(外径10mm、高さ3mm)
を置いた後、0.4g充填しその上に外径10mm、厚
さ1mmのCu−Ni−Co(重量比で6:3:1)型
押体を置いた。さらにこの上にWC−10%Co組成
の超硬合金(外径10mm、高さ2mm)を置き、Mo
製の栓をした。この容器を実施例1と同様にして
圧力55kb、温度1400℃で焼結した。取り出した
焼結体をダイヤモンド砥石を用いて高硬度焼結体
が現われるまで研削加工した。この焼結体の組成
をX線マイクロアナライザにより調べた。Cu、
Co、Niは均一に焼結体に含まれており、その含
有量は結合材中の重量%でそれぞれ約3%、約2
%、約1%であつた。またX線回析により焼結体
中の生成物を調べたところ、CBN、Mo、AlN、
Cuと少量のNi、Coと微量のAlB2とNi、Co、Mo
のボライドが検出された。この焼結体と市販の体
積で90%のCBNを含有し、Coを主成分とする金
属で結合した焼結体の切削用チツプを作成しV溝
を円筒方向に2ケ所有する熱処理後のSNCM9種
の鋼を切削した。被削材の硬度はHRC54、切削条
件は切削速度120m/min、切り込み0.2mm、0.45
mm/rev乾式で行つた。その結果、本発明焼結体
は60分切削加能であつたのに対し、市販のCBN
工具は10分しか切削できなかつた。 実施例 3 第1表に示す組成の結合材粉末を作成した。こ
れらの組成の結合材粉末を実施例1と同様にして
加熱処理を施し粉砕した。
Cubic boron nitride (hereinafter abbreviated as CBN) is a material with the second highest hardness after diamond, and is synthesized under ultra-high pressure and high temperature. Currently, it is already being used as abrasive grains for grinding, and sintered bodies made of CBN bonded with Co, etc. are also used in some cutting applications. When this CBN sintered body was used as a cutting tool, it had the disadvantage that the cutting edge of the tool would break at an early stage, especially when there was interrupted cutting. The present invention relates to a new CBN sintered body that overcomes these drawbacks and has high toughness and excellent wear resistance. As mentioned above, CBN is a material that has high hardness and excellent heat resistance and wear resistance. Various attempts have been made to sinter only this CBN; for example, as described in Japanese Patent Publication No. 39-8948,
It is approximately 70kb or more and needs to be sintered at ultra-high pressure and high temperatures of over 1900℃. Current ultra-high-pressure, high-temperature equipment can generate such high-pressure, high-temperature conditions, but if the equipment is scaled up on an industrial scale, the number of lifetimes of the high-pressure, high-temperature generating section is limited, making it impractical.
Furthermore, although a sintered body made only of CBN has high hardness, it has poor toughness when used as a tool. The inventors used Ti, Zr, which are transition metals of groups a, a, and a of the periodic table, as binders for CBN.
A compound containing Cu or Cu and an iron group metal in a mixture or mutual solid solution of one or more of Hf, V, Nb, Ta, Cr, Mo, and W or a compound containing Al is used, and By finding appropriate manufacturing conditions, we were able to obtain a highly hard sintered body with a CBN content of 20 to 90% by volume, which has unprecedented wear resistance and toughness. A similar study was also conducted on wurtzite boron nitride, which is another form of high-pressure phase boron nitride, and results similar to those obtained using CBN were obtained. Details will be given below regarding a sintered body using CBN as a hard wear-resistant component, but the same can be said when using a wurtzite type or a mixture of CBN and wurtzite type boron nitride. As mentioned above, a sintered body made only of CBN has drawbacks such as difficulty in manufacturing and insufficient strength of the sintered body itself. Therefore, it is possible to improve these defects by adding an appropriate binder to CBN. One of the known methods is to use a metal bonding material, and an example is a commercially available sintered body of CBN bonded with metal Co or the like. A sintered body using this Co as a binder has low toughness as described above. To investigate the cause of this, Co
The composition of the CBN sintered body of the binder was investigated using X-rays. As a result, in addition to CBN, a large amount of Co boride was detected in the sintered body, but no metallic Co was observed, indicating that the binding material of this CBN sintered body was Co boride. Usually, these borides are hard but very brittle substances;
It is presumed that such a sintered body has low toughness. The present inventors investigated a binder phase with toughness, created various sintered bodies, and examined their toughness.
As a result, Ti, Zr, Hf, which are group a, a, and a transition metals of the periodic table, were used as binders for CBN.
We have discovered that a sintered body with excellent toughness and wear resistance can be produced by using V, Nb, Ta, Cr, Mo, or W, an Al compound, Cu or Cu, and Ni or/and Co, which is an iron group metal. The reason why the sintered body of the present invention has high toughness is presumed to be as follows. That is, the sintered body of the present invention has
As a result of line diffraction, in the bonded phase, periodic table a,
There was a portion where transition metals of groups A and A existed in a metallic state and a small amount of transition metal boride. If the adhesive strength between CBN and the binder is high, cracks that occur will propagate within the grains of CBN and the binder phase, but since the transition metals in the binder phase have high toughness, cracks will not occur in the sintered body. However, it is thought that this metal inhibited the propagation of cracks, preventing them from growing and resulting in high toughness. When we actually applied an indentation to the sintered body using a Bitkers indenter and observed the propagation of cracks, we found that the propagation of cracks was very small and that most of the cracks were stopped by the transition metal in the binder phase. Furthermore, there were no cracks along the bonding interface between the CBN particles and the binder. As described above, the bonding strength between CBN and the binder is increased,
Furthermore, by allowing the transition metal to remain in the metal state in the binder, it was possible to produce a sintered body with excellent toughness and wear resistance, and the reason for this will be discussed below. In producing the sintered body of the present invention, the temperature is raised under high pressure. At this time, Cu or Cu and iron group metal M 1 react with Al and transition metal M 2 to form a liquid phase with a low melting point, and CBN and penetrate uniformly into the interface of transition metals. M 2 −Al−Cu or M 2 − extending into this interface
M 1 −Al−Cu has good affinity with CBN and transition metals, and a portion of this liquid phase reacts with CBN and transition metals, probably increasing the bonding strength between CBN and transition metals. . In addition, during sintering, the liquid phase containing Cu surrounds CBN and the transition metal, preventing direct contact between CBN and the transition metal, and suppressing the diffusion of boron into the transition metal, so the transition metal remains in a metallic state. This is thought to have made it possible to exist in the bonded phase. In fact, sintered bodies that do not contain Cu, such as CBN, transition metals, and Al, or those to which iron group metals are added, have a large amount of transition metal boride, and are poor in toughness. The content of CBN in the sintered body of the present invention is expressed by volume.
20% or more and 90% or less is good. CBN content is 20%
If it is less than that, the effect of containing CBN cannot be fully exhibited. Furthermore, if the CBN content exceeds 90%, the amount of transition metal becomes too small, making it impossible to obtain a sintered body with high toughness. Next, the Al content is preferably 5% or more and 30% or less. When the Al content is less than 5%, the affinity between the CBN interface and the liquid phase is lost, and the bonding strength between the CBN and the transition metal decreases. Furthermore, if the Al content exceeds 30%, the hardness of the sintered body decreases. Further, the content of Cu or Cu and iron group metals is preferably 1% or more and 50% or less by weight. If the content of Cu or Cu and iron group metal is less than 1%, it will not be possible to sufficiently suppress the generation of transition metal borides in the sintered body, and if it exceeds 50%, the hardness of the sintered body will decrease. This will cause the tool performance to deteriorate. In particular, when using Cr, Mo, and W from group a of the periodic table as transition metals, Cu does not have good affinity with these transition metals.
By containing an iron group metal having good affinity with Cr, Mo, and W, adhesion with these transition metals is improved, and toughness and wear resistance are also improved. The amount of iron group metal contained is preferably equal to or less than the same amount of Cu by weight. If this value is exceeded, a large amount of boride with the iron group metal is generated, resulting in a decrease in toughness and wear resistance. The content of metals in groups a, a, and a of the periodic table is
20-94% by weight is good. When the content is less than 20%, the strength of the binder decreases because the amount of these high-strength metals decreases. On the other hand, when it exceeds 94%, Al, Cu,
This is not preferable because the content of Ni, Co, etc. decreases. Various methods can be considered for adding Al, Cu, or Cu and iron group metals. The simplest method is to add CBN as a metal or in the form of a compound to a mixed powder of CBN and transition metal before sintering. Also, Al, Cu
Alternatively, Cu and iron group metals can be melted and introduced from the outside of the sintered body during sintering. The grain size of the CBN crystal used in the present invention needs to be 10 μm or less in view of the performance of the sintered body as a tool. If the crystal grains are coarse, the strength of the sintered body will be reduced, and especially when used as a cutting tool, the finer the crystal grains, the better the machined surface can be obtained. The sintered body is manufactured using ultra-high pressure and high temperature equipment used for diamond synthesis at a pressure of over 20kb and a temperature of over 900℃. Particularly preferred sintering pressure and temperature conditions are pressure 30kb ~ 70kb and temperature 1100℃ ~
The temperature is 1500℃. The upper limits of these pressure and temperature conditions are both within the range of practical operating conditions for ultra-high pressure and high temperature equipment on an industrial scale. Furthermore, the pressure and temperature conditions are
It is necessary to carry out the process within the stability range of high-pressure phase type boron nitride shown in the figure. When using such an excellent sintered body as a cutting tool, the high hardness sintered body only needs to be used in the part that will become the cutting edge.
Its performance can be fully demonstrated by bonding it to cemented carbide, which has excellent thermal conductivity. This will be explained in more detail below with reference to Examples. Example 1 A mixed powder was prepared consisting of 70% by volume CBN powder with an average particle size of 5 μm and the balance being binder powder. Binding material powders are W, Al, Cu, and Ni, each weighing 80%.
%, 10%, 6%, 4% composition.
The material used was one that was heated at 1000°C for 30 minutes and then ground. this
Mixed powder of CBN and binder was mixed into an outer diameter of 14 mm and an inner diameter of 10 mm.
A cemented carbide having a composition of WC-6% Co (outer diameter 10 mm, height 2.5 mm) was placed in a Mo container (0.4 g). Furthermore, on top of this is a cemented carbide (outer diameter 10 mm, height 2
mm), a Mo stopper was placed, and the entire container was placed in an ultra-high pressure device used for diamond synthesis.
The pressure was increased to 50kb and then heated to a temperature of 1350°C and held for 20 minutes. The removed sintered body was ground using a diamond grindstone until a highly hard sintered body appeared, and further polished using diamond paste. When observed with an optical microscope, it was found to be a dense sintered body with no pores. As a result of investigating the products of this sintered body by X-ray diffraction, it was found that CBN, W,
In addition to AlN and Cu, trace amounts of Ni, AlB 2 and borides of Ni and W were detected. For comparison, a sintered body with the above composition excluding Cu was also produced under the same conditions and examined by X-ray diffraction. As a result, borides of CBN, W, AlN, AlB 2 and a large amount of NiW were observed. A cutting chip was made of these two types of sintered body and a commercially available sintered body containing 90% CBN and bonded with a metal mainly composed of Co. has a groove of
Cutting speed 100m/ SKD11 die steel (H RC 61)
Min, depth of cut 0.3mm, feed 0.5mm/rev Dry test. As a result, the sintered body of the present invention containing Cu could be cut for 20 minutes until the cutting edge broke, whereas the sintered body that did not contain Cu and the commercially available sintered body could both be cut after 5 minutes. The tip of the blade was damaged. Example 2 A mixed powder consisting of 60% by volume CBN powder with an average particle size of 5 μm and binder powder was prepared. The binder powder is a mixture of Mo and Al with a composition of 75% and 25% by weight, respectively. This mixed powder of CBN and binder was placed in a Mo container with an outer diameter of 14 mm and an inner diameter of 10.1 mm, the inside of which was wrapped with Ta foil with a thickness of 50 μm.
Co cemented carbide base metal (outer diameter 10mm, height 3mm)
After that, 0.4g was filled and a Cu-Ni-Co (weight ratio 6:3:1) embossed body having an outer diameter of 10 mm and a thickness of 1 mm was placed thereon. Furthermore, a cemented carbide of WC-10% Co composition (outer diameter 10 mm, height 2 mm) was placed on top of this, and Mo
It had a made-of-white stopper. This container was sintered in the same manner as in Example 1 at a pressure of 55 kb and a temperature of 1400°C. The removed sintered body was ground using a diamond grindstone until a high hardness sintered body appeared. The composition of this sintered body was investigated using an X-ray microanalyzer. Cu,
Co and Ni are uniformly contained in the sintered body, and their content is approximately 3% and approximately 2% by weight in the binder, respectively.
%, about 1%. In addition, when the products in the sintered body were investigated by X-ray diffraction, CBN, Mo, AlN,
Cu and a small amount of Ni, Co and a small amount of AlB2 and Ni, Co, Mo
bolide was detected. A cutting chip was made of this sintered body and a commercially available sintered body containing 90% CBN by volume and bonded with a metal mainly composed of Co, and after heat treatment to have two V grooves in the cylindrical direction. Cutting 9 types of SNCM steel. The hardness of the work material is H RC 54, cutting conditions are cutting speed 120m/min, depth of cut 0.2mm, 0.45
mm/rev dry method. As a result, the sintered body of the present invention could be cut in 60 minutes, whereas the commercially available CBN
The tool could only cut for 10 minutes. Example 3 A binder powder having the composition shown in Table 1 was prepared. Binder powders having these compositions were heat treated and pulverized in the same manner as in Example 1.

【表】 この結合粉末と平均粒度5μmのCBN粉末と
を混合して第2表の組成の混合粉末を作成した。 なお、トはCuよりもNiが多く、またチはAl量
が少なく、またリはCuがないのでト、チ、リは
いずれも比較例である。なお、また第2表におけ
るJ、K、L、Mも比較例である。 実施例1と同様にして、Mo製容器にWC−6
%Co超硬合金を置き、その上に完粉と超硬合金
を置いてMo製の栓をし、超高圧高温装置を用い
[Table] This bonded powder and CBN powder having an average particle size of 5 μm were mixed to create a mixed powder having the composition shown in Table 2. Note that G contains more Ni than Cu, H has a smaller amount of Al, and L has no Cu, so G, C, and R are all comparative examples. Note that J, K, L, and M in Table 2 are also comparative examples. In the same manner as in Example 1, WC-6 was placed in a Mo container.
%Co cemented carbide was placed, the finished powder and cemented carbide were placed on top of that, a Mo stopper was placed, and an ultra-high pressure and high temperature device was used to

【表】 第2表に示す条件で焼結した。これらの焼結体を
用いて切削用のチツプを作成し、外径80mmの
SKD11(HRC61)の端面をスライス切削した。
切削条件は切削速度200m/min(回転数
430rpm)、切込み0.5mm、送り50mm/min乾式であ
つた。なお市販の体積で90%のCBNを合有し、
Coを主成分とする金属で結合した焼結体の切削
チツプも作成しテストした。これらの結果も第2
表に示す。また、外径100mmのSKD11を切削速度
100m/min、切込み0.2mm、送り0.1mm/rev乾式
で切削し、工具逃げ面摩耗巾が0.2mmに達するま
での切削可能時間も第2表に示す。 実施例 4 第1表に示す結合材粉末のホと粒度1μm以下
のWBN粉末を体積比で1:1になるように混合
し、この粉末を実施例1と同様にしてMo製容器
にWC−6%Coの超硬合金を置いた後充填し、さ
らにこの上に超硬合金を置いてMo製の栓をし、
超高圧高温装置を用いて圧力50kb、温度1400℃
で15分間焼結した。この焼結体を用いてHRC58〜
60のSNCM435で外周にU形の溝を4ケ所有する
丸棒を切削速度100m/分、切込み0.2mm、送り
0.1mm/rev、乾式で切削した。比較のため市販の
CBNを体積で90%含有し、Coを主成分とする金
属で結合した焼結体の切削チツプも作製しテスト
した。 その結果、本発明焼結体は10分切削しても欠損
しなかつたのに対し、比較材は30秒切削して欠損
した。
[Table] Sintering was performed under the conditions shown in Table 2. Cutting chips were made using these sintered bodies, and chips with an outer diameter of 80 mm were made.
The end face of SKD11 (H RC 61) was sliced.
The cutting conditions are cutting speed 200m/min (rotation speed
430 rpm), depth of cut 0.5 mm, and feed rate 50 mm/min. In addition, the commercially available volume contains 90% CBN,
A cutting chip made of a sintered body bonded with Co-based metal was also created and tested. These results are also the second
Shown in the table. In addition, the cutting speed for SKD11 with an outer diameter of 100 mm
Table 2 also shows the possible cutting time until the tool flank wear width reaches 0.2 mm when dry cutting is performed at 100 m/min, depth of cut 0.2 mm, and feed rate 0.1 mm/rev. Example 4 The binder powder shown in Table 1 and WBN powder with a particle size of 1 μm or less were mixed at a volume ratio of 1:1, and this powder was placed in a Mo container in the same manner as in Example 1. After placing 6% Co cemented carbide, it was filled, then another cemented carbide was placed on top of this, and a Mo stopper was placed.
Using ultra-high pressure and high temperature equipment, the pressure is 50kb and the temperature is 1400℃.
sintered for 15 minutes. Using this sintered body, H RC 58~
Cutting a round bar with 4 U-shaped grooves on the outer circumference using 60 SNCM435 at a speed of 100 m/min, depth of cut of 0.2 mm, and feed.
Dry cutting was performed at 0.1mm/rev. Commercially available for comparison
A cutting chip made of a sintered body containing 90% CBN by volume and bonded with a metal whose main component is Co was also fabricated and tested. As a result, the sintered body of the present invention did not break even after cutting for 10 minutes, whereas the comparative material did break after cutting for 30 seconds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明焼結体の製造条件を説明する為
のもので高圧相型窒化硼素の圧力−温度相図上に
おける熱力学的な安定領域を示したものである。
FIG. 1 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the thermodynamically stable region on the pressure-temperature phase diagram of high-pressure phase type boron nitride.

Claims (1)

【特許請求の範囲】 1 平均粒度が10μm以下の高圧相型窒化硼素を
体積で20〜90%含有し、残部の結合相中に周期律
表の第a、a、a族の遷移金属である
Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、Wの一種
または二種以上の混合物あるいは相互固溶体を該
結合相中で20〜94重量%、およびAlの化合物よ
り成り、結合相中のAl含有量が重量で5〜30%
であり、さらに該結合相中にCu1〜50重量%、ま
たはCuとNiまたは/およびCoを1〜50重量%含
有し、Cuの含有量の方が多いことを特徴とする
工具用高硬度焼結体。 2 高圧相型窒化硼素が立方晶型窒化硼素である
ことを特徴とする特許請求の範囲第1項記載の工
具用高硬度焼結体。 3 平均粒度10μm以下の高圧相型窒化硼素粉末
を体積で20〜90%と周期律表の第a、a、
a族の遷移金属であるTi、Zr、Hf、V、Nb、
Ta、Cr、Mo、Wの粉末の一種あるいは二種以上
の混合粉末または相互固溶体粉末を該結合相中で
20〜94重量%とAlまたはAlを含む化合物粉末を
結合相中で5〜30重量%であり、さらに該結合相
中にCu1〜50重量%、またはCuとNiまたは/お
よびCoを1〜50重量%含有しCuの含有量の方が
多く混合した後、粉末状もしくは型押成型後超高
圧装置を用いて圧力20kb以上、温度900℃以上で
焼結させることを特徴とする工具用高硬度焼結体
の製造方法。 4 高圧相型窒化硼素粉末として立方晶型窒化硼
素を用いることを特徴とする特許請求の範囲第3
項記載の工具用高硬度焼結体の製造方法。 5 平均粒度10μm以下の高圧相型窒化硼素粉末
を体積で20〜90%と周期律表の第a、a、
a族の遷移金属であるTi、Zr、Hf、V、Nb、
Ta、Cr、Mo、Wの粉末の一種あるいは二種以上
の混合粉末または相互固溶体粉末を結合相中で20
〜94重量%とAlまたはAlを含む化合物粉末を結
合相中で5〜30重量%混合し、これを粉末状もし
くは型押成型後超高圧装置を用いて圧力20kb以
上、温度900℃以上で焼結するか、焼結と同時に
外部より該結合相中のCuを1〜50重量%、また
はCuとNiまたは/およびCoを1〜50重量%でCu
の含有量の方が多く焼結体内に侵入させることを
特徴とする特許請求の範囲第3項または第4項記
載の工具用高硬度焼結体の製造方法。
[Scope of Claims] 1 Contains 20 to 90% by volume of high-pressure phase type boron nitride with an average particle size of 10 μm or less, and the remaining binder phase is a transition metal of Groups A, A, and A of the Periodic Table.
A mixture or mutual solid solution of one or more of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, or a mutual solid solution thereof, is contained in the binder phase in an amount of 20 to 94% by weight, and a compound of Al is contained in the binder phase. Al content is 5-30% by weight
and further contains 1 to 50% by weight of Cu, or 1 to 50% by weight of Cu and Ni or/and Co, in which the content of Cu is higher. Body. 2. The high-hardness sintered body for tools according to claim 1, wherein the high-pressure phase boron nitride is cubic boron nitride. 3 High-pressure phase type boron nitride powder with an average particle size of 10 μm or less by volume of 20 to 90% and periodic table a, a,
Group a transition metals Ti, Zr, Hf, V, Nb,
A mixed powder or mutual solid solution powder of one or more of Ta, Cr, Mo, and W powders is added in the binder phase.
20-94% by weight of Al or a compound powder containing Al in the binder phase, and 1-50% by weight of Cu, or 1-50% of Cu and Ni or/and Co in the binder phase. High hardness for tools, which is characterized in that it is mixed with a higher Cu content by weight and is then molded into a powder or molded form and then sintered using an ultra-high pressure device at a pressure of 20 kb or more and a temperature of 900°C or more. A method for producing a sintered body. 4. Claim 3, characterized in that cubic boron nitride is used as the high-pressure phase boron nitride powder.
A method for manufacturing a high-hardness sintered body for tools as described in . 5 20 to 90% by volume of high-pressure phase boron nitride powder with an average particle size of 10 μm or less and items a, a,
Group a transition metals Ti, Zr, Hf, V, Nb,
A mixed powder or mutual solid solution powder of one or more of Ta, Cr, Mo, and W powders is added to the binder phase for 200 min.
~94% by weight and Al or a compound powder containing Al are mixed in a binder phase at 5% to 30% by weight, and after molding into powder or molding, sintering is performed using an ultra-high pressure device at a pressure of 20 kb or higher and a temperature of 900°C or higher. 1 to 50% by weight of Cu in the binder phase, or 1 to 50% by weight of Cu and Ni or/and Co from the outside at the same time as sintering.
5. The method for manufacturing a high-hardness sintered body for a tool according to claim 3 or 4, wherein a larger amount of .
JP7312880A 1980-05-30 1980-05-30 High hardness sintered body for tool and preparation thereof Granted JPS56169747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312880A JPS56169747A (en) 1980-05-30 1980-05-30 High hardness sintered body for tool and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312880A JPS56169747A (en) 1980-05-30 1980-05-30 High hardness sintered body for tool and preparation thereof

Publications (2)

Publication Number Publication Date
JPS56169747A JPS56169747A (en) 1981-12-26
JPS6242989B2 true JPS6242989B2 (en) 1987-09-10

Family

ID=13509264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312880A Granted JPS56169747A (en) 1980-05-30 1980-05-30 High hardness sintered body for tool and preparation thereof

Country Status (1)

Country Link
JP (1) JPS56169747A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017618A1 (en) * 1991-03-26 1992-10-15 The Australian National University Abrasive compact composed mainly of cubic boron nitride and method of making same

Also Published As

Publication number Publication date
JPS56169747A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
EP1309732B1 (en) Method of producing an abrasive product containing diamond
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
JP5456948B2 (en) Method for producing polycrystalline cubic boron nitride cutting tool insert
JPH0443874B2 (en)
JPS6242989B2 (en)
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
EP1322793A2 (en) Abrasive and wear resistant material
JPS6246510B2 (en)
JPS6137221B2 (en)
JPS6241306B2 (en)
JPS6251911B2 (en)
JPS62983B2 (en)
JPS6369760A (en) Sintered body for high hardness tools and manufacture
JPS627259B2 (en)
JPS6141873B2 (en)
JPH0377151B2 (en)
JPS58107468A (en) Sintered material for high hardness tool and preparation thereof
KR860002131B1 (en) Sintered compact for use in a tool
JPS6247940B2 (en)
JPH0357171B2 (en)
JPS5855111B2 (en) High hardness sintered body for tools and its manufacturing method
JPS6157381B2 (en)
JPH0138841B2 (en)
JPS58176173A (en) High hardness sintered body for tool and manufacture
JPS62984B2 (en)