JPH0138841B2 - - Google Patents

Info

Publication number
JPH0138841B2
JPH0138841B2 JP17068086A JP17068086A JPH0138841B2 JP H0138841 B2 JPH0138841 B2 JP H0138841B2 JP 17068086 A JP17068086 A JP 17068086A JP 17068086 A JP17068086 A JP 17068086A JP H0138841 B2 JPH0138841 B2 JP H0138841B2
Authority
JP
Japan
Prior art keywords
sintered body
binder
powder
less
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17068086A
Other languages
Japanese (ja)
Other versions
JPS62260005A (en
Inventor
Akio Hara
Shuji Yatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17068086A priority Critical patent/JPS62260005A/en
Publication of JPS62260005A publication Critical patent/JPS62260005A/en
Publication of JPH0138841B2 publication Critical patent/JPH0138841B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

立方晶型窒化硼素(Cubic BN、以下CBNと
略す)は、ダイヤモンドに次ぐ高硬度の物質であ
り、超高圧高温下で合成される。現在既に研削用
砥粒として使用されており、また切削用途には、
CBNを金属Coなどで結合した焼結体が一部に使
用されている。このCBNを金属で結合した焼結
体は切削工具として使用した場合、結合金属相の
高温での軟化による耐摩耗性の低下や、被削材金
属が溶着し易い為に工具が損傷するといつた欠点
がある。本発明は、このような金属で結合した焼
結体でなく、高強度で耐熱性に優れた硬質金属化
合物を結合相とした切削工具等の工具用途に適し
た新しいCBN焼結体に関するものである。 CBNは前記した如く、高硬度であり耐熱性、
耐摩耗性に優れた物質である。このCBNのみを
焼結する試みは種々なされているが、これには例
えば特公昭39−8948号に記載されている如く、約
70kb以上、1900℃以上の超高圧、高温下で焼結
する必要がある。現状の超高圧・高温装置ではこ
のような高圧・高温条件を発生させることはでき
るが、工業的規模に装置を大型化した場合、高圧
高温発生部の耐用回数が制約されて実用的でな
い。またCBNのみの焼結体は硬度は高いが、工
具として使用した場合の靭性が劣る。 発明者等はCBNの結合材として周期律表第4a
遷移金属の炭化物、窒化物、炭窒化物と、Alを
含む化合物を主体としたものに、Cu及び鉄族金
属の元素を含有したものを用い、更に適切な製造
条件を見出すことによつて、従来にない耐摩耗
性、靭性を有するCBNの含有量が体積で80%を
越える高硬度の焼結体を得ることができた。また
高圧相型窒化硼素の別の形態であるウルツ鉱型窒
化硼素についても同様の検討を行ない、CBNを
用いた場合と類似した結果を得た。 以下、CBNを硬質耐摩耗成分として使用した
焼結体について詳細を述べるが、ウルツ鉱型もし
くはCBNとウルツ鉱型窒化硼素の混合物を用い
た場合も同様のことが言える。 本発明の目的とするところは、CBNの含有量
の多い高硬度の工具用焼結体を得ることである。
これによりCBNの特徴を最大限に生かして、例
えばWC基超硬合金の如く高硬度の材料を切削加
工する工具材や、また線引きダイス等へ応用する
ことができる。 CBNのみからなる焼結体は前記した如く製造
上の困難さと、焼結体そのものの強度不足といつ
た欠点を有している。この為にCBNに適当な結
合材を加えることによつてこのような欠点を改良
することが考えられる。 公知の方法の一つは、金属結合材を用いる方法
であり、市販のCBNを金属Coなどで結合した焼
結体がその例である。また、CBNに金属以外の
化合物例えばAl2O3やB4C等を混合してこれを焼
結する試みもなされている。前者の方法は焼結時
にCoなどの金属結合材が溶融する温度で行なう
もので、高圧下における液相焼結である。後者の
場合は結合材は溶解せず固相状態で焼結される。
発明者等は、先に周期律表第4a,5a,6a族金属
の炭化物、窒化物、硼化物、硅化物を結合材とし
てこれ等の結合材化合物が焼結体組織中で連続し
た結合相をなす、CBNを体積%で40〜80%含有
した高硬度工具用焼結体を発明し、特許出願して
いる(特開昭53−77811)。この場合も固相状態で
焼結するものであるが、結合材含有量が比較的に
多いためにCBNのみの焼結に比較して緻密な焼
結体を得るに必要な圧力、温度条件が緩和され
る。 発明者等は、更にCBNの含有量を多くしたも
のについて検討を行なつた。CBNの含有量が体
積%で80%を越えるとCBNと前記の周期律表第
4a,5a,6a族金属の化合物粉末を充分均一に混
合して超高圧、高温下で焼結しても高強度の焼結
体は得られなかつた。この焼結体の破面を調べて
みるとCBN粒子間及びCBNと結合材化合物粒子
間で破壊していることが多く、CBN粒子相互又
はCBNと結合材結晶粒子間の結合強度が低いと
考えられる。CBNの含有量が多い場合はこのよ
うに焼結性が低下し、高強度の焼結体が得られな
い。これを改善する為に更に広範囲の実験を行な
つた結果、結合材として周期律表第4a族の炭化
物、窒化物、炭窒化物、特に第4a族の遷移金属
をMで表わしたとき、MCx,MNx,M(C.N)
xのxの値がある値以下の粉末に、AlとCu及び
鉄族金属を含む混合粉末を用いた場合、CBNの
含有量が80%を越える組成であつても高強度の焼
結体が得られることを見出した。 周期律表第4a族の炭化物、窒化物、炭窒化物
は、第1図のTiNの状態図に代表される如く、
NaCl型構造を有する相がM−C,M−N,M−
C.Nの広い組成範囲において存在する。このxの
値が1以下の場合、即ち、相対的にC.Nの原子空
孔濃度の高いものを用いることにより焼結性が改
善された。また結合材として、MCx,MNx,M
(C.N)xのみを用いた場合よりも、これにAl化
合物を加えた場合焼結性は改善されることが確認
された。さらにこれに微量のCu及びFe,Ni,Co
の鉄族金属元素が含有された場合はより一層焼結
性は改善され、焼結体の強度も向上することがわ
かつた。結合材原料として使用するMCx,
MNx,M(C.N)xのxの値の好ましい範囲は
0.95以下である。またAlは結合材中にAl元素と
して5%以上、Cu及び鉄族金属は結合材中のこ
れらの金属元素の合計で1%以上存在すると高強
度の焼結体が得られる。焼結体中のCBN含有量
を体積で85%とし、MCx,MNx,M(C.N)x
のxの値と添加AlあるいはCu及び鉄族金属の含
有量を種々変えて焼結体を試作し、切削工具とし
ての性能を評価した結果、特に高強度で工具とし
ての性能が優れていたのはxの値が0.50〜0.95で
Al添加量が結合材中の重量で5〜30%の範囲で
あり、さらにCu及び鉄族金属の添加量の合計は
結合材中の重量で1〜20%の範囲のものであつ
た。 本発明の焼結体では、高圧相型窒化硼素は焼結
体中の体積%で80%を越え95%以下である。この
組成範囲内では、充分緻密な焼結体ではCBNの
含有量が多いほど焼結体の硬度は高い。95%を越
えると焼結体の工具として必要な靭性の低下が見
られる。また80%以下の含有量では焼結体の結合
相が組織中で連続した相をなし硬度が低下する。 本発明による結合材を用いた場合、何故高圧相
型窒化硼素の焼結性が改善されるか考察してみ
る。たとえばTiNxを例にとるとTiNxのみの焼
結体の常温における硬度はxの値が約0.7の場合、
最大となる。しかし、高温下ではxの値が低いも
のほど硬度低下の度合が大きい。CBNとTiNxを
混合して超高圧高温下で焼結する場合、CBN結
晶は変形し難いがTiNx粒子は容易に変形を起し
得る。前述した理由でこの場合窒素原子の欠陥濃
度の高いxの値が低いTiNxほど変形し易く、
CBN結晶粒子間に浸入して緻密化が進行し易い
他のMCx,MNx,M(C.N)xについても同様
のことがいえる。しかしこれのみではCBN粒子
間の結合強度が充分ではない。例えばWC−Co超
硬合金の液相焼結の如く硬質粒子の結合相への溶
解と再折出現象があれば結合相と硬質粒子、また
は硬質粒子相互の結合強度の高いものが得られよ
う。 本発明焼結体では、結合材中にAl化合物を存
在させることによつて、これと類似した現象が生
じることを見出したものである。結合材として
MCx,MNx,M(C.N)xにAl化合物を添加し
ていくと、その量が増すに従つて焼結性が改善さ
れ、低温で焼結しても高硬度り焼結体が得られ
る。焼結体をダイヤモンド砥石で研磨して、更に
ラツプ仕上げして観察するとCBN粒子の脱落が
添加Al量が結合材中の重量5%以上の場合は殆
んど見られない。しかし焼結体の破面を観察する
とCBN粒子は殆んど粒内破壊しているものの一
部粒界破壊している個所も認められた。この
CBN焼結体の組成にCu及び微量の鉄族金属を添
加した焼結体を作成し、その破面を観察したとこ
ろ粒界破壊の生じているところは認められなかつ
た。この理由は次の如く推測される。Cu及び鉄
族金属は、焼結体中MCx,MNx,M(C.N)x
の余剰の第4a族遷移金属のMと反応し低融点の
液相が生じ、CBNとMC,MN,M(C.N)等の
結合材との界面に均一に浸入する。この界面に浸
入したM−Cu及びM−鉄族金属はCBNや結合相
であるMC,MN,M(C.N)との親和性が良好な
ためCBN−CBNあるいはCBN−MC,MN,M
(C.N)の接合強度を高めるためと考えられる。 また、Cu及び鉄族金属を含有している焼結体
はCBN粒子し結合材であるMC,MN,M(C.N)
界面にMB2などのボライドが多量に形成される。
通常MB2等のボライドは脆く、多量に存在する
と破壊の起因になる。一方Cu及び鉄族金属を含
有した焼結体においては、MB2等の形成が抑制
されており、このため、Cu及び鉄族金属を含有
した焼結体は、CBN粒子や結合相が強固に結合
したものと考えられる。 また本発明焼結体は、前述した如く焼結時に低
融点の液相が出現するため低温焼結が可能であ
る。 本発明焼結体においては、これらのCu及び鉄
族金属は純金属として存在するものでなく、
MC,MN,M(C.N)等の結合相中に固溶した
り、あるいはMCx,MNx,M(C.N)xの余剰
のMやAlと反応し金属間化合物の形で存在する
ため高温での強度低下は生じない。しかしCu及
び鉄族金属の含有量が結合材中の重量で20%を越
えると、Cu及び鉄族金属がMC,MN,M(C,
N)の結合相中にに固溶したり余剰のMやAlと
反応して金属間化合物を形成したりしきれず、純
金属の状態で焼結体中に存在するため、焼結体の
硬度は低下し工具性能は悪くなる。また、Cuと
鉄族金属の比率は、1/2〜5が好ましい。この
比率が1/2未満であると、Cuの含有率が少な
すぎ、ボライドの発生を抑制することができず、
一方、この比率が5を越えると、Cuの含有率が
多くなるため、焼結体の硬度が低下するからであ
る。 AlあるいはCu及び鉄族金属を加工する方法は
種々考えられる。焼結前のCBNとの混合粉末中
にAlあるいはCu及び鉄族金属を添加する方法は
最も簡単であるが、これらの金属の1μ以下の微
粉末は得難く、粗い粒子では焼結体の組織が不均
一になり易い。最も好ましい方法はAlの場合結
合材のMCx,MNx,M(C.N)xの過剰なMと
予め金属Alを反応せしめておき、M−Alの金属
間化合物を形成させて、これを粉砕使用する方法
である。この場合は結合材MCx,MNx,M(C.
N)xとAlの金属間化合物からなる極めて微細
な1μ以下の結合材粉末が容易に得られる。この
他、予め金属Mと金属Alを反応せしめて合成し
たM−Al金属間化合物(例えばTiAl3,TiAl,
Ti2Al,ZrAl3,ZrAl等)の粉砕し易い粉末を用
いても良い。また別の形のAl化合物であるAlN,
Ti3AlN,Zr2AlN等の窒素を含む化合物の形で加
えても良い。 またCu及び鉄族金属の場合、最も好ましい方
法は、焼結時に、焼結体外部から拡散により浸入
させたりあるいは、上記Alを添加する場合と同
様に結合材と反応させて添加することである。 本発明で用いるCBN結晶の粒度は、焼結体の
工具としての性能から見て10μ以下とする必要が
ある。結晶粒子が粗いと焼結体の強度が低下し、
また特に切削工具として使用する場合は結晶粒子
の細かいものが良い加工面が得られる。 本発明のもう一つの特徴である結合相の粒度
は、1μ以下の極めて微細な結晶粒子からなる。
このことにより焼結体はCBNの含有量が多いが、
結合相が均一にCBN粒子間に分散した組織とな
り高強度の焼結体が得られる。 焼結体の製造に当つては、ダイヤモンド合成に
用いられる超高圧高温装置を使用して圧力20kb
以上、温度900℃以上で行なう。特に好ましい焼
結圧力、温度条件は圧力30kb〜70kb、温度1100
℃〜1500℃である。この圧力、温度条件の上限
は、いずれも工業的規模の超高圧、高温装置の実
用的な運転条件の範囲内である。更に圧力、温度
条件は、第1図に示した高圧相型窒化硼素の安定
域内で行なう必要がある。このような優れた焼結
体を切削工具として使用する場合、高硬度焼結体
は切れ刃となる部分にのみあれば良く、この高硬
度焼結体を強度、靭性、熱伝導に優れた超硬合金
に接合して使用すればその性能を十分発揮するこ
とができる。しかし超硬合金に直接接合すれば接
合強度が弱く断続切削の場合など使用できない。
十分な接合強度を得るには、CBNを容積で30%
を超え70%未満含有し、残部の結合材がTi,Zr,
Hfの炭化物、窒化物あるいは炭窒化物の1種も
しくはこれらの混合物や相互固溶体化合物に、
AlまたはSiを0.1〜30重量%含有する中間層を用
いて接合する。 この中間接合層中に、CBNを容積で70%以上
含有させると、超硬合金との接合強度が弱くな
り、また30%以下では、耐熱衝撃性が低下する。
その理由は、超硬合金、中間接合層及び工具用焼
結体の熱膨張係数の差が大きくなるためと思われ
る。 また、Al,Siは中間接合層自体の焼結性を高
めるのに効果があるが、0.1重量%未満ではその
効果が得られず、30重量%を超えてもさほど焼結
性は向上しない。 以下実施例により更に具体的に説明する。 〔実施例 1〕 平均粒度3μのCBN粒子を体積%で90%と結合
材粉末からなる混合粉末を作成した。結合材粉末
はTiN0.83粉末とAl粉末を重量%で各々80%、20
%の割合に混合したものを真空炉中で1000℃、30
分間加熱后粉砕して平均粒度0.3μの微粉末とした
ものである。この結合材粉末をX線回折によつて
調べたところTiN以外にTi2AlN,TiAl3,TiAl
等のTiNとAlの反応によつて生じた化合物が検
出され、金属Alは検出されなかつた。これは
TiN0.83のNに対して相対的に過剰なTiが加えた
Alと反応して生じたものである。 このCBNと結合材の混合粉末を、外径14mm、
内径10mmのMo製の容器にCBNを容積で60%含有
し残部がTiN95重量%Alを5重量%含む混合粉
末を塗布したWC−6%Co組成の超硬合金(外径
10mm、高さ22mm)を置いた後、0.30g充填した。
この上に厚さ2μの9Cu−1Ni合金を蒸着した超硬
合金(外径10mm、高さ2mm)を置き、Mo製の栓
をしてこの容器全体をダイヤモンド合成に用いる
超高圧装置に入れた。圧力50kbに加圧し、次い
で温度1250℃まで加熱し、20分間保持した。取り
出した焼結体をダイヤモンド砥石を用いてCu−
Niを蒸着した超硬合金を高硬度焼結体が現われ
るまで研削加工し更にダイヤモンドペーストを用
いて研摩した。光学顕微鏡で観察したところ気孔
もなく緻密な焼結体であつた。この焼結体の
CBNの平均粒度は3.5μであり、結合相中の結合
粒子径は、大部分1μ以下であつた。この焼結体
はCBN含有の接合層を介して超硬合金に強固に
接合していた。ビツカース硬度計を用いて荷重5
Kgで硬度を測定した結果約4800の値を示した。ま
たX線マイクロアナライザを用いて焼結体中の含
有元素を調べたところ、Cu,Niが均一に含まれ
ており、その量はCu,Ni合計で結合材中の重量
の約3%であつた。さらにこの焼結体の生成物を
X線回折により調査した結果CBN,TiN,AlN
等があつたがTiB2等のボライドはごくわずかし
か検出されなかつた。なおCu及び鉄族金属を含
有しない焼結体を同様にして製造し、生成物をX
線回折により調べたが、この生成物はCBN,
TiN,AlNの他に多量のTiB2が存在していた。
これら2種類の焼結体を用いて、切削り加工用の
チツプを作成した。 被削材としては、ビツカース硬度約1200のWC
−15%Coの超硬合金製の塑性加工用のパンチを
選び、切削速度18m/分、切込み0.2mm、送り0.1
mm/回転で20分間切削した。比較の為市販の体積
%で約90%のCBNを含有しCoを主成分とする金
属で結合した焼結体で作成したチツプの摩耗を観
察したところ、本発明の焼結体の逃げ面最大摩耗
巾が0.10mmであつたのに対し、Cu及び鉄族金属の
含有しない焼結体のそれは0.15mm、市販のCBN
を主体とする金属で結合した焼結体は0.25mmであ
つた。 〔実施例 2〕 第1表に示した結合材粉末を作成した。
Cubic boron nitride (Cubic BN, hereinafter abbreviated as CBN) is a material with the second highest hardness after diamond, and is synthesized under ultra-high pressure and high temperature. Currently, it is already used as abrasive grain for grinding, and for cutting purposes,
Sintered bodies made by bonding CBN with metal Co, etc. are used in some parts. When this sintered body of CBN bonded with metal is used as a cutting tool, the bonding metal phase softens at high temperatures, resulting in a decrease in wear resistance, and the workpiece metal tends to weld, causing damage to the tool. There are drawbacks. The present invention relates to a new CBN sintered body suitable for tool applications such as cutting tools, which has a binder phase of a hard metal compound with high strength and excellent heat resistance, rather than a sintered body bonded with such metals. be. As mentioned above, CBN has high hardness, heat resistance,
It is a material with excellent wear resistance. Various attempts have been made to sinter only CBN; for example, as described in Japanese Patent Publication No. 39-8948,
It is over 70kb and needs to be sintered under ultra-high pressure and high temperatures of over 1900℃. Current ultra-high pressure and high temperature equipment can generate such high pressure and high temperature conditions, but if the equipment is scaled up on an industrial scale, it is not practical because the number of lifetimes of the high pressure and high temperature generating section is limited. Furthermore, although a sintered body made only of CBN has high hardness, it has poor toughness when used as a tool. The inventors used CBN as a binder from periodic table 4a.
By using compounds that mainly contain transition metal carbides, nitrides, carbonitrides, and Al, and containing Cu and iron group metal elements, and by finding more appropriate manufacturing conditions, We were able to obtain a highly hard sintered body with a CBN content of over 80% by volume, which has unprecedented wear resistance and toughness. A similar study was also conducted on wurtzite boron nitride, which is another form of high-pressure phase boron nitride, and results similar to those obtained using CBN were obtained. Details will be given below regarding a sintered body using CBN as a hard wear-resistant component, but the same can be said when using a wurtzite type or a mixture of CBN and wurtzite type boron nitride. An object of the present invention is to obtain a highly hard sintered body for tools with a high CBN content.
This makes it possible to take full advantage of the characteristics of CBN and apply it to, for example, tool materials for cutting high-hardness materials such as WC-based cemented carbide, as well as wire drawing dies. As mentioned above, a sintered body made only of CBN has drawbacks such as difficulty in manufacturing and insufficient strength of the sintered body itself. Therefore, it is possible to improve these defects by adding an appropriate binder to CBN. One of the known methods is a method using a metal bonding material, an example of which is a commercially available sintered body of CBN bonded with metal Co or the like. Also, attempts have been made to mix CBN with compounds other than metals, such as Al 2 O 3 and B 4 C, and sinter the mixture. The former method is a liquid-phase sintering under high pressure, in which sintering is carried out at a temperature that melts a metal binder such as Co. In the latter case, the binder is not dissolved but sintered in a solid state.
The inventors previously discovered that using carbides, nitrides, borides, and silicides of metals of Groups 4a, 5a, and 6a of the periodic table as binders, these binder compounds formed a continuous binder phase in the structure of the sintered body. Invented a sintered body for high-hardness tools containing 40 to 80% by volume of CBN, and filed a patent application (Japanese Patent Application Laid-Open No. 77811/1983). In this case as well, sintering is performed in a solid state, but because the binder content is relatively high, the pressure and temperature conditions required to obtain a dense sintered body are higher than when sintering only CBN. eased. The inventors further investigated products with a higher content of CBN. If the CBN content exceeds 80% by volume, CBN and
Even if compound powders of group 4a, 5a, and 6a metals were sufficiently uniformly mixed and sintered under ultra-high pressure and high temperature, a high-strength sintered body could not be obtained. When we examined the fracture surface of this sintered body, we found that there were many fractures between CBN particles and between CBN and binder compound particles, which suggests that the bond strength between CBN particles or between CBN and binder crystal particles is low. It will be done. When the content of CBN is high, the sinterability decreases as described above, and a high-strength sintered body cannot be obtained. In order to improve this, we conducted more extensive experiments and found that when M represents carbides, nitrides, and carbonitrides of group 4a of the periodic table, especially transition metals of group 4a, as binders, MCx ,MNx,M(CN)
If a mixed powder containing Al, Cu, and iron group metals is used as a powder where the value of I found out what I can get. Carbides, nitrides, and carbonitrides in Group 4a of the periodic table are represented by the phase diagram of TiN in Figure 1.
Phases with NaCl type structure are M-C, M-N, M-
CN exists in a wide range of compositions. When the value of x was 1 or less, that is, by using CN with a relatively high atomic vacancy concentration, sinterability was improved. In addition, MCx, MNx, M
It was confirmed that the sinterability was improved when an Al compound was added to (CN)x compared to when only (CN)x was used. In addition, trace amounts of Cu, Fe, Ni, and Co
It was found that the sinterability was further improved when iron group metal elements were contained, and the strength of the sintered body was also improved. MCx used as binder raw material,
The preferred range of the value of x for MNx, M(CN)x is
It is 0.95 or less. Further, when Al is present in the binder in an amount of 5% or more as an Al element, and Cu and iron group metals are present in the binder in a total amount of 1% or more of these metal elements, a high-strength sintered body can be obtained. The CBN content in the sintered body is 85% by volume, and MCx, MNx, M(CN)x
As a result of prototyping sintered compacts with various values of is when the value of x is 0.50 to 0.95
The amount of Al added was in the range of 5 to 30% by weight in the binder, and the total amount of Cu and iron group metals added was in the range of 1 to 20% by weight in the binder. In the sintered body of the present invention, high-pressure phase boron nitride is present in a volume percentage of more than 80% and less than 95% in the sintered body. Within this composition range, in a sufficiently dense sintered body, the higher the CBN content, the higher the hardness of the sintered body. If it exceeds 95%, a decrease in the toughness required for a sintered tool will be observed. Furthermore, if the content is less than 80%, the binder phase of the sintered body forms a continuous phase in the structure, resulting in a decrease in hardness. Let us consider why the sinterability of high-pressure phase boron nitride is improved when the binder according to the present invention is used. For example, taking TiNx as an example, the hardness of a sintered body of only TiNx at room temperature is when the value of x is approximately 0.7.
Maximum. However, at high temperatures, the lower the value of x, the greater the degree of decrease in hardness. When CBN and TiNx are mixed and sintered under ultra-high pressure and high temperature, CBN crystals are difficult to deform, but TiNx particles can easily deform. For the reasons mentioned above, in this case, TiNx with a higher concentration of nitrogen atoms and a lower value of x is more likely to deform.
The same can be said of other MCx, MNx, and M(CN)x, which tend to penetrate between CBN crystal grains and become densified. However, this alone does not provide sufficient bonding strength between CBN particles. For example, in liquid phase sintering of WC-Co cemented carbide, if hard particles are dissolved into the binder phase and re-deposited, a product with high bonding strength between the binder phase and the hard particles, or between the hard particles can be obtained. . In the sintered body of the present invention, it has been found that a phenomenon similar to this occurs when an Al compound is present in the binder. as a binding material
When an Al compound is added to MCx, MNx, and M(CN)x, the sinterability improves as the amount increases, and a sintered body with high hardness can be obtained even when sintered at a low temperature. When the sintered body is polished with a diamond grindstone and then lap-finished and observed, almost no CBN particles are observed to fall off when the amount of Al added is 5% or more by weight of the binder. However, when observing the fracture surface of the sintered body, it was found that most of the CBN particles had undergone intragranular fracture, but some areas had intergranular fracture. this
A sintered body was prepared by adding Cu and a small amount of iron group metal to the composition of a CBN sintered body, and when the fracture surface was observed, no grain boundary fracture was observed. The reason for this is presumed as follows. Cu and iron group metals are MCx, MNx, M(CN)x in the sintered body.
reacts with excess M of the Group 4a transition metal to form a low melting point liquid phase, which uniformly infiltrates the interface between CBN and binders such as MC, MN, and M (CN). M-Cu and M-iron group metals that have penetrated into this interface have good affinity with CBN and the binder phase MC, MN, M (CN), so CBN-CBN or CBN-MC, MN, M
This is thought to be to increase the bonding strength of (CN). In addition, the sintered body containing Cu and iron group metals is made of CBN particles and binders such as MC, MN, and M (CN).
A large amount of boride such as MB 2 is formed at the interface.
Borides such as MB 2 are usually brittle and can cause destruction if present in large quantities. On the other hand, in a sintered body containing Cu and iron group metals, the formation of MB 2 , etc. is suppressed, and therefore, in a sintered body containing Cu and iron group metals, CBN particles and the binder phase are firmly formed. It is thought that they were combined. Further, the sintered body of the present invention can be sintered at a low temperature because a liquid phase with a low melting point appears during sintering, as described above. In the sintered body of the present invention, these Cu and iron group metals do not exist as pure metals,
Because it exists as a solid solution in the binder phase of MC, MN, M(CN), etc., or reacts with excess M or Al of MCx, MNx, M(CN)x, and exists in the form of an intermetallic compound, No strength reduction occurs. However, when the content of Cu and iron group metals exceeds 20% by weight in the binder, Cu and iron group metals become MC, MN, M (C,
The hardness of the sintered body decreases because it exists in the sintered body in a pure metal state without forming a solid solution in the binder phase of N) or reacting with excess M and Al to form an intermetallic compound. decreases and tool performance deteriorates. Further, the ratio of Cu to iron group metal is preferably 1/2 to 5. If this ratio is less than 1/2, the Cu content is too low and the generation of boride cannot be suppressed.
On the other hand, if this ratio exceeds 5, the content of Cu increases and the hardness of the sintered body decreases. Various methods can be considered for processing Al or Cu and iron group metals. The simplest method is to add Al or Cu and iron group metals to the mixed powder with CBN before sintering, but it is difficult to obtain fine powders of these metals of 1μ or less, and coarse particles may affect the structure of the sintered body. tends to become uneven. In the case of Al, the most preferable method is to react metal Al in advance with the excess M of the binder MCx, MNx, M(CN)x to form an M-Al intermetallic compound, and use this by pulverization. It's a method. In this case, the binding materials MCx, MNx, M (C.
N) Extremely fine binder powder of 1μ or less consisting of an intermetallic compound of x and Al can be easily obtained. In addition, M-Al intermetallic compounds synthesized by reacting metal M and metal Al in advance (e.g. TiAl 3 , TiAl,
Easily pulverized powders such as Ti 2 Al, ZrAl 3 , ZrAl, etc.) may also be used. AlN, another form of Al compound,
It may also be added in the form of a nitrogen-containing compound such as Ti 3 AlN or Zr 2 AlN. In addition, in the case of Cu and iron group metals, the most preferable method is to add them by diffusion from the outside of the sintered body during sintering, or by reacting with the binder as in the case of adding Al above. . The grain size of the CBN crystal used in the present invention needs to be 10 μm or less in view of the performance of the sintered body as a tool. If the crystal grains are coarse, the strength of the sintered body will decrease,
Moreover, especially when used as a cutting tool, a material with fine crystal grains provides a good machined surface. The particle size of the binder phase, which is another feature of the present invention, consists of extremely fine crystal grains of 1 μm or less.
As a result, the sintered body has a high CBN content, but
The binder phase is uniformly dispersed between the CBN particles, resulting in a high-strength sintered body. In producing the sintered body, we use an ultra-high pressure and high temperature equipment used for diamond synthesis to produce a sintered body under a pressure of 20 kb.
The above steps are carried out at a temperature of 900°C or higher. Particularly preferred sintering pressure and temperature conditions are pressure 30kb to 70kb and temperature 1100.
℃~1500℃. The upper limits of these pressure and temperature conditions are both within the range of practical operating conditions for ultra-high pressure and high temperature equipment on an industrial scale. Furthermore, the pressure and temperature conditions must be within the stable range of high-pressure phase type boron nitride shown in FIG. When using such an excellent sintered body as a cutting tool, the high hardness sintered body only needs to be used in the part that will become the cutting edge. Its performance can be fully demonstrated by bonding it to hard metal. However, if it is directly bonded to cemented carbide, the bonding strength is weak and it cannot be used for interrupted cutting.
To obtain sufficient joint strength, CBN is added by 30% by volume.
Contains more than 70% and the remainder is Ti, Zr,
Hf carbide, nitride or carbonitride or a mixture thereof or a mutual solid solution compound,
Bonding is performed using an intermediate layer containing 0.1 to 30% by weight of Al or Si. If this intermediate bonding layer contains 70% or more of CBN by volume, the bonding strength with the cemented carbide becomes weak, and if it contains less than 30%, the thermal shock resistance decreases.
The reason for this is thought to be that the difference in thermal expansion coefficients between the cemented carbide, the intermediate bonding layer, and the sintered body for tools becomes large. Further, Al and Si are effective in improving the sinterability of the intermediate bonding layer itself, but if it is less than 0.1% by weight, this effect cannot be obtained, and if it exceeds 30% by weight, the sinterability does not improve much. This will be explained in more detail below with reference to Examples. [Example 1] A mixed powder consisting of 90% by volume CBN particles with an average particle size of 3 μm and binder powder was prepared. The binder powder consists of TiN 0.83 powder and Al powder at 80% and 20% by weight, respectively.
% of the mixture was heated in a vacuum furnace at 1000°C, 30°C.
It was heated for a minute and then ground to a fine powder with an average particle size of 0.3μ. When this binder powder was examined by X-ray diffraction, it was found that in addition to TiN, Ti 2 AlN, TiAl 3 , TiAl
Compounds produced by the reaction of TiN and Al were detected, but metallic Al was not detected. this is
TiN Relative excess Ti added to N of 0.83
It is produced by reaction with Al. This mixed powder of CBN and binder was mixed with an outer diameter of 14 mm.
A cemented carbide with a WC-6%Co composition (outer diameter
10mm, height 22mm) and then filled with 0.30g.
A cemented carbide (outer diameter 10 mm, height 2 mm) on which 9Cu-1Ni alloy was vapor-deposited with a thickness of 2 μ was placed on top of this, a Mo stopper was placed, and the entire container was placed in an ultra-high pressure device used for diamond synthesis. . It was pressurized to a pressure of 50 kb, then heated to a temperature of 1250°C and held for 20 minutes. The removed sintered body was polished using a diamond grindstone.
The cemented carbide coated with Ni was ground until a high-hardness sintered body appeared, and then polished using diamond paste. When observed under an optical microscope, it was found to be a dense sintered body with no pores. This sintered body
The average particle size of CBN was 3.5μ, and the bonded particle size in the binder phase was mostly 1μ or less. This sintered body was firmly bonded to the cemented carbide via the CBN-containing bonding layer. Load 5 using a Bitkers hardness tester
The hardness was measured in kg and showed a value of approximately 4800. In addition, when we examined the elements contained in the sintered body using an X-ray microanalyzer, we found that Cu and Ni were evenly contained, and the total amount of Cu and Ni was approximately 3% of the weight of the binder. Ta. Furthermore, the products of this sintered body were investigated by X-ray diffraction and the results showed that CBN, TiN, AlN.
However, only a small amount of borides such as TiB 2 were detected. Incidentally, a sintered body containing no Cu or iron group metals was produced in the same manner, and the product was
The product was investigated by line diffraction, and was found to be CBN,
In addition to TiN and AlN, a large amount of TiB 2 was present.
Chips for cutting were made using these two types of sintered bodies. The work material is WC with a Bitkers hardness of approximately 1200.
-Choose a plastic processing punch made of 15% Co cemented carbide, cutting speed 18 m/min, depth of cut 0.2 mm, feed 0.1
Cutting was performed for 20 minutes at mm/revolution. For comparison, when we observed the wear of a chip made from a commercially available sintered body containing about 90% CBN by volume and bonded with a metal mainly composed of Co, we found that the flank surface of the sintered body of the present invention was the largest. The wear width was 0.10 mm, while that of the sintered body containing no Cu or iron group metals was 0.15 mm, and that of the commercially available CBN.
The sintered body bonded with a metal mainly composed of was 0.25 mm. [Example 2] The binder powder shown in Table 1 was prepared.

【表】 窒素含有量の異なるTiNx粉末は金属チタンの
微粉末を純粋な窒素気流中で加熱して窒化させ、
加熱温度を変えることにより、結合窒素量をコン
トロールして作成したものである。 第1表の組成の結合材粉末を実施例1と同様に
して加熱処理を施し、粒径0.4〜0.7μに粉砕した。
この結合材粉末と平均粒度3μのCBN粉末とを混
合して第2表の組成の混合粉末を作成した。 実施例1と同様にして、Mo製容器にCBNを容
積で50%含有し、残部がTi(C.N)とHfNとAlを
重量で5:3:2含む混合粉末を塗布したWC−
6%Co組成の超硬合金を置き、その上に完粉と
8Cu−2Ni合金を種々の膜厚で蒸着した超硬合金
を置いてMo栓をし、超高圧高温装置を用いて
50kb1280℃で20分間保持した。各々の硬度測定
結果も表2に示す。またこれらの焼結体はCBN
を含有する中間接合層を介して超硬合金母材に強
固に接合していた。また、得られた焼結体中の
CBN粒子径は、約4〜8μであり、結合相中の粒
合粒子径は、大部分が1μ以下であつた。
[Table] TiNx powders with different nitrogen contents are produced by nitriding fine powder of titanium metal by heating it in a pure nitrogen stream.
It was created by controlling the amount of bound nitrogen by changing the heating temperature. The binder powder having the composition shown in Table 1 was heat treated in the same manner as in Example 1 and ground to a particle size of 0.4 to 0.7 μm.
This binder powder and CBN powder having an average particle size of 3 μm were mixed to prepare a mixed powder having the composition shown in Table 2. In the same manner as in Example 1, a Mo container was coated with a mixed powder containing 50% CBN by volume and the balance containing Ti(CN), HfN, and Al in a ratio of 5:3:2 by weight.
A cemented carbide with a composition of 6% Co is placed, and the finished powder is placed on top of it.
Cemented carbide with 8Cu−2Ni alloy deposited in various thicknesses was placed, Mo plugged, and an ultra-high pressure and high temperature device was used.
50kb1280°C for 20 minutes. Table 2 also shows the hardness measurement results. In addition, these sintered bodies are CBN
It was firmly bonded to the cemented carbide base material through an intermediate bonding layer containing . In addition, in the obtained sintered body
The CBN particle size was about 4 to 8 μm, and the particle size of most of the particles in the binder phase was 1 μm or less.

〔実施例 3〕[Example 3]

第3表の組成で、粒径が0.5〜0.8μの結合材粉
末を作成し、加熱処理を施した。これらの結合材
粉末と平均粒度3μのCBN粉末を体積でそれぞれ
13%、87%となるように配合し、混合した。次に
実施例1と同様にしてMo製の容器に上記完粉を
充填し、その上に厚さ5μのCoを蒸着した銅箔を
入れさらにWC−10%Co超硬合金を置き、Mo製
の栓をしてこの容器全体を超高圧装置に入れ焼結
した。焼結体のCuの含有量をx線マイクロアナ
ライザで調べたところ、結合材中のCuとCoの含
有量は合計重量で約7%であつた。またx線回折
により、ボライドの生成を調査したがボライドの
生成は認められなかつた。さらにこれらの焼結体
の硬度を測定した結果、いずれもビツカース硬度
4000以上であつた。 また、得られた焼結体中のCBN粒子径は、い
ずれも約3μであり、結合相中の結合粒子径は大
部分が1μ以下であつた。
A binder powder having a particle size of 0.5 to 0.8 μm was prepared with the composition shown in Table 3, and heat-treated. These binder powders and CBN powder with an average particle size of 3μ are each added by volume.
They were blended and mixed so that the proportions were 13% and 87%. Next, in the same manner as in Example 1, a container made of Mo was filled with the above-mentioned finished powder, a copper foil with a thickness of 5μ coated with Co was placed on top of it, and a WC-10% Co cemented carbide was placed. The container was sealed and the entire container was placed in an ultra-high pressure device and sintered. When the Cu content of the sintered body was examined using an x-ray microanalyzer, the total content of Cu and Co in the binder was approximately 7% by weight. Further, the formation of boride was investigated by x-ray diffraction, but no boride formation was observed. Furthermore, as a result of measuring the hardness of these sintered bodies, all of them had a Bitkers hardness.
It was over 4000. Furthermore, the CBN particle diameters in the obtained sintered bodies were all approximately 3 μm, and the bonded particle diameters in the binder phase were mostly 1 μm or less.

〔実施例 4〕[Example 4]

平均粒度2μのCBN粒子を体積%で92%と結合
材粉末から成る混合粉末を作成した。結合材粉末
はTiN0.65粉末、Al粉末、Cu粉末及びCo粉末をそ
れぞれ重量で70%、26%、3%、1%の割合に混
合したものを真空炉で1000℃、30分間加熱後、粉
砕して平均粒度0.5μの微粉末としたものである。
この完粉を実施例1と同様にして焼結した。焼結
体を取り出してx線回折により調べた結果、ボラ
イドは少し観察されたもののCu,Niの金属は全
く観察されなかつた。この焼結体を用いて切削用
のチツプを作成し、インコネル718を切削速度100
m/min、切込み0.2mm、送り0.05mm/rev切削を
湿式で行つた。比較の為、市販の体積%で約90%
のCBNをCoを主成分とする金属で結合した焼結
体で作成したチツプを用いて同一条件でテストし
た。切削後のチツプの摩耗を観察したところ本発
明の焼結体の逃げ面最大摩耗巾が0.25mmに対し、
市販のCBNを主体とする金属で結合した焼結体
は0.45mmであつた。 また、得られた焼結体中のCBN粒子径は、約
2μであり、結合相中の結合粒子径は、0.8μ以下で
あつた。 〔実施例 5〕 粒度1μ以下の衝撃波法によつて合成されたウ
ルツ鉱型窒化硼素粉末を用い、実施例4で使用し
た結合材粉末とをウルツ鉱型窒化硼素粉末85体積
%、結合材粉末15体積%の割合に混合した。Mo
製の容器に、この粉末を実施例1と同じ構成で充
填した後、超高圧、高温装置を用いて焼結した。
焼結体の硬度はピツカース硬度で4800であつた。 また、得られた焼結体中のウルツ鉱型窒化硼素
の粒子径は約1.5μであり、結合相中の結合粒子径
は0.7μ以下であつた。 〔実施例 6〕 TiN0.85を90重量%、Siを10重量%混合し、真
空炉中で1051℃、1時間加熱した後粉砕して、平
均粒度0.3μの微粉末を作製した。 この粉末50容積%と、平均粒子径2μのCBN粉
末を混合し中間接合層として用い、実施例1と同
様に塗布した。 また前記微粉末10容積%と、平均粒径2μの
CBN粉末を90容積%混合し、実施例1と同様に
して焼結体を作製した。 得られた焼結体を研削加工し、さらにダイヤモ
ンドペーストを用いて研磨し、光学顕微鏡で観察
したところ、CBN粒子径は約2.5μであり、結合
相中の粒子は大部分が0.6μ以下であつた。
A mixed powder consisting of 92% by volume CBN particles with an average particle size of 2μ and binder powder was prepared. The binder powder is a mixture of TiN 0.65 powder, Al powder, Cu powder, and Co powder in weight ratios of 70%, 26%, 3%, and 1%, respectively, and is heated in a vacuum furnace at 1000°C for 30 minutes, then pulverized. It was made into a fine powder with an average particle size of 0.5μ.
This finished powder was sintered in the same manner as in Example 1. When the sintered body was taken out and examined by x-ray diffraction, a small amount of boride was observed, but no metals such as Cu and Ni were observed. A cutting chip was created using this sintered body, and Inconel 718 was cut at a cutting speed of 100.
Wet cutting was performed at m/min, depth of cut of 0.2 mm, and feed rate of 0.05 mm/rev. For comparison, commercially available volume% is approximately 90%.
A chip made of a sintered body of CBN bonded with a metal mainly composed of Co was tested under the same conditions. When we observed the wear of the chip after cutting, we found that the maximum wear width of the flank face of the sintered body of the present invention was 0.25 mm;
The commercially available sintered body bonded with a metal mainly composed of CBN was 0.45 mm. In addition, the CBN particle size in the obtained sintered body was approximately
2μ, and the bonded particle diameter in the binder phase was 0.8μ or less. [Example 5] Wurtzite-type boron nitride powder synthesized by the shock wave method with a particle size of 1 μ or less was used, and the binder powder used in Example 4 was mixed with 85% by volume of wurtzite-type boron nitride powder and binder powder. It was mixed in a proportion of 15% by volume. Mo
This powder was filled in a container made of aluminum with the same configuration as in Example 1, and then sintered using an ultra-high pressure and high temperature device.
The hardness of the sintered body was 4800 on the Pickers scale. Further, the particle size of the wurtzite boron nitride in the obtained sintered body was about 1.5 μm, and the bonded particle size in the binder phase was 0.7 μm or less. [Example 6] 90% by weight of TiN 0.85 and 10% by weight of Si were mixed, heated in a vacuum furnace at 1051°C for 1 hour, and then ground to produce a fine powder with an average particle size of 0.3μ. 50% by volume of this powder and CBN powder having an average particle size of 2 μm were mixed and used as an intermediate bonding layer, and coated in the same manner as in Example 1. In addition, 10% by volume of the fine powder and an average particle size of 2μ
A sintered body was produced in the same manner as in Example 1 by mixing 90% by volume of CBN powder. When the obtained sintered body was ground and further polished using diamond paste and observed under an optical microscope, the CBN particle size was approximately 2.5μ, and most of the particles in the binder phase were 0.6μ or less. It was hot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明焼結体の製法の特徴を説明する
為のもので、Ti−N系の状態図である。第2図
は本発明焼結体の製造条件を説明する為のもりで
高圧相型窒化硼素の圧力−温度相図上における熱
力学的な安定領域を示したものである。
FIG. 1 is a phase diagram of the Ti--N system, for explaining the characteristics of the method for manufacturing the sintered body of the present invention. FIG. 2 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the thermodynamically stable region on the pressure-temperature phase diagram of high-pressure phase type boron nitride.

Claims (1)

【特許請求の範囲】 1 平均粒度が10μ以下の高圧相型窒化硼素を体
積で80%を越え95%以下含有し、残部が周期律表
第4a族のTi,Zr,Hfの炭化物、窒化物、炭窒化
物の1種もしくは混合物或は相互固溶体化合物及
びAlとCuと鉄族金属とからなる結合相から成り、
結合相中のAlの含有量が重量で5〜30%、Cu及
び鉄族金属元素を重量で1〜20%含有し、Cuの
鉄族金属元素に対する比率が1/2〜5で、かつ
結合粒子の大部分が1μ以下の微細粒子より成る
焼結体を、高圧相型窒化硼素の含有率が30容積%
を超え70容積%未満で残部の結合相が周期律表第
4a族のTi,Zr,Hfの炭化物、窒化物、炭窒化物
の1種もしくはこれらの混合物または相互固溶体
化合物とこの結合相中にAlまたはSiを0.1重量%
以上30重量%以下含有する中間接合層を介して、
超硬合金母材に接合した工具用高硬度焼結体。 2 前記焼結体の結合相がTiN,ZrN及びAlの
化合物より成り、結合相中のAlの含有量が5〜
30%であつて、且つ結合相の結合粒子の大部分が
1μ以下の微細粒子より成り、さらに該結合相中
にCu及び鉄族金属元素を重量で1〜20%含有し、
Cuの鉄族金属元素に対する比率が1/2〜5で
あることを特徴とする特許請求の範囲第1項記載
の工具用高硬度焼結体。 3 前記高圧相型窒化硼素が立方晶型窒化硼素で
あることを特徴とする特許請求の範囲第1項記載
の工具用高硬度焼結体。 4 高圧相型窒化硼素の含有率が30容積%を超え
70容積%未満で残部の結合材が周期律表第4a族
のTi,Zr,Hfの炭化物、窒化物、炭窒化物の1
種もしくはこれらの混合物または相互固溶体化合
物と、この結合材にAlまたはSiを0.1重量%以上
30重量%以下含有する中間接合層としての粉末を
型押成型して、もしくは粉末状で超硬合金母材上
に載置するか、または該超硬合金母材上に予め塗
布しておき、さらにその粉末の上に、平均粒度が
10μ以下の高圧相型窒化硼素粉末と周期律表第4a
族の遷移金属の炭化物、窒化物、炭窒化物をそれ
ぞれMCx,MNx,M(CN)xで表わしたとき、
xの値が0.5〜0.95の化合物粉末とAl又はAl含む
合金又は化合物粉末を結合材中のAlの重量で5
〜30%混合し、大部分の結合材粒子が1μ以下に
なるよう粉砕し、これを粉末状もしくは型押成型
して載置したのち、超高圧高温装置を用いて圧力
20kb以上、温度900℃以上にして焼結体外部より
Cu及び鉄族金属あるいはこれらを含む合金また
は化合物を結合材中のCuおよび鉄族金属の重量
で1〜20%で、Cuの鉄族金属元素に対する比率
が1/2〜5になるように硬質層内に浸入させて
焼結するとともに該硬質層と中間接合層と母材と
の接合を行わせることを特徴とする高圧相型窒化
硼素の含有量が焼結体中の体積で80%を越え95%
以下である工具用高硬度焼結体の製造方法。 5 周期律表第4a族の窒化物がTiNx,ZrNxで
あることを特徴とする特許請求の範囲第4項記載
の工具用高硬度焼結体の製造方法。 6 高圧相型窒化硼素粉末として立方晶型窒化硼
素を用いることを特徴とする特許請求の範囲第4
項記載の工具用高硬度焼結体の製造方法。 7 高圧相型窒化硼素の含有率が30容積%を超え
70容積%未満で残部の結合材が周期律表第4a族
のTi,Zr,Hfの炭化物、窒化物、炭窒化物の1
種もしくはこれらの混合物または相互固溶体化合
物と、この結合材にAlまたはSiを0.1重量%以上
30重量%以下含有する中間接合層としての粉末を
型押成型して、もしくは粉末状で超硬合金母材上
に載置するか、または該超硬合金母材上に予め塗
布しておき、さらにその粉末上に、平均粒度が
10μ以下の高圧相型窒化硼素粉末と周期率表第4a
族の遷移金属の炭化物、窒化物、炭窒化物をそれ
ぞれMCx,MNx,M(CN)xで表わしたとき、
xの値が0.5以上0.95以下の化合物粉末とAl又は
Alを含む合金を結合材内中のAlの重量で5〜30
%とCu及び鉄族金属又はこれらを含む合金、又
は化合物粉末を結合材中のCu及び鉄族金属の重
量で1〜20%、Cuの鉄族金属に対する比率が
1/2〜5に混合し、大部分の結合材粒子が1μ
以下になるように粉砕し、これを粉末状もしくは
型押成型して載置したのち、超高圧装置を用いて
圧力20kb以上、温度900℃以上で硬質層を焼結す
るとともに該超硬質層と中間接合層と母材との接
合を行わせることを特徴とする高圧相型窒化硼素
の含有量が焼結体中の体積で80%を越え95%以下
である工具用高硬度焼結体の製造方法。 8 上記周期律表第4a族の窒化物がTiNx,
ZrNxであることを特徴とする特許請求の範囲第
7項記載の工具用高硬度焼結体の製造方法。 9 高圧相型窒化硼素粉末として立方晶型窒化硼
素粉末を用いることを特徴とする特許請求の範囲
第7項記載の工具用高硬度焼結体の製造方法。
[Scope of Claims] 1 Containing more than 80% and less than 95% by volume of high-pressure phase boron nitride with an average particle size of 10μ or less, with the remainder being carbides and nitrides of Ti, Zr, and Hf in Group 4a of the Periodic Table. , one type or mixture of carbonitrides or a mutual solid solution compound, and a binder phase consisting of Al, Cu, and an iron group metal,
The content of Al in the binder phase is 5 to 30% by weight, the content of Cu and iron group metal elements is 1 to 20% by weight, the ratio of Cu to iron group metal elements is 1/2 to 5, and the bonding phase is The sintered body consists of fine particles, most of which are 1μ or less, with a high-pressure phase boron nitride content of 30% by volume.
If the remaining bonded phase exceeds 70% by volume, the remaining bonded phase is
4a group Ti, Zr, Hf carbide, nitride, carbonitride or a mixture thereof or a mutual solid solution compound and 0.1% by weight of Al or Si in this binder phase
Through an intermediate bonding layer containing not less than 30% by weight,
A high-hardness sintered body for tools bonded to a cemented carbide base material. 2. The binder phase of the sintered body is made of a compound of TiN, ZrN and Al, and the content of Al in the binder phase is 5 to 5.
30%, and most of the binder particles in the binder phase are
Consisting of fine particles of 1μ or less, further containing 1 to 20% by weight of Cu and iron group metal elements in the binder phase,
The high hardness sintered body for tools according to claim 1, wherein the ratio of Cu to iron group metal elements is 1/2 to 5. 3. The high-hardness sintered body for a tool according to claim 1, wherein the high-pressure phase type boron nitride is cubic boron nitride. 4 The content of high-pressure phase boron nitride exceeds 30% by volume.
Less than 70% by volume, the remaining binder is one of carbides, nitrides, and carbonitrides of Ti, Zr, and Hf from Group 4a of the periodic table.
species or a mixture thereof or a mutual solid solution compound, and 0.1% by weight or more of Al or Si in this binder.
A powder as an intermediate bonding layer containing 30% by weight or less is pressed and molded, or placed in powder form on a cemented carbide base material, or coated on the cemented carbide base material in advance, Furthermore, on top of that powder, the average particle size
High-pressure phase type boron nitride powder of 10μ or less and periodic table 4a
When carbides, nitrides, and carbonitrides of group transition metals are respectively expressed as MCx, MNx, and M(CN)x,
A compound powder with an x value of 0.5 to 0.95 and Al or an alloy or compound powder containing Al are combined by weight of Al in the binder to 5
~30% mixed, pulverized so that most of the binder particles are less than 1μ, then placed in powder form or molded by molding, and then compressed using an ultra-high pressure and high temperature device.
20kb or more, from the outside of the sintered body at a temperature of 900℃ or more.
Cu and iron group metals or alloys or compounds containing them are hardened so that the weight of Cu and iron group metals in the binder is 1 to 20%, and the ratio of Cu to iron group metal elements is 1/2 to 5. The content of high-pressure phase type boron nitride is 80% by volume in the sintered body, which is characterized by being infiltrated into the layer and sintered, as well as bonding the hard layer, intermediate bonding layer, and base material. Over 95%
A method for manufacturing a high-hardness sintered body for tools as follows. 5. The method for producing a high-hardness sintered body for tools according to claim 4, wherein the nitride of Group 4a of the periodic table is TiNx or ZrNx. 6 Claim 4, characterized in that cubic boron nitride is used as the high-pressure phase boron nitride powder.
A method for manufacturing a high-hardness sintered body for tools as described in . 7 The content of high-pressure phase boron nitride exceeds 30% by volume.
Less than 70% by volume, the remaining binder is one of carbides, nitrides, and carbonitrides of Ti, Zr, and Hf from Group 4a of the periodic table.
species or a mixture thereof or a mutual solid solution compound, and 0.1% by weight or more of Al or Si in this binder.
A powder as an intermediate bonding layer containing 30% by weight or less is pressed and molded, or placed in powder form on a cemented carbide base material, or coated on the cemented carbide base material in advance, Furthermore, on the powder, the average particle size is
High-pressure phase type boron nitride powder of 10 μ or less and periodic table No. 4a
When carbides, nitrides, and carbonitrides of group transition metals are respectively expressed as MCx, MNx, and M(CN)x,
Compound powder with an x value of 0.5 or more and 0.95 or less and Al or
The weight of Al in the binder is 5 to 30 when alloys containing Al are used.
% and Cu and iron group metals, or alloys containing them, or compound powders are mixed in such a way that the weight of Cu and iron group metals in the binder is 1 to 20%, and the ratio of Cu to iron group metals is 1/2 to 5. , most of the binder particles are 1μ
After pulverizing the powder to the following size and placing it in a powder form or molding, the hard layer is sintered using an ultra-high pressure device at a pressure of 20 kb or more and a temperature of 900°C or more. A high-hardness sintered body for tools, characterized in that the content of high-pressure phase boron nitride is more than 80% and less than 95% by volume in the sintered body, which is characterized by bonding an intermediate bonding layer and a base material. Production method. 8 The above nitride of Group 4a of the periodic table is TiNx,
8. The method for producing a high-hardness sintered body for a tool according to claim 7, wherein ZrNx is used. 9. The method for manufacturing a high-hardness sintered body for tools according to claim 7, characterized in that cubic boron nitride powder is used as the high-pressure phase boron nitride powder.
JP17068086A 1986-07-18 1986-07-18 High-hardness sintered body for tool and its production Granted JPS62260005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17068086A JPS62260005A (en) 1986-07-18 1986-07-18 High-hardness sintered body for tool and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17068086A JPS62260005A (en) 1986-07-18 1986-07-18 High-hardness sintered body for tool and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17151279A Division JPS5696051A (en) 1979-03-29 1979-12-29 High hardness sintered body for tool and its manufacture

Publications (2)

Publication Number Publication Date
JPS62260005A JPS62260005A (en) 1987-11-12
JPH0138841B2 true JPH0138841B2 (en) 1989-08-16

Family

ID=15909400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17068086A Granted JPS62260005A (en) 1986-07-18 1986-07-18 High-hardness sintered body for tool and its production

Country Status (1)

Country Link
JP (1) JPS62260005A (en)

Also Published As

Publication number Publication date
JPS62260005A (en) 1987-11-12

Similar Documents

Publication Publication Date Title
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
US4647546A (en) Polycrystalline cubic boron nitride compact
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
US4343651A (en) Sintered compact for use in a tool
EP1309732B1 (en) Method of producing an abrasive product containing diamond
JPH0621314B2 (en) Sintered body for high hardness tool and manufacturing method thereof
US5569862A (en) High-pressure phase boron nitride sintered body for cutting tools and method of producing the same
JPS6132275B2 (en)
JPH0215515B2 (en)
JPS6246510B2 (en)
JPH0138841B2 (en)
JPS6137221B2 (en)
JPS6247940B2 (en)
JPS6241306B2 (en)
JPS6251911B2 (en)
JPS627259B2 (en)
JPS62984B2 (en)
JPS62983B2 (en)
JPS6335591B2 (en)
JPS5855111B2 (en) High hardness sintered body for tools and its manufacturing method
JPS6141873B2 (en)
KR860002131B1 (en) Sintered compact for use in a tool
JPH0357171B2 (en)
JPS6242989B2 (en)
JPS62228403A (en) High hardness sintered body for tool and its production