JPS62260005A - High-hardness sintered body for tool and its production - Google Patents
High-hardness sintered body for tool and its productionInfo
- Publication number
- JPS62260005A JPS62260005A JP17068086A JP17068086A JPS62260005A JP S62260005 A JPS62260005 A JP S62260005A JP 17068086 A JP17068086 A JP 17068086A JP 17068086 A JP17068086 A JP 17068086A JP S62260005 A JPS62260005 A JP S62260005A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sintered body
- binder
- boron nitride
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000843 powder Substances 0.000 claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 claims abstract description 51
- 239000002184 metal Substances 0.000 claims abstract description 46
- 239000000463 material Substances 0.000 claims abstract description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 150000004767 nitrides Chemical class 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052735 hafnium Inorganic materials 0.000 claims abstract 4
- 239000011230 binding agent Substances 0.000 claims description 59
- 239000002245 particle Substances 0.000 claims description 27
- 239000010949 copper Substances 0.000 claims description 26
- 229910052582 BN Inorganic materials 0.000 claims description 24
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 19
- -1 iron group metals Chemical class 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 13
- 230000000737 periodic effect Effects 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 229910010421 TiNx Inorganic materials 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 150000001247 metal acetylides Chemical class 0.000 claims description 5
- 239000006104 solid solution Substances 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 239000010419 fine particle Substances 0.000 claims 2
- 229910008328 ZrNx Inorganic materials 0.000 claims 1
- 238000004049 embossing Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 11
- 229910052802 copper Inorganic materials 0.000 abstract description 8
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 18
- 230000007423 decrease Effects 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052984 zinc sulfide Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910018509 Al—N Inorganic materials 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 229910007880 ZrAl Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 229910000816 inconels 718 Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
【発明の詳細な説明】
立方晶型窒化硼素(Cubic BN、以下CBNと
略す)は、ダイヤモンドに次ぐ高硬度の物質であり、超
高圧高温下で合成される。現在既に研削用砥粒として使
用されており、また切削用途には、CBSを金77、G
oなどで結合した焼結体が一部に使用されている。この
CBSを金属で結合した焼結体は切削工具として使用し
た場合、結合金属相の高温での軟化による耐摩耗性の低
下や、被削材金属が溶着し易い為に工具が損傷するとい
った欠点がある。本発明は、このような金属で結合した
焼結体でなく、高強度で耐熱性に優れた硬質金泥化合物
を結合相とした切削工具等の工具用途に適した新しいC
BS焼結体に関するものである。DETAILED DESCRIPTION OF THE INVENTION Cubic boron nitride (Cubic BN, hereinafter abbreviated as CBN) is a substance with the second highest hardness next to diamond, and is synthesized under ultra-high pressure and high temperature. Currently, CBS is already used as abrasive grains for grinding, and for cutting purposes, CBS is used as gold 77 and G
Sintered bodies bonded with o etc. are used in some parts. When this sintered body of CBS bonded with metal is used as a cutting tool, there are disadvantages such as a decrease in wear resistance due to the softening of the bonded metal phase at high temperatures, and damage to the tool because the work material metal is easily welded. There is. The present invention is not a sintered body bonded with such metals, but a new carbon material suitable for tool applications such as cutting tools that uses a hard gold mud compound as a binder phase that has high strength and excellent heat resistance.
This relates to a BS sintered body.
CBNは前記した如く、高硬度であり耐熱性、耐摩耗性
に優れた物質である。このCBNのみを焼結する試みは
種々なされているが、これには例えば特公昭39−89
48号に記載されている如く、約70kb以上、190
0℃以上の超高圧、高温下で焼結する必要がある。現状
の超高圧・高温装置ではこのような高圧・高温条件を発
生させることはできるが、工業的規模に装置を大型化し
た場合、高圧高温発生部の耐用回数が制約されて実用的
でない。またCBSのみの焼結体は硬度は高いが、工具
として使用した場合の靭性が劣る。As mentioned above, CBN is a material that has high hardness and excellent heat resistance and wear resistance. Various attempts have been made to sinter only this CBN.
As described in No. 48, approximately 70 kb or more, 190
It is necessary to sinter at ultra-high pressure and high temperature above 0°C. Current ultra-high pressure and high temperature equipment can generate such high pressure and high temperature conditions, but if the equipment is scaled up on an industrial scale, it is not practical because the number of lifetimes of the high pressure and high temperature generating section is limited. Furthermore, although a sintered body made only of CBS has high hardness, it has poor toughness when used as a tool.
発明者等はCBNの結合材として周期律表第4a遷手多
金属の炭化物、窒化物、炭窒化物と、Alを含む化合物
を主体としたものに、Cu及び鉄族金属の元素を含有し
たものを用い、更に適切な製造条件を見出すことによっ
て、従来にない耐摩耗性、靭性を有するCBNの含有量
が体積で80%を越える高硬度の焼結体を得ることがで
きた。また高圧相型窒化硼素の別の形態であるウルツ鉱
型窒化硼素についても同様の検討を行ない、CBSを用
いた場合と類似した結果を得た。The inventors used CBN as a binder mainly consisting of carbides, nitrides, and carbonitrides of the 4a-transient polymetal of the periodic table and a compound containing Al, and containing Cu and iron group metal elements. By using these materials and finding more appropriate manufacturing conditions, we were able to obtain a highly hard sintered body with a CBN content of more than 80% by volume, which has unprecedented wear resistance and toughness. A similar study was also conducted on wurtzite boron nitride, which is another form of high-pressure phase boron nitride, and results similar to those obtained when CBS was used were obtained.
以下、CBNを硬質耐摩耗成分として使用した焼結体に
ついて詳細を述べるが、ウルツ鉱型もしくはCBNとウ
ルツ鉱型窒化硼素の混合物を用いた場合も同様のことが
言える。A sintered body using CBN as a hard wear-resistant component will be described in detail below, but the same can be said when using a wurtzite type or a mixture of CBN and wurtzite type boron nitride.
本発明の目的とするところは、CBNの含有量の多い高
硬度の工具用焼結体を得ることである。An object of the present invention is to obtain a highly hard sintered body for tools with a high CBN content.
これによりCBNの特徴を最大限に生かして、例えばW
CC超超硬合金如く高硬度の材料を切削加工する工具材
や、また綿引きダイス等へ応用することができる。This allows us to take full advantage of the characteristics of CBN and, for example,
It can be applied to tool materials for cutting highly hard materials such as CC cemented carbide, and cotton dies.
CBNのみからなる焼結体は前記した如く製造上の困難
さと、焼結体そのものの強度不足といつた欠点を有して
いる。この為にCBSに適当な結合材を加えることによ
ってこのような欠点を改良することが考えられる。As mentioned above, a sintered body made only of CBN has drawbacks such as difficulty in manufacturing and insufficient strength of the sintered body itself. For this reason, it is possible to improve these drawbacks by adding a suitable binder to the CBS.
公知の方法の一つは、金属結合材を用いる方法であり、
市販のCBNを金属Coなどで結合した焼結体がその例
である。また、CBNに金属以外の化合物例えばAlz
ChやB、C等を混合してこれを焼結する試みもなされ
ている。前者の方法は焼結時にCOなどの金属結合材が
溶融する温度で行なうもので、高圧下における液相焼結
である。One of the known methods is to use a metal binder,
An example is a commercially available sintered body in which CBN is bonded with metal Co or the like. In addition, CBN may be added with a compound other than metal, such as Alz.
Attempts have also been made to mix Ch, B, C, etc. and sinter the mixture. The former method is a liquid phase sintering under high pressure, in which sintering is carried out at a temperature at which a metal binder such as CO melts.
後者の場合は結合材は溶解せず固相状態で焼結される。In the latter case, the binder is not dissolved but sintered in a solid state.
発明者等は、先に周期律表第4a、5a、6a族金属の
炭化物、窒化物、硼化物、硅化物を結合材としてこれ等
の結合材化合物が焼結体Mi繊織中連続した結合相をな
す、CBNを体積%で4θ〜80%含有した高硬度工具
用焼結体を発明し、特許出願している(特開昭53−7
7811)。The inventors previously discovered that using carbides, nitrides, borides, and silicides of metals of Groups 4a, 5a, and 6a of the periodic table as binders, these binder compounds were bonded continuously in a sintered Mi fiber. He invented a sintered body for high-hardness tools containing 4θ to 80% by volume of CBN, which forms a phase, and has filed a patent application (Japanese Patent Laid-Open No. 1986-7
7811).
この場合も固相状態で焼結するものであるが、結合材含
有量が比較的に多いためにCBNのみの焼結に比較して
緻密な焼結体を得るに必要な圧力、温度条件が緩和され
る。In this case as well, sintering is performed in a solid state, but because the binder content is relatively high, the pressure and temperature conditions required to obtain a dense sintered body are required compared to sintering only CBN. eased.
発明者等は、更にCBHの含有量を多くしたものについ
て検討を行なった。CBHの含有量が体積%で80%を
越えるとCBNと前記の周期律表第4a、5a、6a族
金属の化合物粉末を充分均一に混合して超高圧、高温下
で焼結しても高強度の焼結体は得られなかった。この焼
結体の破面を調べてみるとCBN粒子間及びCBNと結
合材化合物粒子間で破壊していることが多く、CBN粒
子相互又はCBNと結合材結晶粒子間の結合強度が低い
と考えられる。CBNの含有量が多い場合はこのように
焼結性が低下し、高強度の焼結体が得られない。これを
改善する為に更に広範囲の実験を行なった結果、結合材
として周期律表第43族の炭化物、窒化物、炭窒化物、
特に第4a族の遷移金属をMで表わしたとき、M Cx
、 M N x、M (C,N)xのXの値がある値
以下の粉末に、AlとCu及び鉄族金属を含む混合粉末
を用いた場合、CBNの含有量が80%を越える組成で
あっても高強度の焼結体が得られることを見出した。The inventors conducted a study on a product with a further increased content of CBH. If the CBH content exceeds 80% by volume, even if the CBN and the compound powder of metals from Groups 4a, 5a, and 6a of the periodic table are sufficiently uniformly mixed and sintered under ultra-high pressure and high temperature, high A strong sintered body was not obtained. When we examined the fracture surface of this sintered body, we found that there were many fractures between CBN particles and between CBN and binder compound particles, which suggests that the bond strength between CBN particles or between CBN and binder crystal particles is low. It will be done. When the content of CBN is large, the sinterability deteriorates as described above, and a high-strength sintered body cannot be obtained. In order to improve this, we conducted more extensive experiments and found that carbides, nitrides, and carbonitrides from group 43 of the periodic table were used as binders.
In particular, when the transition metal of group 4a is represented by M, M Cx
, M N x, M (C, N) x When a mixed powder containing Al, Cu, and iron group metal is used for a powder in which the value of X of x is below a certain value, the composition has a CBN content of over 80% It has been found that a high-strength sintered body can be obtained even if
周期律表第4a族の炭化物、窒化物、炭窒化物は、第1
図のT i Nの状態図に代表される如く、NaC1型
構造を有する相がM C,M N、 M−C,Nの
広い組成範囲において存在する。このXの値が1以下の
場合、即ち、相対的にC,Nの原子空孔濃度の高いもの
を用いることにより焼結性が改善された。また結合材と
して、MCX、MNx、M (C,N)xのみを用いた
場合よりも、これにAl化合物を加えた場合焼結性は改
善されることがVIit=された。さらにこれに微量の
Cu及びFe、Nis Coの鉄族金属元素が含有され
た場合はより一層焼結性は改善され、焼結体の強度も向
上することがわかった。結合材原料として使用するMC
X% MNX% M (C,N)xのXの値の好ましい
範囲は0.95以下である。またAlは結合材中にAf
f元素として5%以上、Cu及び鉄族金属は結合材中の
これらの金属元素の合計で1%以上存在すると高強度の
焼結体が得られる。焼結体中のCBN含有量を体積で8
5%とし、MCx、MNx、M (C,N)XのXの値
と添加AlあるいはCu及び鉄族金属の含有量を種々変
えて焼結体を試作し、切削工具としての性能を評価した
結果、特に高強度で工具としての性能が優れていたのは
Xの値が0.50〜0.95でAJ添加量が結合材中の
重量で5〜30%の範囲であり、さらにCu及び鉄族金
属の添加量の合計は結合材中の重量で1〜20%の範囲
のものであった。Carbides, nitrides, and carbonitrides of Group 4a of the periodic table are the first
As represented by the phase diagram of T i N in the figure, phases having an NaCl type structure exist in a wide composition range of M C, M N, M-C, and N. When the value of X was 1 or less, that is, by using a material with a relatively high concentration of C and N atomic vacancies, sinterability was improved. Furthermore, VIit= was found that the sinterability was improved when an Al compound was added to the bonding material, compared to when only MCX, MNx, and M (C,N)x were used. Furthermore, it was found that when trace amounts of Cu, Fe, and iron group metal elements such as Nis Co were contained, the sinterability was further improved and the strength of the sintered body was also improved. MC used as a binder raw material
The preferred range of the value of X in X% MNX% M (C,N)x is 0.95 or less. In addition, Al is included in the binder.
When the f element is present in an amount of 5% or more, and Cu and iron group metals are present in a total amount of 1% or more of these metal elements in the binder, a high-strength sintered body can be obtained. The CBN content in the sintered body is 8 by volume.
5%, and the values of MCx, MNx, M (C, N) As a result, those with particularly high strength and excellent performance as tools had an X value of 0.50 to 0.95 and an AJ addition amount of 5 to 30% by weight in the binder. The total amount of iron group metals added ranged from 1 to 20% by weight in the binder.
本発明の焼結体では、高圧相型窒化硼素は焼結体中の体
積%で80%を越え95%以下である。In the sintered body of the present invention, the volume percentage of high-pressure phase boron nitride in the sintered body is more than 80% and less than 95%.
この組成範囲内では、充分緻密な焼結体ではCBNの含
有量が多いほど焼結体の硬度は高い。95%を越えると
焼結体の工具として必要な靭性の低下が見られる。また
80%以下の含有量では焼結体の結合相がMi繊織中連
続した相をなし硬度が低下する。Within this composition range, in a sufficiently dense sintered body, the higher the CBN content, the higher the hardness of the sintered body. If it exceeds 95%, a decrease in the toughness required for the sintered body as a tool is observed. Further, if the content is less than 80%, the binder phase of the sintered body becomes a continuous phase in the Mi fiber, and the hardness decreases.
本発明による結合材を用いた場合、何故高圧相型窒化硼
素の焼結性が改善されるか考察してみる。Let us consider why the sinterability of high-pressure phase boron nitride is improved when the binder according to the present invention is used.
たとえばTiNxを例にとるとTiNxのみの焼結体の
常温における硬度はXの値が約0.7の場合、最大とな
る。しかし、高温下ではXの値が低いものほど硬度低下
の度合が大きい。CBNとTiNXを混合して超高圧高
温下で焼結する場合、CBN結晶は変形し難いがTiN
x粒子は容易に変形を起し得る。前述した理由でこの場
合窒素原子の欠陥濃度の高いXの値が低いTiNxはど
変形し易く、CBN結晶粒子間に浸入して緻密化が進行
し易い他のMCX、MNX、M (C,N)xについて
も同様のことがいえる。しかしこれのみではCBN粒子
間の結合強度が充分ではない。例えばW C−Co超硬
合金の液相焼結の如く硬質粒子の結合相への溶解と再析
出現象があれば結合相と硬質粒子、または硬質粒子相互
の結合強度の高いものが得られよう。For example, taking TiNx as an example, the hardness of a sintered body of only TiNx at room temperature is maximum when the value of X is about 0.7. However, at high temperatures, the lower the value of X, the greater the degree of decrease in hardness. When CBN and TiNX are mixed and sintered under ultra-high pressure and high temperature, the CBN crystal is difficult to deform, but the TiN
x-particles can easily undergo deformation. For the reasons mentioned above, in this case, TiNx with a low value of ) The same can be said for x. However, this alone does not provide sufficient bonding strength between CBN particles. For example, in liquid phase sintering of W C-Co cemented carbide, if hard particles are dissolved into a binder phase and reprecipitated, a product with high bonding strength between the binder phase and hard particles or between the hard particles can be obtained. .
本発明焼結体では、結合材中にAl化合物を存在させる
ことによって、これと!(以した現象が生じることを見
出したものである。結合材としてMCx−MNx、、M
(C,N)xにAl化合物を添加していくと、その量
が増すに従って焼結性が改善され、低温で焼結しても高
硬度り焼結体が得られる。焼結体をダイヤモンド砥石で
研磨して、更にランプ仕上げして観察するとCBN粒子
の脱落が添加A2Nが結合材中の重量5%以上の場合は
殆んど見られない。しかし焼結体の破面を観察するとC
BN粒子は殆んど粒内破壊しているものの一部粒界破壊
している個所も認められた。このCBN焼結体の組成に
Cu及び微量の鉄族金属を添加した焼結体を作成し、そ
の破面を観察したところ粒界破壊の生じているところは
認められなかった。この理由は次の如く推測される。C
u及び鉄族金属は、焼結体中MCx、MNx、M (C
,N)Xの余剰の第4a族遷移金属のMと反応し低融点
の液相が生じ、CBSとMC,MN、M (C,N)等
の結合材との界面に均一に浸入する。この界面に浸入し
たM−Cu及びM−鉄族金属はCBNや結合相であるM
C; MN、M (C,N)との親和性が良好なためC
BN−CBNあるいはCBN−MC%MN、M (C,
N)の接合強度を冑めるためと考えられる。In the sintered body of the present invention, by making an Al compound exist in the binder, this! (It was discovered that the following phenomenon occurs. MCx-MNx, , M
When an Al compound is added to (C,N)x, the sinterability improves as the amount increases, and a sintered body with high hardness can be obtained even when sintered at a low temperature. When the sintered body is polished with a diamond grindstone and further lamp-finished and observed, no CBN particles are observed to fall off when the amount of added A2N in the binder is 5% or more by weight. However, when observing the fracture surface of the sintered body, C
Although most of the BN grains had intragranular fracture, some areas with intergranular fracture were also observed. A sintered body was prepared by adding Cu and a trace amount of iron group metal to the composition of this CBN sintered body, and when its fracture surface was observed, no grain boundary fracture was observed. The reason for this is assumed to be as follows. C
u and iron group metals are MCx, MNx, M (C
,N)X reacts with the excess M of the Group 4a transition metal to generate a low melting point liquid phase, which uniformly infiltrates the interface between CBS and a binder such as MC, MN, or M(C,N). The M-Cu and M-iron group metals that have penetrated into this interface include CBN and the binder phase M.
C; C because it has good affinity with MN, M (C,N)
BN-CBN or CBN-MC%MN, M (C,
It is thought that this is to increase the bonding strength of N).
また、Cu及び鉄族金属を含有している焼結体はCBN
粒子し結合材であるMCSMN、M (C。In addition, the sintered body containing Cu and iron group metal is CBN.
MCSMN, M (C.
N)界面にM 82などのポライドが多量に形成される
0通常M B z等のポライドは脆く、多量に存在する
と破壊の起因になる。一方Cu及び鉄族金属を含有した
焼結体においては、M B z等の形成が抑制されてお
り、このため、Cu及び鉄族金属を含有した焼結体は、
CBN粒子や結合相が強固に結合したものと考えられる
。N) A large amount of polide such as M 82 is formed at the interface. 0 Normally, polide such as M B z is brittle and, if present in large amounts, causes breakage. On the other hand, in the sintered body containing Cu and iron group metals, the formation of M B z etc. is suppressed, and therefore, the sintered body containing Cu and iron group metals
It is thought that the CBN particles and the binder phase were tightly bound together.
また本発明焼結体は、前述した如く焼結時に低融点の液
相が出現するため低温焼結が可能である。Further, the sintered body of the present invention can be sintered at a low temperature because a liquid phase with a low melting point appears during sintering, as described above.
本発明焼結体においては、これらのCu及び鉄族金属は
純金属として存在するものでなく、MClMN、M (
C,N)等の結合相中に固溶したり、あるいはMCx、
MNx、M (C,N)xの余剰のMやAllと反応し
金属間化合物の形で存在するため高温での強度低下は生
じない。しかしCII及び鉄族金属の含有量が結合材中
の重量で20%を越えると、Cu及び鉄族金属がMC,
MN、M(C,N)の結合相中にに固溶したり余剰のM
やAlと反応して金属間化合物を形成したりしきれず、
純金属の状態で焼結体中に存在するため、焼粘体の硬度
は低下し工具性能は悪くなる。また、Cuと鉄族金属の
比率は、A〜5が好ましい。この比率がz未満であると
、Cuの含有率が少なすぎ、ポライドの発生を抑制する
ことができず、一方、この比率が5を越えると、Cuの
含有率が多くなるため、焼結体の硬度が低下するからで
ある。In the sintered body of the present invention, these Cu and iron group metals do not exist as pure metals, but as MClMN, M (
C, N), etc., or MCx,
Since MNx and M(C,N)x react with excess M and All and exist in the form of intermetallic compounds, strength does not decrease at high temperatures. However, when the content of CII and iron group metals exceeds 20% by weight in the binder, Cu and iron group metals become MC,
Solid solution or excess M in the bonded phase of MN, M(C,N)
and Al to form intermetallic compounds,
Since it exists in the sintered body in a pure metal state, the hardness of the sintered viscous body decreases and tool performance deteriorates. Further, the ratio of Cu to iron group metal is preferably A to 5. If this ratio is less than z, the Cu content is too low and the generation of polide cannot be suppressed. On the other hand, if this ratio exceeds 5, the Cu content increases and the sintered body This is because the hardness of the material decreases.
AlあるいはCu及び鉄族金属を加工する方法は種々考
えられる。焼結前のCB Nとの混合粉末中にAlある
いはCu及び鉄族金属を添加する方法は最も簡単である
が、これらの金属の1μ以下の微粉末は得難く、粗い粒
子では焼結体の組織が不均一になり易い。最も好ましい
方法はAffiの場合結合材のMCx、MNx、M (
C,N)xの過剰なMと予め金属Aeを反応せしめてお
き、M−AJの金属間化合物を形成させて、これを粉砕
使用する方法である。この場合は結合RMCX、MNx
、M (C,N)xと/lの金属間化合物からなる極め
て微細な1μ以下の結合材粉末が容易に得られる。この
他、予め金属Mと金属、lを反応せしめて合成したM−
Al金属間化合物(例えばTi、Aj!3 、TiA
t!、Ti2 Al.、ZrAlz、ZrAl等)の粉
砕し易い粉末を用いても良い。Various methods can be considered for processing Al or Cu and iron group metals. The simplest method is to add Al or Cu and iron group metals to the mixed powder with CBN before sintering, but it is difficult to obtain fine powders of these metals of less than 1 μm, and coarse particles may cause problems in the sintered body. The structure tends to become uneven. The most preferred method is Affi, in which the binders MCx, MNx, M (
In this method, excess M of C,N)x is reacted with metal Ae in advance to form an intermetallic compound of M-AJ, which is then pulverized and used. In this case, the combination RMCX, MNx
, M (C, N) In addition, M- synthesized by reacting metal M and metal L in advance
Al intermetallic compounds (e.g. Ti, Aj!3, TiA
T! , Ti2Al. , ZrAlz, ZrAl, etc.) may be used.
また別の形のA/化合物であるA I N、 T i
x Ae N% Z rz A l−N等の窒素を含む
化合物の形で加えても良い。Another form of A/compound A I N, T i
It may be added in the form of a nitrogen-containing compound such as x Ae N% Z rz Al-N.
またCu及び鉄族金属の場合、最も好ましい方法は、焼
結時に、焼結体外部がら拡散により浸入させたりあるい
は、上記Alを添加する場合と同様に結合材と反応させ
て添加することである。In addition, in the case of Cu and iron group metals, the most preferable method is to infiltrate them from the outside of the sintered body by diffusion during sintering, or add them by reacting with the binder in the same way as when adding Al. .
本発明で用いるCBN結晶の粒度は、焼結体の工具とし
ての性能から見て10μ以下とする必要がある。結晶粒
子が粗いと焼結体の強度が低下し、また特に切削工具と
して使用する場合は結晶粒子の細かいものが良い加工面
が得られる。The grain size of the CBN crystal used in the present invention needs to be 10 μm or less in view of the performance of the sintered body as a tool. If the crystal grains are coarse, the strength of the sintered body will be reduced, and especially when used as a cutting tool, a finer crystal grain will provide a better machined surface.
本発明のもう一つのvf@である結合相の粒度は、1μ
以下の極めて微細な結晶粒子からなる。このことにより
焼結体はCBNの含有量が多いが、結合相が均一にCB
N粒子間に分散した組織となり高強度の焼結体が得られ
る。The particle size of the binder phase, which is another vf@ of the present invention, is 1μ
It consists of the following extremely fine crystal grains. As a result, the sintered body has a high CBN content, but the binder phase is uniformly made of CBN.
A high-strength sintered body is obtained with a structure dispersed between N particles.
焼結体の製造に当っては、ダイヤモンド合成に用いられ
る超高圧高温装置を使用して圧力20kb以上、温度9
00℃以上で行なう。特に好ましい焼結圧力、温度条件
は圧力30kb〜70kb、温度1100℃〜1500
℃である。この圧力、温度条件の上限は、いずれも工業
的規模の超高圧、冑温装置の実用的な運転条件の範囲内
である。更に圧力、温度条件は、第1図に示した高圧相
型窒化硼素の安定域内で行なう必要がある。このような
優れた焼結体を切削工具として使用する場合、高硬度焼
結体は切れ刃となる部分にのみあれば良く、この高硬度
焼結体を強度、靭性、熱伝導に優れた超硬合金に接合し
て使用すればその性能を十分発揮することができる。し
かし超硬合金に直接接合すれば接合強度が弱く断続切削
の場合など使用できない。十分な接合強度を得るにはC
BNを容積で70%未満含有し、残部がTi、Zr、H
fの炭化物、窒化物、炭窒化物の1種もしくはこれらの
混合物や相互固体化合物からなる中間接合層を用いて接
合すればよい。なお、この中間接合層中には、八1また
はSiを0.1重足%以上含有せしめるのがよい。In manufacturing the sintered body, we use ultra-high pressure and high temperature equipment used for diamond synthesis, at a pressure of 20 kb or more and a temperature of 9.
Perform at 00°C or higher. Particularly preferable sintering pressure and temperature conditions are a pressure of 30kb to 70kb and a temperature of 1100℃ to 1500℃.
It is ℃. The upper limits of these pressure and temperature conditions are both within the range of practical operating conditions for industrial-scale ultra-high pressure and temperature equipment. Furthermore, the pressure and temperature conditions must be within the stable range of high-pressure phase type boron nitride shown in FIG. When using such an excellent sintered body as a cutting tool, the high hardness sintered body only needs to be used in the part that will become the cutting edge. Its performance can be fully demonstrated by bonding it to hard metal. However, if it is directly bonded to cemented carbide, the bonding strength is weak and it cannot be used for interrupted cutting. C to obtain sufficient bonding strength
Contains less than 70% BN by volume, with the remainder being Ti, Zr, and H.
The bonding may be performed using an intermediate bonding layer made of one type of carbide, nitride, or carbonitride of f, or a mixture thereof or a mutual solid compound. Incidentally, it is preferable that this intermediate bonding layer contains 0.1% by weight or more of 81 or Si.
以下実施例により更に具体的に説明する。This will be explained in more detail below with reference to Examples.
〔実施例1〕
平均粒度3μのCBN粒子を体積%で90%と結合材粉
末からなる混合粉末を作成した。結合材わ)末はT i
N o、 az粉末とAl粉末を重量%で各々80%
、20%の割合に混合したものを真空炉中で1000℃
、30分間加熱后粉砕して平均粒度0.3μの微粉末と
したものである。この結合材粉末をX線回折によって調
べたところT i N以外にTi2Aj!N、TiAj
!* 、TjAl等のTiNとAlの反応によって生じ
た化合物が検出され、金属A6は検出されなかった。こ
れはTi N O,ezのNに対して相対的に過剰なT
iが加えたAeと反応して生したものである。[Example 1] A mixed powder consisting of 90% by volume CBN particles having an average particle size of 3 μm and binder powder was prepared. The binding material is T i
80% by weight of N o, az powder and Al powder each
, 20% mixture was heated at 1000°C in a vacuum furnace.
After heating for 30 minutes, the mixture was ground into a fine powder with an average particle size of 0.3μ. When this binder powder was examined by X-ray diffraction, in addition to TiN, Ti2Aj! N, TiAj
! *, Compounds generated by the reaction of TiN and Al such as TjAl were detected, and metal A6 was not detected. This is due to the relatively excessive T with respect to the N of TiNO,ez.
It is produced by the reaction of i with the added Ae.
このCBNと結合材の混合粉末を、外径141諺、内径
IQ+n+の?vi o製の容器にCBNを容積で60
%含有し残部がT i NとAlを重量ですこし含む混
合粉末を塗布したWC−6%C0M1成の超硬合仝(外
径101■、高さ221瞳)を置いた後、0.30g充
填した。この上に厚さ2μの9 Cu −I N i合
金を蒸着した超硬合金(外径IQms、高さ2寵)を置
き、MO製の栓をしてこの容器全体をダイヤモンド合成
に用いる超高圧装置に入れた。圧力50kbに加圧し、
次いで湯度1250℃まで加熱し、20分間保持した。This mixed powder of CBN and binder has an outer diameter of 141 and an inner diameter of IQ+n+. CBN in a VIO container by volume 60
After placing a cemented carbide composite made of WC-6%C0M1 (outer diameter 101cm, height 221pu) coated with a mixed powder containing a small amount of TiN and Al by weight, the balance was 0.30g. Filled. On top of this, a cemented carbide (outer diameter IQms, height 2cm) with a thickness of 2μ and 9 Cu-INi alloy deposited was placed, a MO stopper was placed, and the entire container was placed under the ultra-high pressure used for diamond synthesis. put it in the device. Pressurize to 50 kb,
Next, the temperature was heated to 1250°C and held for 20 minutes.
取り出した焼結体をダイヤモンド砥石を用いてCu−l
Niを蒸着した超硬合金を高硬度焼結体が現われるまで
研削加工し更にダイヤモンドペーストを用いて研摩した
。The removed sintered body was polished using a diamond grindstone.
The cemented carbide on which Ni was vapor-deposited was ground until a high-hardness sintered body appeared, and then polished using diamond paste.
光学顕微鏡で観察したところ気孔もなく緻密な焼結体で
あった。この焼結体はCB S含有の接合層を介して超
硬合金に強固に接合していた。ピンカース硬度計を用い
て荷重5kgで硬度を測定した結果約4800の値を示
した。またX線マイクロアナライザを用いて焼結体中の
含有元素を調べたところ、Cu、Niが均一に含まれて
おり、その量はCu、Ni合計で結合材中の重量の約3
%であった。さらにこの焼結体の生成物をX線回折によ
り調査した結果CB N 、T i N 、A I N
等があったが’l’iBz等のポライドはごくわずかし
か検出されなかった。なおCu及び鉄族金属を含有しな
い焼結体を同様にして製造し、生成物をX線回折により
調べたが、この生成物はCBN、TiN、ANNの他に
多量のT i B 2が存在していた。これら2種類の
焼結体を用いて、切削り加工用のチップを作成した。When observed under an optical microscope, it was found to be a dense sintered body with no pores. This sintered body was firmly bonded to the cemented carbide via the CBS-containing bonding layer. The hardness was measured using a Pinkers hardness tester under a load of 5 kg and showed a value of about 4800. In addition, when we examined the elements contained in the sintered body using an X-ray microanalyzer, we found that Cu and Ni were evenly contained, and the total amount of Cu and Ni was approximately 3 of the weight of the binder.
%Met. Furthermore, the products of this sintered body were investigated by X-ray diffraction, and the results showed that CB N , T i N , A I N
However, very few polides such as 'l'iBz were detected. Incidentally, a sintered body containing no Cu and iron group metals was produced in the same manner and the product was examined by X-ray diffraction, but it was found that in addition to CBN, TiN, and ANN, a large amount of T i B 2 was present in the product. Was. Chips for cutting were created using these two types of sintered bodies.
被削材としては、ビッカース硬度約1200のWC−1
5%COの超硬合金製の塑性加工用のパンチを選び、切
削速度18m/分、切込み0.2m、送り0.1mm/
回転で20分間切削した。比較の為市販の体積%で約9
0%のCBNを含有しCoを主成分とする金属で結合し
た焼結体で作成した千ノブの摩耗を観察したところ、本
発明の焼結体の逃げ面最大摩耗巾が0.10m1であっ
たのに対し、Cu及び鉄族金属の含有しない焼結体のそ
れは0゜151嘗、市販のCBNを主体とする金属で結
合した焼結体は0.25mmであった。The work material is WC-1 with a Vickers hardness of approximately 1200.
A punch for plastic working made of 5% CO cemented carbide was selected, cutting speed 18 m/min, depth of cut 0.2 m, feed 0.1 mm/min.
Cutting was performed by rotating for 20 minutes. For comparison, commercially available volume% is approximately 9
When the wear of a thousand knobs made of a sintered body bonded with a metal containing 0% CBN and mainly composed of Co was observed, the maximum wear width of the flank surface of the sintered body of the present invention was 0.10 m1. On the other hand, that of the sintered body containing no Cu or iron group metal was 0°151mm, and that of the sintered body bonded with a commercially available metal mainly composed of CBN was 0.25mm.
〔実施例2〕 第1表に示した結合材粉末を作成した。[Example 2] The binder powder shown in Table 1 was prepared.
の微粉末を純粋な窒素気流中で加熱して窒化させ、加熱
温度を変えることにより、結合窒素量をコントロールし
て作成したものである。The fine powder was heated in a pure nitrogen stream to nitride it, and the amount of bound nitrogen was controlled by changing the heating temperature.
第1表の組成の結合材粉末を実施例1と同様にして加熱
処理を施し、粉砕した。この結合tオ粉末と平均粒度3
μのCBN粉末とを混合して第2表の組成の混合粉末を
作成した。The binder powder having the composition shown in Table 1 was heat treated and pulverized in the same manner as in Example 1. This combined powder and average particle size 3
A mixed powder having the composition shown in Table 2 was prepared by mixing with μ CBN powder.
実施例1と同様にして、MO製容器にCBNを容積で5
0%含有し、残部がTi (C,N)とHfNとAf
を重量で5二3:2含むl昆合む)末を塗布したWC−
6%CO組成の超硬合金を置き、その上に完粉と8 C
u −2N i合金を種々の膜厚で京着した超硬合金を
置いてM o栓をし、遠高圧高温装置を用いて50kb
1280℃で20分間保持した。各々の硬度測定結果も
表2に示す。またこれらの焼結体はCBNを含有する中
間接合層を介して超硬合金母材に強固に接合していた。In the same manner as in Example 1, 5 volumes of CBN were added to an MO container.
0%, the remainder is Ti (C,N), HfN and Af
WC- coated with powder (containing 5:2 to 3:2 by weight)
A cemented carbide with a composition of 6% CO is placed, and the finished powder and 8 C are placed on top of it.
A cemented carbide coated with u-2Ni alloy of various film thicknesses was placed, a Mo plug was placed, and a 50 kb film was formed using a remote high pressure and high temperature device.
It was held at 1280°C for 20 minutes. Table 2 also shows the hardness measurement results. Further, these sintered bodies were firmly bonded to the cemented carbide base material via an intermediate bonding layer containing CBN.
第2表
A、B、Cの焼結体で比較すると、Cu−Niの含有量
が22%となると硬度は低下する。次にCBNの含有量
についてみろと、CBNの含有■の増加に伴って硬度は
上昇するものの97%と多くなりすぎるとかえって硬変
は3000と低下している。この場合、焼結体中の結合
材含有量が不足しており、このような圧力温度条件下で
は完全に緻密な焼結体が得られないためである。次に結
合材中のApの含有量の異なるG、H1■を比較すると
Apの含有量が多い程硬度は高い。Comparing the sintered bodies of Table 2 A, B, and C, the hardness decreases when the Cu-Ni content becomes 22%. Next, looking at the CBN content, as the CBN content increases, the hardness increases, but when it becomes too high (97%), the cirrhosis decreases to 3000. In this case, the binder content in the sintered body is insufficient, and a completely dense sintered body cannot be obtained under such pressure and temperature conditions. Next, comparing G and H1■ which have different Ap contents in the binder, the higher the Ap content, the higher the hardness.
〔実施例3〕
第3表の組成の結合材粉末を作成し、加熱処理を施した
。これらの結合材粉末と平均粒度3μのCBN粉末を体
積でそれぞれ13%、87%となるように配合し、混合
した。次に実施例1と同様にしてMO製の容器に上記完
扮を充填し、その上に厚さ5μのCoを蒸着した銅箔を
入れさらにWC−10%Co超硬合金を置き、MO製の
栓をしてこの容器全体を超高圧装置に入れ焼結した。焼
結体のCuの含有量をX線マイクロアナライザで調べた
ところ、結合材中のCuとCOの含有量は合計重量で約
7%であった。またX線回折により、ポライドの生成を
調査したがポライドの生成は認められなかった。さらに
これらの焼結体の硬度を測定した結果、いずれもビッカ
ース硬度4000以上であった。[Example 3] A binder powder having the composition shown in Table 3 was prepared and subjected to heat treatment. These binder powders and CBN powder having an average particle size of 3 μm were blended and mixed in a volume of 13% and 87%, respectively. Next, in the same manner as in Example 1, a container made of MO was filled with the above-mentioned complete material, a copper foil with a thickness of 5 μm coated with Co was placed on top of it, and a WC-10% Co cemented carbide was placed. The container was sealed and the entire container was placed in an ultra-high pressure device and sintered. When the Cu content of the sintered body was examined using an X-ray microanalyzer, the total content of Cu and CO in the binder was about 7% by weight. Further, the formation of polide was investigated by X-ray diffraction, but no formation of polide was observed. Furthermore, as a result of measuring the hardness of these sintered bodies, they all had a Vickers hardness of 4000 or more.
第3表
〔実施例4〕
平均粒度2μのCBN粒子を体積%で92%と結合材粉
末から成る混合粉末を作成した。結合材粉末はT i
N o、 as絹粉末Al粉末、Cu粉末及びCO粉末
をそれぞれ重量で70%、26%、3%、1%の割合に
混合したものを真空炉で1000℃、30分間加熱後、
粉砕して平均粒度0.5.uの微粉末としたものである
。この完粉を実施例1と同様にして焼結した。焼結体を
取り出してX線回折により調べた結果、ポライドは少し
観察されたもののCu % N iの金属は全く観察さ
れなかった。この焼結体を用いて切削用のチップを作成
し、インコネル718を切削速度100 m/min
、切込み0.2龍、送り0.05龍/rev切削を湿式
で行った。Table 3 [Example 4] A mixed powder consisting of 92% by volume CBN particles with an average particle size of 2 μm and binder powder was prepared. The binder powder is Ti
After heating a mixture of N o, as silk powder, Al powder, Cu powder, and CO powder in weight ratios of 70%, 26%, 3%, and 1%, respectively, at 1000°C for 30 minutes in a vacuum furnace,
Grind to an average particle size of 0.5. It is made into a fine powder of u. This finished powder was sintered in the same manner as in Example 1. When the sintered body was taken out and examined by X-ray diffraction, a small amount of polide was observed, but no Cu%Ni metal was observed. A cutting tip was made using this sintered body, and Inconel 718 was cut at a cutting speed of 100 m/min.
Wet cutting was performed with a depth of cut of 0.2 mm and a feed rate of 0.05 mm/rev.
比較の為、市販の体積%で約90%のCBNをCOを主
成分とする金属で結合した焼結体で作成したチップを用
いて同一条件でテストした。切削後のチップの摩耗を観
察したところ本発明の焼結体の逃げ面最大摩耗巾が0.
25mmに対し、市販のCBNを主体とする金属で結合
した焼結体は0.45富lであった。For comparison, a test was conducted under the same conditions using a chip made of a commercially available sintered body in which approximately 90% CBN by volume was bonded with a metal containing CO as a main component. When the wear of the tip after cutting was observed, the maximum wear width of the flank face of the sintered body of the present invention was 0.
25 mm, the commercially available sintered body bonded with a metal mainly composed of CBN had a richness of 0.45 liters.
〔実施例5〕
粒度1μ以下の衝撃波法によって合成されたウルツ鉱型
窒化硼素粉末を用い、実施例4で使用した結合材粉末と
をウルツ鉱型窒化硼素粉末85体積%、結合材粉末15
体積%の割合に混合した。[Example 5] Wurtzite type boron nitride powder synthesized by the shock wave method with a particle size of 1 μm or less was used, and the binder powder used in Example 4 was mixed with wurtzite type boron nitride powder at 85% by volume and binder powder at 15% by volume.
They were mixed in a proportion of % by volume.
MO製の容器に、この粉末を実施例1と同じ構成で充填
した後、超高圧、高A装置を用いて焼結した。焼結体の
硬度はビッカース硬度で4800であった。This powder was filled into an MO container with the same configuration as in Example 1, and then sintered using an ultra-high pressure, high A device. The hardness of the sintered body was 4800 on Vickers hardness.
第1図は本発明焼結体の製法の特徴を説明する為のもの
で、T i −N系の状態図である。
第2図は本発明焼結体の製造条件を説明する為のちりで
高圧相型窒化硼素の圧力一温度相図上における熱力学的
な安定領域を示したものである。
特許出願人 住友電気工業株式会社
同 代理人 鎌 1) 文 二第1図
tか哩拐轄十
第2図
温度(0C)FIG. 1 is a phase diagram of the Ti--N system, for explaining the characteristics of the method for manufacturing the sintered body of the present invention. FIG. 2 shows the thermodynamically stable region on the pressure-temperature phase diagram of high-pressure phase type boron nitride using dust for explaining the manufacturing conditions of the sintered body of the present invention. Patent Applicant: Sumitomo Electric Industries, Ltd. Agent: Kama 1) Text 2 Figure 1 T or 10 Figure 2 Temperature (0C)
Claims (9)
で80%を越え95%以下含有し、残部の結合相が周期
律表第4a族のTi、Zr、Hfの炭化物、窒化物、炭
窒化物の1種もしくは混合物或は相互固溶体化合物及び
Alの化合物より成り、結合相中のAlの含有量が重量
で5〜30%であって、且つ結合材の結合粒子の大部分
が1μ以下の微細粒子より成り、さらに該結合相中にC
u及び鉄族金属元素を重量で1〜20%、両者の比率で
1/2〜5含有する焼結体と、高圧相型窒化硼素の含有
率が70容積%未満で残部が周期律表第4a族のTi、
Zr、Hfの炭化物、窒化物、炭窒化物の1種もしくは
これらの混合物または相互固溶体を主体としたものとこ
れにAlまたはSiを0.1重量%以上含有する厚み2
mm以下の中間接合層を介して、超硬合金母材に接合し
た工具用高硬度焼結体。(1) Containing more than 80% and less than 95% by volume of high-pressure phase type boron nitride with an average particle size of 10 μ or less, the remaining binder phase being carbides and nitrides of Ti, Zr, and Hf from Group 4a of the periodic table, It is composed of one kind or a mixture of carbonitrides or a mutual solid solution compound and a compound of Al, the content of Al in the binder phase is 5 to 30% by weight, and the majority of the binder particles of the binder are 1 μm in size. It consists of the following fine particles, and furthermore, in the binder phase, C
A sintered body containing 1 to 20% by weight of u and iron group metal elements, and a ratio of 1/2 to 5 of the two, and a sintered body containing less than 70 volume% of high-pressure phase boron nitride, with the balance being a material from the periodic table. Ti of group 4a,
Thickness 2 consisting mainly of Zr, Hf carbide, nitride, carbonitride or a mixture thereof or mutual solid solution and containing 0.1% by weight or more of Al or Si
A high-hardness sintered body for tools bonded to a cemented carbide base material through an intermediate bonding layer of less than mm.
り成り、結合相中のAlの含有量が重量で5〜30%で
あって、且つ結合材の結合粒子の大部分が1μ以下の微
細粒子より成り、さらに該結合相中にCu及び鉄族金属
元素を重量で1〜20%、両者の比率で1/2〜5含有
することを特徴とする特許請求の範囲第(1)項記載の
工具用高硬度焼結体。(2) The binder phase is made of a compound of TiN, ZrN, and Al, the content of Al in the binder phase is 5 to 30% by weight, and most of the binder particles of the binder are fine particles of 1 μ or less. Claim (1) is characterized in that the bonding phase contains Cu and iron group metal elements in an amount of 1 to 20% by weight, and a ratio of 1/2 to 5 of the two. High hardness sintered body for tools.
ことを特徴とする特許請求の範囲第(1)項記載の工具
用高硬度焼結体。(3) The high-hardness sintered body for tools according to claim (1), wherein the high-pressure phase type boron nitride is cubic boron nitride.
0容積%未満で残部が周期律表第4a族のTi、Zr、
Hfの炭化物、窒化物、炭窒化物の1種もしくはこれら
の混合物または相互固溶体を主体としたものと、これに
AlまたはSiを0.1重量%以上含有する中間接合層
としての粉末を型押成型して、もしくは粉末状で載置す
るか、または該超硬合金母材上に予め塗布しておき、さ
らにその粉末の上に平均粒度が10μ以下の高圧相型窒
化硼素粉末と周期律表第4a族の遷移金属の炭化物、窒
化物、炭窒化物をそれぞれMCx、MNx、M(C、N
)xで表わしたとき、xの値が0.5〜0.95の化合
物粉末とAl又はAlを含む合金又は化合物粉末を結合
材中のAlの重量で5〜30%混合し、これを粉末状も
しくは型押成型して載置したのち、超高圧高温装置を用
いて圧力20kb以上、温度900℃以上にして、焼結
体外部よりCu及び鉄族金属あるいはこれらを含む合金
または化合物を結合材中のCuおよび鉄族金属の重量で
1〜20%、両者の比率で1/2〜5になるごとく硬質
層内に浸入させて焼結するとともに該硬質層と中間接合
層と母材との接合を行わせることを特徴とする高圧相型
窒化硼素の含有量が焼結体中の体積で80%を越え95
%以下である工具用高硬度焼結体及びその製造方法。(4) The content of high-pressure phase boron nitride on the cemented carbide base material is 7.
Less than 0% by volume, the remainder being Ti, Zr from Group 4a of the periodic table,
Embossing powder as an intermediate bonding layer containing one type of Hf carbide, nitride, carbonitride, or a mixture or mutual solid solution of these, and 0.1% by weight or more of Al or Si. It is molded or placed in powder form, or it is coated on the cemented carbide base material in advance, and then on top of the powder is a high-pressure phase type boron nitride powder with an average particle size of 10μ or less and the periodic table. MCx, MNx, M(C, N
) When expressed as x, a compound powder with a value of x of 0.5 to 0.95 and Al or an alloy or compound powder containing Al are mixed in an amount of 5 to 30% by weight of Al in the binder, and this is powder After the sintered body is molded or pressed and placed, an ultra-high pressure and high temperature device is used to increase the pressure to 20 kb or higher and the temperature to 900°C or higher to inject Cu and iron group metals, or alloys or compounds containing these as a binder from the outside of the sintered body. The Cu and iron group metals in the hard layer are infiltrated into the hard layer so that the weight thereof is 1 to 20%, and the ratio of both is 1/2 to 5. The content of high-pressure phase type boron nitride, which is characterized by bonding, exceeds 80% by volume in the sintered body95
% or less and a method for producing the same.
であることを特徴とする特許請求の範囲第(4)項記載
の工具用高硬度焼結体の製造方法。(5) Nitride of Group 4a of the periodic table is TiNx, ZrNx
A method for manufacturing a high-hardness sintered body for tools according to claim (4).
用いることを特徴とする特許請求の範囲第(4)項記載
の工具用高硬度焼結体の製造方法。(6) A method for manufacturing a high-hardness sintered body for tools according to claim (4), characterized in that cubic boron nitride is used as the high-pressure phase boron nitride powder.
0容積%未満で残部が周期律表第4a族のTi、Zr、
Hfの炭化物、窒化物、炭窒化物の1種もしくはこれら
の混合物または相互固溶体を主体としたもとの、これに
AlまたはSiを0.1重量%以上含有する中間接合層
としての粉末を型押成型して、もしくは粉末状で載置す
るか、または該超硬合金母材上に予め塗布しておきさら
にその粉末上に平均粒度が10μ以下の高圧相型窒化硼
素粉末と周期律表第4a族の遷移金属の炭化物、窒化物
、炭窒化物をそれぞれMCx、MNx、M(C、N)x
で表わしたとき、xの値が0.5〜0.95の化合物粉
末とAl又はAlを含む合金を結合材中のAlの重量で
5〜30%とCu及び鉄族金属又はこれらを含む合金、
又は化合物粉末を結合材中のCu及び鉄族金属の重量で
1〜20%、両者の比率で1/2〜5混合しこれを粉末
状もしくは型押成型して載置したのち、超高圧装置を用
いて圧力20kb以上、温度900℃以上で硬質層を焼
結するとともに該超硬質層と中間接合層と母材との接合
を行わせるを特徴とする高圧相型窒化硼素の含有量が焼
結体中の体積で80%を越え、95%以下である工具用
高硬度焼結体の製造方法。(7) The content of high-pressure phase boron nitride on the cemented carbide base material is 7
Less than 0% by volume, the remainder being Ti, Zr from Group 4a of the periodic table,
A powder as an intermediate bonding layer containing 0.1% by weight or more of Al or Si, which is mainly composed of Hf carbide, nitride, carbonitride, or a mixture thereof, or a mutual solid solution, is molded. It is pressed and molded, or it is placed in powder form, or it is coated on the cemented carbide base material in advance, and then on the powder, high-pressure phase type boron nitride powder with an average particle size of 10 μ or less and the powder shown in the periodic table are added. Group 4a transition metal carbides, nitrides, and carbonitrides are MCx, MNx, and M(C,N)x, respectively.
When expressed as, a compound powder with an x value of 0.5 to 0.95, Al or an alloy containing Al, and 5 to 30% by weight of Al in the binder, and Cu and iron group metals or alloys containing these. ,
Alternatively, compound powder is mixed with 1 to 20% by weight of Cu and iron group metal in the binder, the ratio of both is 1/2 to 5, and this is placed in a powder form or molded by molding, and then placed in an ultra-high pressure device. The hard layer is sintered at a pressure of 20 kb or more and a temperature of 900° C. or more using a high-pressure phase type boron nitride content that is characterized by bonding the ultra-hard layer, intermediate bonding layer, and base material. A method for producing a high-hardness sintered body for tools whose volume in the body is more than 80% and less than 95%.
Nxであることを特徴とする特許請求の範囲第(7)項
記載の工具用高硬度焼結体の製造方法。(8) The nitrides of Group 4a of the periodic table are TiNx, Zr
A method for manufacturing a high-hardness sintered body for a tool according to claim (7), characterized in that the material is Nx.
末を用いることを特徴とする特許請求の範囲第(7)項
記載の工具用高硬度焼結体及びその製造方法。(9) A high-hardness sintered body for tools and a method for manufacturing the same according to claim (7), characterized in that a cubic boron nitride powder is used as the high-pressure phase boron nitride powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17068086A JPS62260005A (en) | 1986-07-18 | 1986-07-18 | High-hardness sintered body for tool and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17068086A JPS62260005A (en) | 1986-07-18 | 1986-07-18 | High-hardness sintered body for tool and its production |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17151279A Division JPS5696051A (en) | 1979-03-29 | 1979-12-29 | High hardness sintered body for tool and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62260005A true JPS62260005A (en) | 1987-11-12 |
JPH0138841B2 JPH0138841B2 (en) | 1989-08-16 |
Family
ID=15909400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17068086A Granted JPS62260005A (en) | 1986-07-18 | 1986-07-18 | High-hardness sintered body for tool and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62260005A (en) |
-
1986
- 1986-07-18 JP JP17068086A patent/JPS62260005A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0138841B2 (en) | 1989-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1313887B1 (en) | Method of producing an abrasive product containing cubic boron nitride | |
US4343651A (en) | Sintered compact for use in a tool | |
US7033408B2 (en) | Method of producing an abrasive product containing diamond | |
US5569862A (en) | High-pressure phase boron nitride sintered body for cutting tools and method of producing the same | |
JPS61141672A (en) | Manufacture of cubic boron nitride base sintered body for cutting tool | |
JPS62260005A (en) | High-hardness sintered body for tool and its production | |
JP3146803B2 (en) | Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance | |
JPS6137221B2 (en) | ||
JPS6323155B2 (en) | ||
JPS5916942A (en) | Composite diamond-sintered body useful as tool and its manufacture | |
JPS6369760A (en) | Sintered body for high hardness tools and manufacture | |
JPS6335591B2 (en) | ||
JPS6247940B2 (en) | ||
JPS5855111B2 (en) | High hardness sintered body for tools and its manufacturing method | |
JPS6141873B2 (en) | ||
JPS62984B2 (en) | ||
JPS62228403A (en) | High hardness sintered body for tool and its production | |
JPS5843463B2 (en) | High hardness sintered body for cutting tools | |
JPS6160851A (en) | High-hardness sintered body for tool and its production | |
KR860002131B1 (en) | Sintered compact for use in a tool | |
JPS62247008A (en) | High-hardness sintered body for tool and its production | |
JPH0463607A (en) | Cutting tool having cutting edge part formed of cubic boron nitride sintered substance | |
JPH0377151B2 (en) | ||
JPS6242989B2 (en) | ||
JPS58107468A (en) | Sintered material for high hardness tool and preparation thereof |