JPS5916942A - Composite diamond-sintered body useful as tool and its manufacture - Google Patents

Composite diamond-sintered body useful as tool and its manufacture

Info

Publication number
JPS5916942A
JPS5916942A JP12451282A JP12451282A JPS5916942A JP S5916942 A JPS5916942 A JP S5916942A JP 12451282 A JP12451282 A JP 12451282A JP 12451282 A JP12451282 A JP 12451282A JP S5916942 A JPS5916942 A JP S5916942A
Authority
JP
Japan
Prior art keywords
diamond
powder
sintered body
base material
iron group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12451282A
Other languages
Japanese (ja)
Other versions
JPS6350401B2 (en
Inventor
Tetsuo Nakai
哲男 中井
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12451282A priority Critical patent/JPS5916942A/en
Priority to SE8204983A priority patent/SE457537B/en
Priority to FR8215073A priority patent/FR2512430B1/en
Priority to DE19823232869 priority patent/DE3232869A1/en
Priority to US06/414,821 priority patent/US4505746A/en
Priority to GB08225302A priority patent/GB2107298B/en
Publication of JPS5916942A publication Critical patent/JPS5916942A/en
Publication of JPS6350401B2 publication Critical patent/JPS6350401B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the composite diamond-sintered body useful as a tool having both of excellent wear resistance and toughness, by sintering coarse diamond particles using binders such as superfine diamond particles and WC, each particle being specified in size. CONSTITUTION:The composite diamond-sintered body useful as a tool manufactured by connecting a hard sintered body comprising 50-80vol% coarse diamond particles of 10-100mu in zine and the balance binders such as 60-90vol% superfine diamond particles of 1mum or less in size and WC of 1mum or less directly or through an intermediate layer to a cermet substrate prepd. by binding specified carbide crystals to a ferrous-group metal. Said hard sintered body is composed of up to 70vol% boron nitride of type-high pressure phase and the balance one or more of Group-IVa and Va metal carbides, nitrides and carbonitrides (e.g. TiN), etc. The composite diamond-sintered body has both of excellent wear resistance derived from a coarse diamond-sintered body and high toughness derived from a superfine diamond-sintered body.

Description

【発明の詳細な説明】 現在、ダイヤモンドの含有量が70容量係以上でダイヤ
モンド粒子が互いに接合した焼結体が販売され、非鉄金
属、プラスチック、セラミックの切削、ドレッサー、ド
リルピッ+−1伸mダイスとして使用きれているO@に
非鉄金属の切削や銅線などの比較的軟かい線材を伸線す
るダイスとしてこれらのダイヤモンド焼結体を便用した
場合、その性能は非常に優れている。しかしながら、ド
リルビットなどに□使、用された場合、今のところ満足
される性能を有するダイヤモンド焼結体はないのが現状
である0本発明はドリルビットにも使用可能なダイヤモ
ンド焼結体に関するものである0 まず、市販のダイヤモンド焼結体をドリルビットとして
用いた場合、満足した性能を示さない原因を調べるため
、粒度1μm以下1粒度50〜60μm1粒度80〜1
00μmの5種のダイヤモンド焼結体を用いて安山岩を
切削した0その結果粒度1μm以下のダイヤモンド焼結
体は刃先は欠損しなかったものの摩耗量が多かった。一
方ダイヤモ′ンド粒子の粒度が50〜60μmの焼結体
及び80〜100μmの焼結体は双方とも初期の段階で
刃先が欠損した0この原因としては、次の如く推測でき
る。ダイヤモンド焼結体の強度は第1図に示した如く粒
度の増大に伴ない低下する。微粒ダイヤモンド焼結体は
抗折力が高く、靭性に優れているため刃先は2 欠損し
にぐいものの、個々の粒子は小さな夕゛イヤモンドスケ
ルトンにより保持されているので、個々の粒子の結合力
は弱い0したがって切削中に個々の粒子が脱落しやすい
ため、耐摩耗性が劣るものと考えられる。一方、粗粒ダ
イヤモンド焼結体は大きなスケルトンにより保持されて
おり、個々のダイヤモンド粒子の結合力は強いため、耐
摩耗性は優れているものの、スケルトン部が大きいので
、一度、クラックが発生すると伝播しやすぐ、刃先が欠
損するものと考えられる。これらの用途に使用できるダ
イヤモンド焼結体は耐摩耗性に優れており、かつ靭性の
高いものでなければならない。
DETAILED DESCRIPTION OF THE INVENTION Currently, a sintered body with a diamond content of 70% by volume or more and diamond particles bonded to each other is sold, and is used for cutting non-ferrous metals, plastics, ceramics, dressers, drill picks, etc. When these diamond sintered bodies are conveniently used as dies for cutting non-ferrous metals or drawing relatively soft wires such as copper wires, their performance is very excellent. However, there is currently no diamond sintered body that has satisfactory performance when used in drill bits, etc. The present invention relates to a diamond sintered body that can be used also in drill bits. First, in order to investigate the reason why commercially available diamond sintered bodies do not show satisfactory performance when used as drill bits, we investigated the following results:
Five types of diamond sintered bodies with a grain size of 0.00 μm were used to cut andesite. As a result, the diamond sintered bodies with a grain size of 1 μm or less had a large amount of wear, although the cutting edge did not break. On the other hand, the cutting edges of both the sintered bodies with diamond particle sizes of 50 to 60 .mu.m and the sintered bodies of 80 to 100 .mu.m were damaged at an early stage.The reason for this can be assumed to be as follows. As shown in FIG. 1, the strength of the diamond sintered body decreases as the grain size increases. Fine-grained diamond sintered bodies have high transverse rupture strength and excellent toughness, so the cutting edge is resistant to breakage. However, since each particle is held by a small diamond skeleton, the bonding strength of individual particles is It is considered that the wear resistance is poor because the individual particles are likely to fall off during cutting. On the other hand, coarse-grained diamond sintered bodies are held by a large skeleton, and the bonding force between individual diamond particles is strong, so they have excellent wear resistance, but because the skeleton is large, once a crack occurs, it will propagate. It is thought that the cutting edge would be damaged immediately. A diamond sintered body that can be used for these purposes must have excellent wear resistance and high toughness.

本発明者等は、耐摩耗性と靭性が優れるダイヤモンド焼
結体を開発すべく、鋭意研究を続け7’Coその結果、
粒度1d〜100μmのダイヤモンド粒子を1μm以下
の超微粒のダイヤモンド粒子と1μm以下のWCまたは
これと同一結晶構造を有する(Mo、 W) 0  お
よび鉄族金属、あるいはこれに微量の硼素または硼化物
を含有する結合材を用いた焼結体は粗粒ダイヤモンド焼
結体の耐摩耗性の良さと超微粒ダイヤモンド焼結体の靭
性の高さ會兼ね備えるものであることがわかった。
The present inventors have continued to conduct intensive research in order to develop a diamond sintered body with excellent wear resistance and toughness, and as a result,
Diamond particles with a particle size of 1d to 100 μm are combined with ultrafine diamond particles of 1 μm or less, WC of 1 μm or less, or (Mo, W)0 having the same crystal structure as this, and iron group metals, or a trace amount of boron or boride. It was found that the sintered body using the binder contained therein has both the good wear resistance of the coarse-grained diamond sintered body and the high toughness of the ultra-fine-grained diamond sintered body.

本発明者等は、上述した材質の最適組成を求めるため、
粗粒のダイヤモンド粒度及び含有量、結合材中に含1れ
る1μ?ζ以下のダイヤモンド粒子の含有量を変えたダ
イヤモンド焼結体を試作し、安山岩の切削により評価し
fl oその結果を第2図及び5図に示す。図中1は正
常摩耗、2は刃先欠損の領域を示す0粗粒のダイヤモン
ド粒度が10μm 以下であると耐摩耗性が低下する。
In order to find the optimal composition of the above-mentioned materials, the present inventors
Coarse diamond particle size and content, 1μ included in the binder? Diamond sintered bodies with different contents of diamond particles of ζ or less were prototyped and evaluated by cutting andesite.The results are shown in Figures 2 and 5. In the figure, 1 indicates normal wear and 2 indicates a region of cutting edge damage.0 If the coarse diamond grain size is 10 μm or less, the wear resistance decreases.

粗粒のダイヤモンド粒度が100μm、 f越すと、焼
結中にダイヤモンド粒子内にクラックを生じるが、この
クラックを通して刃先が欠損し、摩耗量は犬きくなるも
のと考えられる。
If the coarse diamond particle size exceeds 100 μm, f, cracks will occur within the diamond particles during sintering, and the cutting edge will be damaged through these cracks, resulting in a significant amount of wear.

粗粒のダイヤモンド粒子の含有量は容量で50〜85%
が良い。粗粒のダイヤモンドの含有量が50%未満であ
ると微粒のダイヤモンドを含有する結合材が多くなるた
め耐摩耗性が低下する。一方粗粒のダイヤモンドの含有
量が85%を越えると、粗粒ダイヤモンド同志が結合す
るため靭性が低下する。
The content of coarse diamond particles is 50-85% by volume
is good. If the content of coarse diamond particles is less than 50%, the amount of binder containing fine diamond particles increases, resulting in a decrease in wear resistance. On the other hand, if the content of coarse diamond exceeds 85%, the toughness decreases because the coarse diamonds bond together.

結合材中の微粒のダイヤモンド粒子の粒度は1μmn 
以下が良い。微粒のダイヤモンド粒子の粒度は1μm以
下、好ましくは05μm以下が良い。微粒のダイヤモン
ド粒子の粒度が1μmを越すと靭性は低下する。結合材
中の微粒ダイヤモンド粒子の含有量は容積で60〜90
%が好ましい。微粒ダイヤモンド粒子の含有量が60%
未満であると結合相の耐摩耗性が低下し、結合相が早期
に摩耗し粗粒のダイヤモンド粒子が脱落してしまう。一
方、微粒ダイヤモンド粒子の含有量が90係を越する結
合材が脆くなったり、あるいはWCまたはこれと同一結
晶構造を有する(Mo、 W) Cの含有量が減るため
、1μm以下のダイヤモンドが粒成長し、靭性が低下す
る。
The particle size of the fine diamond particles in the binder is 1 μm.
The following is good. The particle size of the fine diamond particles is preferably 1 μm or less, preferably 0.5 μm or less. When the particle size of fine diamond particles exceeds 1 μm, toughness decreases. The content of fine diamond particles in the binder is 60-90% by volume.
% is preferred. The content of fine diamond particles is 60%
If it is less than that, the wear resistance of the binder phase will be reduced, the binder phase will wear out early, and coarse diamond particles will fall off. On the other hand, if the content of fine diamond particles exceeds 90, the binder becomes brittle, or the content of WC or (Mo, W)C, which has the same crystal structure as this, decreases, so that diamond particles of 1 μm or less become It grows and its toughness decreases.

特に本発明の焼結体に焼結体の重量で0.005〜01
5%の硼素または硼化物を含有させた場合、その性能は
一段と向上する。通常ダイヤモンド粒子は超高圧高温下
で鉄族金属等の触媒によるダイヤモンドの溶解、析出現
象により焼結される。硼素または硼素化合物を添加した
場合、鉄族金属の硼化物を生じ融点が低下するのと、溶
解析出速度が増すためダイヤモンド粒子同志の結合部(
ダイヤモンドスケルトン部)が成長し、ダイヤモンド粒
子の保持力が向上したものと推測できる。硼素あるいは
硼化物の含有量が0、005%未満であるとダイヤモン
ドスケルトン部の形成が遅い。一方硼素あるいは硼化物
の含有量が0.15%を越すと、ダイヤモンドスケルト
ン部に多量の1illll素が侵入し、ダイヤモンドス
ケルトン部の強度が低下する。
In particular, the sintered body of the present invention has a weight of 0.005 to 0.01 by weight of the sintered body.
When containing 5% boron or boride, the performance is further improved. Usually, diamond particles are sintered under ultra-high pressure and high temperature by the phenomenon of diamond dissolution and precipitation using a catalyst such as an iron group metal. When boron or boron compounds are added, borides of iron group metals are formed and the melting point is lowered, and the melt deposition rate is increased, which causes the bonds between diamond particles (
It can be inferred that the diamond skeleton part) has grown and the holding power of the diamond particles has improved. If the content of boron or boride is less than 0.005%, the formation of the diamond skeleton portion will be slow. On the other hand, if the content of boron or boride exceeds 0.15%, a large amount of 1illll element will invade the diamond skeleton, reducing the strength of the diamond skeleton.

次に、本発明のダイヤモンド焼結体を直接WC−CO板
に接合したブランクをピット本体にロー付けしてコアピ
ラトラ作成し掘削テス)k行った。その結果、掘削条件
を厳しくシタ場合ダイヤモンド焼結体は欠損しなかった
もののダイヤモンド焼結体がWO−Oo母材より剥離す
るという問題を生じた。特にロー付は温度が高くなれば
、剥離の頻度が増加した。この原因を調査するため、接
合部近傍の組織を観察したところダイヤモンド焼結体と
、超硬合金の界面にはCOが富化された層があった。さ
らに、界面近傍の超硬合金には遊離炭素が存在していた
。ロー付は温度は一般に、750〜800℃であるが、
界面においてはCOが多量l存在し、とのCOのため、
ダイヤモンドがグラファイト化され、強度が低下(〜、
剥離するものと考えられる。また、超硬合金中に遊離炭
素が存在すると、超硬合金の強度が低下するが、これも
剥離の原因と考えられる。
Next, a blank in which the diamond sintered body of the present invention was directly bonded to a WC-CO plate was brazed to the pit body to create a core pit, and an excavation test was performed. As a result, although the diamond sintered body did not break when the excavation conditions were severe, a problem occurred in that the diamond sintered body peeled off from the WO-Oo base material. Particularly in brazing, as the temperature rose, the frequency of peeling increased. In order to investigate the cause of this, we observed the structure near the joint and found that there was a CO-enriched layer at the interface between the diamond sintered body and the cemented carbide. Furthermore, free carbon was present in the cemented carbide near the interface. The temperature for brazing is generally 750-800℃,
A large amount of CO exists at the interface, and due to the CO
The diamond becomes graphitized and its strength decreases (~,
It is thought that it will peel off. Furthermore, the presence of free carbon in the cemented carbide reduces the strength of the cemented carbide, which is also considered to be a cause of peeling.

本発明者等は強度−の高い接合を得るため、種々検討し
た結果、高圧相型窒化硼素を70容量係以下と残部が周
期律表の4a、5a族の炭化物、窒化物、炭窒化物より
残る中間層を用いれば良いことを発見した。
In order to obtain a bond with high strength, the present inventors conducted various studies and found that high-pressure phase boron nitride is less than 70% by volume, and the remainder is made of carbides, nitrides, and carbonitrides of groups 4a and 5a of the periodic table. I discovered that it is sufficient to use the remaining intermediate layer.

本発明者等の実験によると、ダイヤモンド焼結体を製造
する超高圧、高温条件下では、ダイヤモンド焼結体と超
硬合金母材は、この中間接合層を介して強固に接合して
いた0これらの高圧相型窒化硼素と炭化物、窒化物から
成る中間接合層ケ有する複合焼結体はダイヤモンド焼結
体層と中間接合層との界面には超硬合金母材等より流出
し20o等のダイヤモンド溶媒金属が多量に存在せず、
ダイヤモンド粒子と中間接合層が直接液している領域が
大である。このため再加熱による強度低下が生じない。
According to experiments conducted by the present inventors, the diamond sintered body and the cemented carbide base material were firmly bonded via this intermediate bonding layer under the ultra-high pressure and high temperature conditions used to produce the diamond sintered body. These composite sintered bodies having an intermediate bonding layer consisting of high-pressure phase type boron nitride, carbide, and nitride are leaked from the cemented carbide base material, etc. at the interface between the diamond sintered body layer and the intermediate bonding layer. Diamond solvent metals are not present in large quantities;
There is a large area where the diamond particles and the intermediate bonding layer are in direct liquid contact. Therefore, there is no decrease in strength due to reheating.

また、界面近傍の超硬合金中にも遊離炭素はほとんど存
在しないので接合強度は高い0以上の如く、本発明によ
ればダイヤモンド焼結層を超硬合金母材に強固に付着さ
せることができ、非常に有用であるが、このように強固
に接合させられる理由としては次のように推測される。
In addition, since there is almost no free carbon in the cemented carbide near the interface, the bonding strength is high, such as 0 or more, and according to the present invention, the diamond sintered layer can be firmly attached to the cemented carbide base material. , is very useful, but the reason for such a strong bond is presumed to be as follows.

まず、中間接合層と超硬合金母材との接着についてであ
るが、中間接合層中に含有される周期律表第4 a +
  5 a族の炭化物や窒化物は、超硬合金母材の主成
分であるwe  と相互固溶体を形成し、更に中間層中
の高圧相型窒化硼素は超硬合金母材のWe−Coと反応
してポライド全生成するため、両者は強固に付着するも
のと思われる0 次に中間接合層とダイヤモンド焼結体の接着については
ダイヤモンド粉末や通常ダイヤモンドの結合相として用
いられる鉄族金属や炭化物、窒化物とも中間接合層中の
周期律表第4a、5a族の炭化物、窒化物と親和性に優
れており、更に中間接合層とダイヤモンド焼結体層は焼
結前において粉末状態で接しているため、焼結後、中間
接合層とダイヤモンド焼結体層が混合した層が存在して
、強く接合するものと考えられる。
First, regarding the adhesion between the intermediate bonding layer and the cemented carbide base material, it is important to note that
5 Group A carbides and nitrides form a mutual solid solution with we, which is the main component of the cemented carbide base material, and furthermore, the high-pressure phase boron nitride in the intermediate layer reacts with the We-Co of the cemented carbide base material. It is thought that the two will adhere strongly because all of the polide is generated during the process.Next, for adhesion between the intermediate bonding layer and the diamond sintered body, diamond powder, iron group metals and carbides, which are usually used as a bonding phase for diamond, are used. Nitride has excellent affinity with carbides and nitrides of groups 4a and 5a of the periodic table in the intermediate bonding layer, and furthermore, the intermediate bonding layer and the diamond sintered body layer are in contact with each other in a powder state before sintering. Therefore, it is thought that after sintering, there is a layer in which the intermediate bonding layer and the diamond sintered body layer are mixed, resulting in strong bonding.

また、周期律表第4a+5a族の炭化物、窒化物に0,
1重量%以上のA7 やSi  ’j5添加することに
より、中間接合層自体の焼結性が向上すると共に、これ
らの炭化物や窒化物とダイヤモンド粒子との親和性も向
上する。特に周期律表第4a族の窒化物であるTiNに
At ’50.1重量係以上含有したものを用いるとそ
の効果は犬になる0 本発明による中間接合層は高圧相型窒化硼素を含有して
いるため熱伝導率が高く、高温強度も高く、熱膨張係数
もダイヤモンド焼結体と同程度のものとすることができ
る。高圧相型窒化硼素の含有量が70容積係以上になる
と残部の周期律表第4a、5a族の炭化物や窒化物の量
が50容積係未満となり、この炭化物や窒化物と超硬合
金母材の主成分であるWCとで形成する相互固溶体の量
が減少し、更に中間接合層中の高圧相型窒化硼素とwC
−coが反応して生じる最ライドが脆いため、中間接合
層と超硬合金母材との接着強度が低下する傾向がある0
従って、中間接合層中の高圧相型窒化硼素の含有量は7
0容積係未満が望ましい。
In addition, carbides and nitrides of groups 4a+5a of the periodic table have 0,
By adding 1% by weight or more of A7 or Si'j5, the sinterability of the intermediate bonding layer itself is improved, and the affinity between these carbides and nitrides and diamond particles is also improved. In particular, if TiN, which is a nitride in Group 4a of the periodic table, contains At '50.1 or more by weight, the effect will be poor. The intermediate bonding layer according to the present invention contains high-pressure phase boron nitride. Because of this, it has high thermal conductivity, high high-temperature strength, and a coefficient of thermal expansion comparable to that of diamond sintered bodies. When the content of high-pressure phase type boron nitride becomes 70 volume coefficient or more, the amount of remaining carbides and nitrides of groups 4a and 5a of the periodic table becomes less than 50 volume coefficient, and these carbides and nitrides and cemented carbide base material The amount of mutual solid solution formed with WC, which is the main component of
-The bonding strength between the intermediate bonding layer and the cemented carbide base material tends to decrease because the override produced by the reaction of co is brittle.
Therefore, the content of high-pressure phase type boron nitride in the intermediate bonding layer is 7
It is desirable that the volume ratio is less than 0.

この中間接合層を用いて接合する母材としてはWC−C
o超硬合金または、Mo  k主成分とする(Mo、W
)C型の炭化物結晶を鉄族金属で結合したサーメットが
良い。WC−COや(Mo、 W) O−鉄族金属母材
は剛性が高く熱伝導性も優れており、また金属結合材を
含むことから靭性も良好であるため、ドリルビット用ダ
イヤモンド焼結体の母材として適している0 本発明の中間接合層における炭化物、窒化物としては例
えばTiC,Zr○、 HfO、NbC、TaCといっ
た炭化物やTiN 、 ZrN 、 HfN 、 Nb
N 、 TaNとイッた窒化物、またはこれ等の混合物
や’ri(c、 N) IZr(0,N)といった炭窒
化物が用いられる。特にTiN i用いた場合、中間接
合層としての性能は最も優れている。
The base material to be bonded using this intermediate bonding layer is WC-C.
o Cemented carbide or Mo k as main component (Mo, W
) A cermet in which C-type carbide crystals are bonded with iron group metals is good. WC-CO and (Mo, W) O-iron group metal base materials have high rigidity and excellent thermal conductivity, and also have good toughness because they contain metal binders, so they are suitable for use as diamond sintered bodies for drill bits. Examples of carbides and nitrides in the intermediate bonding layer of the present invention include carbides such as TiC, Zr○, HfO, NbC, and TaC, as well as TiN, ZrN, HfN, and Nb.
A nitride of N, TaN, a mixture thereof, or a carbonitride such as 'ri(c,N)IZr(0,N) is used. In particular, when TiNi is used, the performance as an intermediate bonding layer is the best.

本発明の焼結体に使用するダイヤモンド原料粉末は10
μm以上のダイヤモンド粒子と1μm以下、好ましくは
05μm以下のミクロンパウダーである。合成ダイヤモ
ンド天然ダイヤモンドのいずれでも良い〇 このダイヤモンド粉末とWCマたは(Mo、W)0及び
F6 、 Co 、 Ni  の鉄族金属粉末あるいは
これに硼素または硼化物を加えた粉末をボールミル等の
手段を用いて均一に混合する。この鉄族金属は予め混合
せずに焼結時に溶浸せしめても良い。また本発明者等の
先願(特願昭52−51581号)の如くボールミル時
のポットとボールを混入するWCまたは(Mo、 W)
 0  の炭化物と鉄族金属の焼結体で作成しておき、
ダイヤモンド粉末をボールミル粉砕すると同時にポット
とボールからWCまたは(MO,W) Cと鉄族金属の
焼結体の微細粉末を混入せしめる方法もある0 これらの混合粉末の焼結体を製造する方法としては高圧
相型窒化II素と炭化物や窒化物の粉末を超硬合金母材
とダイヤモンド含有硬質層形酸粉末の間に必要な量を粉
末状でまたは型押体として、−!た超硬合金母材に適当
な溶媒を加えてスラリー状にした粉末を塗布することに
よって中間接合層全形成する粉末層を設け、これを超高
圧、高温下でホッ°ドブレスすることにより、ダイヤモ
ンド含有硬質層の焼結と同時に炭化物。
The diamond raw material powder used for the sintered body of the present invention is 10
These are diamond particles with a diameter of 1 μm or more, and micron powder with a diameter of 1 μm or less, preferably 0.5 μm or less. Synthetic diamonds or natural diamonds may be used. This diamond powder and WC powder or iron group metal powders of (Mo, W)0 and F6, Co, Ni, or powders containing boron or boride are processed by means such as a ball mill. Mix evenly. This iron group metal may be infiltrated during sintering without being mixed in advance. Also, as in the previous application of the present inventors (Japanese Patent Application No. 52-51581), WC or (Mo, W) in which pots and balls are mixed during ball milling is used.
0 carbide and a sintered body of iron group metal,
There is also a method of grinding diamond powder in a ball mill and simultaneously mixing fine powder of sintered body of WC or (MO, W) C and iron group metal from a pot and ball.0 As a method for manufacturing a sintered body of these mixed powders, The required amount of high-pressure phase type II nitride and carbide or nitride powder is placed between the cemented carbide matrix and the diamond-containing hard layered acid powder in powder form or as an embossed body. A powder layer that forms the entire intermediate bonding layer is created by applying a powder made into a slurry by adding an appropriate solvent to the cemented carbide base material, which is then hot pressed under ultra-high pressure and high temperature. Contains carbide at the same time as sintering of the hard layer.

窒化物よりなる中間接合層を焼結し、同時に母材と接合
せしめる方法も採用できる。
It is also possible to adopt a method in which an intermediate bonding layer made of nitride is sintered and bonded to the base material at the same time.

本発明で用いる中間接合層中の周期律表第4a+5a族
金属の炭化物や窒化物は高強度の化合物であるが、ダイ
ヤモンド含有層の焼結を行う超高圧条件下(一般には2
0 Kb〜 90Kb)ではこれ等化合物の理想剪断強
度に近い圧力で加圧されてお9、これ等化合物粉末粒子
は変形。
The carbides and nitrides of metals from Groups 4a+5a of the periodic table in the intermediate bonding layer used in the present invention are high-strength compounds.
0 Kb to 90 Kb), the powder particles of these compounds are deformed when they are pressurized at a pressure close to the ideal shear strength of these compounds9.

破砕し、容易に緻密な状態に充填され、引続いて加熱さ
れることによって緻密な焼結体となる。
It is crushed, easily filled into a dense state, and then heated to become a dense sintered body.

この他、超高圧、高温下でダイヤモンド粉末層中にダイ
ヤモンド生成触媒金属や他の結合金属の融体を含浸せし
めることもできる。前述した現在市販されている超硬合
金母材に直接接合まれる結合金属であるCOがダイヤモ
ンド粉末層中に浸入してダイヤモンド焼結体の結合金属
となる。本発明の場合は母材超硬合金の結合金属と無関
係に結合金属を選択することができる。
In addition, it is also possible to impregnate a molten diamond-forming catalyst metal or other binding metal into the diamond powder layer under ultra-high pressure and high temperature. The above-mentioned CO, which is the bonding metal that is directly bonded to the currently commercially available cemented carbide base material, penetrates into the diamond powder layer and becomes the bonding metal of the diamond sintered body. In the case of the present invention, the bonding metal can be selected regardless of the bonding metal of the base cemented carbide.

以下実施例によ゛り具体的に説明する。This will be explained in detail below using examples.

実施例1 粒度05μの合成ダイヤモンド粉末とWC及びCo  
粉末f、WC−Co超硬合金製のポットとボールを用い
て粉砕混合した。得られた混合粉末の組成は、平均粒度
05μmの微粒ダイヤモンド80容量%、WO12容量
係、Co 8容量%であった。この混合粉末と粒度20
〜50μmのダイヤモンド粉末を容積で75:25に混
合した。この粉末に015%重量のB粉末を添加した。
Example 1 Synthetic diamond powder with particle size of 05μ, WC and Co
Powder f was pulverized and mixed using a pot and ball made of WC-Co cemented carbide. The composition of the obtained mixed powder was 80% by volume of fine diamond with an average particle size of 05 μm, 12% by volume of WO, and 8% by volume of Co. This mixed powder and particle size 20
~50 μm diamond powder was mixed 75:25 by volume. 0.15% by weight of B powder was added to this powder.

次にV/C−6%com11.の外径10.高さ5咽の
超硬合金上面に60容量係の立方晶型窒化硼素(C!B
N )と残部がAtf20重量係含有するTiN J:
り成る粉末をエチルセルロースを含む有機溶媒に混入し
て、スラリー状にしたものを塗布した。この超硬合金f
Mo 製の容器に詰め立方晶型窒化岬1素全含有した中
間層に接するようにダイヤモンドヶ含有する硬質層粉末
ケ充てんし、超硬圧装置を用いて先ず圧力i 55 K
b 加え、引続いて1500℃に加熱して20分間保持
した。
Next, V/C-6% com11. Outer diameter of 10. Cubic boron nitride (C!
TiN J containing N ) and the balance Atf20 weight ratio:
The powder was mixed into an organic solvent containing ethylcellulose to form a slurry, which was then applied. This cemented carbide f
A container made of Mo was filled with a hard layer of powder containing diamond so as to be in contact with an intermediate layer containing all cubic crystal nitride elements, and first a pressure of 55 K was applied using an ultra-hard pressure device.
b was added, followed by heating to 1500°C and holding for 20 minutes.

冷却後、焼結体を取り出して、観察したところ20〜5
0μmのダイヤモンド粒子が超微粒のダイヤモンドヶ含
有する結合材ケ介して接合されていた。丑た接合界面で
は、ダイヤモンド焼結体が立方晶型窒化硼素を含有する
中間層を介して超硬合金に強固に接合されていた。
After cooling, the sintered body was taken out and observed.
Diamond particles of 0 μm were bonded through a bonding material containing ultrafine diamond particles. At the bonding interface, the diamond sintered body was firmly bonded to the cemented carbide via an intermediate layer containing cubic boron nitride.

この複合焼結体を用いて、外径46配の4枚歯よシ成る
コアビット(z作成し、圧縮強度1800Kg /c1
n 2の安山岩を250回転/分の速度で掘削した。な
おビット荷重は800にりとした。比較のため市販のビ
ット用ダ・「ヤモンド焼結体及び上記ダイヤモンド焼結
体で中間層を用いず超硬合金に直接接合したものの、コ
アピッ)を試作し、同様のテストヲ行った。その結果、
本発明の焼結体は20m掘削しても、ダイヤモンド焼結
体は欠損もせず使用可能であったのに対し、市販のビッ
ト用ダイヤモンド焼結体を用いたコアピットは5m掘削
した時点で、ダイヤモンド焼結体の欠損と剥離で寿命と
なった。
Using this composite sintered body, we made a core bit (z) consisting of 4 teeth with an outer diameter of 46, and a compressive strength of 1800 kg/c1
n 2 andesite was drilled at a speed of 250 revolutions/min. Note that the bit load was 800 ni. For comparison, we prototyped a commercially available bit sintered body (a diamond sintered body and the above-mentioned diamond sintered body, but directly bonded to the cemented carbide without using an intermediate layer), and conducted similar tests.
The diamond sintered body of the present invention could be used without any breakage even after 20 m of excavation, whereas the core pit using a commercially available diamond sintered body for bits could be used without diamonds after 5 m of excavation. The life span was reached due to damage and peeling of the sintered body.

また、硬質層は本発明の焼結体と同じ組成であるが中間
接合層を有さない焼結体のコアピットは15m掘削した
時点でダイヤモンド焼結体が超硬合金より剥離した。
Further, in the core pit of the sintered body whose hard layer had the same composition as the sintered body of the present invention but did not have the intermediate bonding layer, the diamond sintered body was separated from the cemented carbide after 15 m of excavation.

実施例2 表1に示す結合材粉末を作成した。微粒ダイヤモンドと
しては0.5μmのものケ用い友〇この結合材と粒度1
oμm以上のダイヤモンド粒子を表2に示す割合いで混
合して完成粉末?作成した。
Example 2 A binder powder shown in Table 1 was prepared. As a fine diamond, 0.5 μm is a good friend to use. This binding material and particle size 1
Completed powder by mixing diamond particles of 0 μm or larger in the proportions shown in Table 2? Created.

表   2 この中間層粉末をエチルセルロースケ含む有機溶媒に混
入してスラリー状にし、WC−8%CO組成の超硬合金
に塗布した。この超硬合金(5M。
Table 2 This intermediate layer powder was mixed into an organic solvent containing ethyl cellulose to form a slurry, and the slurry was applied to a cemented carbide having a composition of WC-8% CO. This cemented carbide (5M.

製の容器に入れ、中間層粉末と接するように表2のダイ
ヤモンドを含有する粉末を充てんした。
The container was filled with the diamond-containing powder shown in Table 2 so as to be in contact with the intermediate layer powder.

これを実施例1と同様にして超高圧焼結してダイヤモン
ド焼結体を作成し、5枚歯より成るコアピラトラ試作し
た0表4に試作したダイヤモンド焼結体と中間層の組成
を示す。このビット2用いて一軸圧縮強度2000 K
9/Qn2の安山岩’(z50m/分の速度で10m掘
削した。テストWC−6係CO超硬合金を(Mo、 W
I O−10係+11゜10係COに変更した以外は実
施例1と同様にして、ダイヤモンド焼結体を試作し、4
枚歯より成るコアピットを作成1−タ。このビットを用
いて一縮圧縮強度1700 K17cm2の安山岩ヲ1
00m/分の速度で20m掘削したが、ダイヤモンド焼
結体は欠損や剥離は生じなかった。
This was sintered under ultra-high pressure in the same manner as in Example 1 to create a diamond sintered body, and a core piratra consisting of five teeth was fabricated.Table 4 shows the composition of the prototype diamond sintered body and the intermediate layer. Unconfined compressive strength of 2000 K using this bit 2
9/Qn2 andesite' (z excavated 10 m at a speed of 50 m/min. Test WC-6 CO cemented carbide (Mo, W
A diamond sintered body was prototyped in the same manner as in Example 1 except that the CO ratio was changed to IO-10 ratio + 11° and 10 ratio CO.
Create a core pit consisting of two teeth. Using this bit, I made 1 piece of andesite with a compressive strength of 1700K17cm2.
Although the diamond sintered body was excavated for 20 m at a speed of 0.00 m/min, no chipping or peeling occurred in the diamond sintered body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ダイヤモンド焼結体における強度(抗折力)
とダイヤモンド粒度の関係を表わしたものである。第2
図は本発明焼結体における粗粒のダイヤモンド粒子の粒
度と岩石切削性能を示したものである。第5図は本発明
焼結体における粗粒ダイヤモンドの含有量と岩石切削性
能を示したグラフである。 代理人  内 1)  明 代理人  萩 原 亮 − 第2図 オ且粒タ゛イヤモンドの粒度 (、um)第3図 粗粒タイヤ上背の含有量 (容量%) 手続補正、書(方式) %式% 1、事件の表示 昭和57 年特許願第124512号 2、発明の名称 工具用機会ダイヤモンド焼結体及びその製造方法3、補
正をする者 事件との関係  特許出願人 11  所  大阪市東区北浜5丁目15番地4代理人 (I−所 東京都港区虎)門−丁目24番11号2補正
の対象 (1)明細書のボールペン書きされた頁a惰止の内容 (1)明細書の第22頁・23頁・25頁・27頁を別
紙の通り訂正する。(内容に変更なし)し、同様のテス
トヲ行った。その結果、本発明の焼結体は20m掘削し
ても、ダイヤモンド焼結体は欠損もせず使用可能であっ
たのに対し、市販のビット用ダイヤモンド焼結体を用い
たコアピットは5m掘削した時点で、ダイヤモンド焼結
体の欠枦と剥離で寿命となった。 また、硬質層は本発明の焼結体と同じ組成であるが中間
接合層を有さない焼結体のコアピットは15m掘削した
時点でダイヤモンド焼結体が超硬合金より剥離した。 実施例2 表1に示す結合材粉末ケ作成した。微粒ダイヤモンドと
しては[15μmのもの音用いた。 この結合材と粒度10μm以上のダイヤモンド粒子を表
2に示す割合いで混合して完成粉末上作成した。 表   2 表     4 特許庁長官若杉和夫殿 1 事件の表示 昭和5740ζ1許願第124512号2°発”JJ 
に’) 名称  工具用複合ダイヤモンド焼結体及びそ
の製造方法 3、捕」1′、をする者 事件との関係  T;’1′許出願人 fiIすi  大阪市東区北浜5丁目15番地代表者 
用上哲部 4、代理人 11  所 東京都港区虎ノ門−丁゛目16番2号(ば
か1名) l補正の対象 明細書の「発明の詳細な説明」の欄 a補正の内容 (1)  明細書第23頁20行目の1したものの、コ
アピットも」を「シたもののコアピットも」と訂正する
。 (2)明細書第23頁1行目の「粒度10μm以上」を
「粒度5μm以上」と訂正する。 (3)明細書第23頁表2の左上の欄中の「10μm以
上の」を「5μ惧以上の」と訂正する。 (4)明細書第27頁表4の右下にあると訂正する。
Figure 1 shows the strength (transverse rupture strength) of a diamond sintered body.
This shows the relationship between diamond grain size and diamond particle size. Second
The figure shows the particle size of coarse diamond particles and rock cutting performance in the sintered body of the present invention. FIG. 5 is a graph showing the content of coarse diamond and rock cutting performance in the sintered body of the present invention. Agents 1) Akira Agent Ryo Hagiwara - Figure 2: Particle size of coarse-grained diamond (, um) Figure 3: Content of coarse-grained tire upper back (volume %) Procedural amendment, book (method) % formula % 1. Indication of the case Patent Application No. 124512 of 1982 2. Name of the invention Machine diamond sintered body for tools and its manufacturing method 3. Person making the amendment Relationship to the case Patent applicant 11 Location 5-chome, Kitahama, Higashi-ku, Osaka No. 15, No. 4, Agent (I-Toramon-cho, Minato-ku, Tokyo), No. 24-11, No. 2, Subject of amendment (1) Contents of page A written in ballpoint pen of the specification (1) No. 22 of the specification Correct pages 23, 25, and 27 as shown in the attached sheet. (No changes were made to the content) and conducted a similar test. As a result, the diamond sintered body of the present invention could be used even after 20m excavation without any breakage, whereas the core pit using the commercially available diamond sintered body for bits could be used after 5m excavation. However, the life of the diamond sintered body came to an end due to chipping and peeling. Further, in the core pit of the sintered body whose hard layer had the same composition as the sintered body of the present invention but did not have the intermediate bonding layer, the diamond sintered body was separated from the cemented carbide after 15 m of excavation. Example 2 A binder powder shown in Table 1 was prepared. As the fine diamond, one with a diameter of 15 μm was used. This binder and diamond particles having a particle size of 10 μm or more were mixed in the ratio shown in Table 2 to prepare a finished powder. Table 2 Table 4 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office 1 Case description Showa 5740ζ1 Patent Application No. 124512 2° issued “JJ
2') Name: Composite diamond sintered body for tools and its manufacturing method 3, Relationship to the case of the person who committed the arrest '1'T:'1' Applicant fiIsui Representative, 5-15 Kitahama, Higashi-ku, Osaka
Business Tetsubu 4, Agent 11 Address: 16-2, Toranomon, Minato-ku, Tokyo (1 idiot) Contents of the amendment (1) Column a “Detailed Description of the Invention” of the specification to be amended (1) ) On page 23, line 20 of the specification, the phrase ``1, but the core pit is also'' is corrected to ``the core pit is also the same.'' (2) In the first line of page 23 of the specification, "particle size 10 μm or more" is corrected to "particle size 5 μm or more." (3) In the upper left column of Table 2 on page 23 of the specification, "10 μm or more" is corrected to "5 μm or more." (4) Correct that it is in the lower right corner of Table 4 on page 27 of the specification.

Claims (1)

【特許請求の範囲】 (11粒度10μm以上iooμm以下の粗粒ダイヤモ
ンド粒子が容量で50〜85%を占め、残部が1μm以
下の超微粒のダイヤモンド粒子を容量で60〜90%と
1μm以下のwCま友はこれと同一結晶構造を有する(
 Mo、W)0および鉄族金属から構成される結合材よ
り成る硬質焼結体が高圧相型窒化硼素2ya容量係以下
と残部が周期律表第4a、5a族の炭化物、窒化物、炭
窒化物またはこれら2種以上の固溶体もしくは混合物か
らなるが、あるいはこれらにAt またはSl  ある
いはこの双方を重量で0.1%以上含有する厚み2陥以
下の中間層を介してWC−Co合金母材またはM。 金主成分とする(Mo、W)C型の炭化物結晶を鉄族金
属で結合したサーメット母材に接合されてなることを特
徴とする工具用複合ダイヤモンド焼結体。 (2ン  硬質焼結体が粒度10μm以上100μm以
下の粗粒ダイヤモンド粒子を容量で50〜80%占め、
残部が1μm以下の超微粒ダイヤモンド粒を容量で60
〜90係と1μm以下のWCまたはこれと同一結晶構造
を有する(Mo、W)Oおよび鉄族金属と重量で000
5〜015%の硼素または/および岬1化物を含有する
ことを特徴とする特許請求の範囲第1項記載の工具用複
合ダイヤモンド焼結体。 (3)特許請求の範囲第(1)または(2)項記載の硬
質焼結体において結合材の一部として用いるWCまたは
これと同一結晶構造を有する(MO,W)Cと鉄族金属
の割合いがその共晶組成に相当するものより炭化物含有
量が多いことを特徴とする工具用複合ダイヤモンド焼結
体。 (4)  中間層の成分である周期律表第4a族の窒化
物75fTiNである特許請求の範囲第1〜5項記載の
工具用複合ダイヤモンド焼結体。 (5)  WC!−Co合金母材またはMo  f主成
分とする(+vo、WJC型の炭化物結晶を鉄族金属で
結合したサーメット母材に接して、高圧相型窒化jJl
ll素と残部が周期律表4a、5a族の炭化物、窒化物
、炭窒化物またはこれら2種以上の固溶体もしくは混合
物、あるいはこれらにAt′=またはsl  あるいは
この双方を重量で01%以上含有する粉末を粉末状でも
しくは型押体で置くか、または該母材上に予め塗布して
おき、この上に10〜100μmのダイヤモンド粉末ケ
50〜85容量チと残部が1μm以下の超微粒ダイヤモ
ンド粉末’z60〜90容量係と1μm以下のWCまた
はこれと同一結晶構造を有する(Mo、 W) Oと鉄
族金属粉末の混合粉末を充てんし、この全体を超高圧高
温装置を用いて、ダイヤモンドが安定な高温高圧下でホ
ットプレスして、ダイヤモンドv含有する硬質層および
中間層粉末を焼結し、同時に母材に接合させることを特
徴とする工具用複合ダイヤモンド焼結体の製造方法。 (6)  W O−00合金母材またはMo  を主成
分とする(MO,WJ C型の炭化物結晶を鉄族金属で
結合したサーメット母材に接して、高圧相型窒化硼素と
残部が周期律表4a、5a族の炭化物、窒化物、炭窒化
物、またはこれら2種以上の固溶体もしくは混合物、あ
るいはとり、らにAtまたはSl  あるいはこの双方
を重量で0.1係以上含有する粉末孕粉末状でもしくは
型押体で置くか、または該母材上に予め塗布しておき、
この上に10〜100μmのダイヤモンド粉末を50〜
85容量係と残部が1μm以下の超微粒ダイヤモンド粉
末を60〜90容量係と1μm以下のWCまたはこれと
同一結晶構造を有する(Mo、 W) Oの混合粉末を
充てんし、この上に鉄族金属の一種、または二種以上の
合金板を載置した後、固体圧力媒体を用いた超高圧高温
装置ケ使用してダイヤモンドが安定な高温高圧下で鉄族
金属の一種”f、 ftは二種以上の合金の液相を混合
粉末中に浸入させることにより、ダイヤモンドを含有す
る硬質層と中間層粉末を焼結せしめると同時に母材に接
合させることを特徴とする工具用複合ダイヤモンド焼結
体の製造方法0 (7)  WC−Co合金母材またはMo  f主成分
とする(Mo、WJC型の炭化物結晶を鉄族金属で結合
したサーメット母材に接して、高圧相型窒化硼素と残部
が周期律表4a、5a族の炭化物、窒化物、炭窒化物、
またはこれら2種以上の固溶体もしくは混合物あるいは
これらにAt−!りはSi  あるいはこの双方を重量
で0.1係以上含有する粉末を粉末状でもしくは型押体
で置くか、または該母材上に予め塗布しておき、この上
に10〜100μmのダイヤモンド粉末?50〜85容
量係と残部が、1μm以下の超微粒ダイヤモンド粉末を
60〜90容量係と1μm以下のwe  −またはこれ
と同一結晶構造をする(Mo、W)O硼素または硼化物
を重量で混合粉末の0.0 [15〜0.15%及び鉄
族金属の混合粉末を作成し、ダイヤモンドを含有する硬
質層と中間層粉末を焼結せしめると同時に、母材に接合
させることを特徴とする工具用複合ダイヤモンド焼結体
の製造方法0 (8)  We−C!o合金母材またはMo  f主成
分とする(Mo、W)O型の炭化物結晶を鉄族金属で結
合したサーメット母材に接して、高圧相型窒化硼素と残
部が周期律表4a、5a族の炭化物、窒化物、炭窒化物
、またはこれら2種以上の固溶体もしくは混合物、ある
いはこれらにAtまたはSi  あるいはこの双方を重
量で0.1%以上含有する粉末を粉末状でもしくは型押
体で置くか、または該母材上に予め塗布しておき、この
上に10〜100μmのダイヤモンド粉末を50〜85
容量係と残部が1μm以下の超微粒ダイヤモンド粉末を
60〜90容量係と1μm以下のWC!t*はこれと同
一結晶構造を有する(Mo、 W) O,硼素、!、た
は硼化物を重量で混合粉末の0006〜016%含有す
る混合粉末を充てんし、この上に鉄族金属の一種、また
は二種以上の合金板を載置した後、固体圧力媒体を用い
た超高圧高温装置7使用してダイヤモンドが安定な高温
高圧下で鉄族金属の一種または二種以上の合金の液相全
混合粉末中に浸入させることによシ、ダイヤモンドを含
有する硬質層と中間層粉末を焼結せしめると同時に母材
に接合させること欠特徴とする工具用複合グイ−Vモン
ド焼結体の製造方法。 (9)  特許請求の範囲第(5)、 (6)、 (7
)、 (8)項記載の製造方法において硬質層の結合材
形成粉末の一部として用いるWCまたはこれと同一結晶
構造ケ有する(MO,W) Cと鉄族金属の割合いがそ
の共晶組成に相当するものより、炭化物の量を多くした
混合粉末を用い、炭化物と鉄族金属の共晶生成温度以上
で超微粒ダイヤモンドの粒成長を抑制して焼結すること
を特徴とする工具用複合ダイヤモンド焼結体の製造方法
。 00  中間層の成分である周期律表第4a族の窒化物
がTiNである特許請求の範囲第(5)、 (6)。 (7)、 (SL (9)項記載の工具用複合ダイヤモ
ンド
[Claims] Mayu has the same crystal structure as this (
The hard sintered body made of a binder composed of Mo, W) 0 and iron group metal is made of high-pressure phase boron nitride with a capacity of 2ya or less, and the remainder is carbides, nitrides, and carbonitrides of groups 4a and 5a of the periodic table. A WC-Co alloy base material or a solid solution or mixture of two or more of these, or a WC-Co alloy base material or M. A composite diamond sintered body for tools, characterized in that it is bonded to a cermet base material in which (Mo, W)C-type carbide crystals containing gold as a main component are bonded with an iron group metal. (The hard sintered body accounts for 50 to 80% by volume of coarse diamond particles with a particle size of 10 μm or more and 100 μm or less,
A capacity of 60 ultra-fine diamond grains with a remainder of 1 μm or less
~90% and 1μm or less WC or (Mo, W)O and iron group metals having the same crystal structure as this and 000% by weight
The composite diamond sintered body for tools according to claim 1, characterized in that it contains 5 to 15% of boron or/and Misaki monoride. (3) WC used as a part of the binder in the hard sintered body according to claim (1) or (2), or (MO, W)C having the same crystal structure as WC and an iron group metal. A composite diamond sintered body for tools, characterized in that the carbide content is higher than that corresponding to its eutectic composition. (4) The composite diamond sintered body for tools according to claims 1 to 5, which is a nitride 75fTiN of Group 4a of the periodic table, which is a component of the intermediate layer. (5) WC! - Co alloy base material or Mo f main component (+vo, high pressure phase type nitrided jJl
ll element and the remainder are carbides, nitrides, carbonitrides of groups 4a and 5a of the periodic table, or solid solutions or mixtures of two or more of these, or these contain At' = or sl or both of them in an amount of 01% or more by weight Place the powder in powder form or in the form of an embossed body, or apply it on the base material in advance, and add 50 to 85 volumes of 10 to 100 μm diamond powder and the remainder ultrafine diamond powder of 1 μm or less. 'z 60-90 capacity factor, 1 μm or less WC or a mixed powder of (Mo, W)O having the same crystal structure as this, and iron group metal powder is filled, and the whole is heated using an ultra-high pressure and high temperature equipment to form diamonds. A method for producing a composite diamond sintered body for a tool, which comprises hot pressing under stable high temperature and high pressure to sinter the hard layer and intermediate layer powder containing diamond v, and simultaneously bonding them to a base material. (6) WO-00 alloy base material or Mo (MO, WJ) In contact with a cermet base material in which C-type carbide crystals are bonded with iron group metal, high-pressure phase boron nitride and the remainder are in periodic order. Powder containing carbides, nitrides, carbonitrides of groups 4a and 5a, or solid solutions or mixtures of two or more of these, or At or Sl or both by weight of 0.1 or more or by applying it on the base material in advance,
On top of this, add 50~10~100μm diamond powder.
Ultra-fine diamond powder with 85 volume fraction and the balance of 1 μm or less is filled with 60 to 90 volume fraction and WC with 1 μm or less or a mixed powder of (Mo, W) O having the same crystal structure as this, and on top of this, iron group After placing an alloy plate of one metal or two or more metals, we use an ultra-high pressure and high temperature equipment using a solid pressure medium to heat the diamond under stable high temperature and pressure. A composite diamond sintered body for tools, characterized in that a hard layer containing diamond and an intermediate layer powder are sintered and bonded to a base material at the same time by infiltrating a liquid phase of an alloy of at least one species into a mixed powder. Manufacturing method 0 (7) WC-Co alloy base material or MoF as main component (Mo, WJC type carbide crystal bonded with iron group metal in contact with cermet base material, high pressure phase type boron nitride and the remainder) Carbides, nitrides, carbonitrides of groups 4a and 5a of the periodic table,
Or a solid solution or mixture of two or more of these, or At-! For this purpose, a powder containing Si or both of them by weight of 0.1 or more is placed in powder form or in the form of an embossed body, or it is coated on the base material in advance, and then diamond powder of 10 to 100 μm is applied on top of this. ? 50 to 85 volume fraction and the balance is a mixture of ultrafine diamond powder of 1 μm or less and 60 to 90 volume fraction and 1 μm or less we - or (Mo, W) O boron or boride having the same crystal structure as this by weight. The method is characterized in that a mixed powder of 0.0 [15 to 0.15% of the powder and an iron group metal is prepared, and the hard layer containing diamond and the intermediate layer powder are sintered and simultaneously bonded to the base material. Manufacturing method of composite diamond sintered body for tools 0 (8) We-C! o Alloy base material or Mo f In contact with a cermet base material in which (Mo, W) O-type carbide crystals as main components are bonded with iron group metal, high-pressure phase boron nitride and the remainder are from groups 4a and 5a of the periodic table. carbides, nitrides, carbonitrides, solid solutions or mixtures of two or more of these, or a powder containing At or Si or both of these in an amount of 0.1% or more by weight, in powder form or in a molded form. Alternatively, it may be coated on the base material in advance, and 50 to 85 μm of diamond powder with a diameter of 10 to 100 μm is applied thereon.
Ultra-fine diamond powder with a capacity factor and the remainder of 1 μm or less is 60 to 90 WC with a capacity factor of 1 μm or less! t* has the same crystal structure as this (Mo, W) O, boron,! A mixed powder containing 0006 to 016% of the mixed powder by weight is filled with 0006 to 016% of the mixed powder, and an alloy plate of one or more iron group metals is placed on top of the mixed powder, and then a solid pressure medium is used. A hard layer containing diamond is formed by infiltrating the entire liquid phase mixed powder of one or more alloys of iron group metals under stable high temperature and high pressure conditions using an ultra-high pressure and high temperature apparatus 7. A method for manufacturing a composite Gouy-V Monde sintered body for tools, characterized by sintering the intermediate layer powder and simultaneously bonding it to the base material. (9) Claims No. (5), (6), (7)
), WC used as a part of the binder forming powder of the hard layer in the manufacturing method described in (8) or having the same crystal structure as this (MO, W) The ratio of C and iron group metal Insulator's eutectic composition Composite for tools characterized by using a mixed powder with a larger amount of carbide than the equivalent powder, and sintering with suppressing the grain growth of ultrafine diamond at a temperature higher than the eutectic formation temperature of carbide and iron group metal. A method for producing a diamond sintered body. 00 Claims (5) and (6), wherein the nitride of Group 4a of the periodic table, which is a component of the intermediate layer, is TiN. (7), (SL) Composite diamond for tools described in item (9)
JP12451282A 1981-09-04 1982-07-19 Composite diamond-sintered body useful as tool and its manufacture Granted JPS5916942A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12451282A JPS5916942A (en) 1982-07-19 1982-07-19 Composite diamond-sintered body useful as tool and its manufacture
SE8204983A SE457537B (en) 1981-09-04 1982-09-01 DIAMOND PRESSURE BODY FOR A TOOL AND WAY TO MANUFACTURE IT
FR8215073A FR2512430B1 (en) 1981-09-04 1982-09-03 DIAMOND AGGLOMERATOR FOR A TOOL AND METHOD FOR MANUFACTURING THE AGGLOMERATOR
DE19823232869 DE3232869A1 (en) 1981-09-04 1982-09-03 DIAMOND PRESSLING FOR A TOOL AND METHOD FOR THE PRODUCTION THEREOF
US06/414,821 US4505746A (en) 1981-09-04 1982-09-03 Diamond for a tool and a process for the production of the same
GB08225302A GB2107298B (en) 1981-09-04 1982-09-06 A diamond compact for a tool and a process for the production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12451282A JPS5916942A (en) 1982-07-19 1982-07-19 Composite diamond-sintered body useful as tool and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22517187A Division JPS6386804A (en) 1987-09-10 1987-09-10 Production of composite diamond sintered body for tool

Publications (2)

Publication Number Publication Date
JPS5916942A true JPS5916942A (en) 1984-01-28
JPS6350401B2 JPS6350401B2 (en) 1988-10-07

Family

ID=14887318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12451282A Granted JPS5916942A (en) 1981-09-04 1982-07-19 Composite diamond-sintered body useful as tool and its manufacture

Country Status (1)

Country Link
JP (1) JPS5916942A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293705A (en) * 1985-06-19 1986-12-24 Mitsubishi Metal Corp Combined cutting tip
JPS6324003A (en) * 1986-07-16 1988-02-01 Mitsubishi Metal Corp Composite cutting tip
JPS63111105A (en) * 1986-10-30 1988-05-16 Ishizuka Kenkyusho:Kk Composite sintered body and its production
JPS63111104A (en) * 1986-10-30 1988-05-16 Ishizuka Kenkyusho:Kk Composite sintered body and its production
EP0726330A1 (en) * 1995-02-10 1996-08-14 Fuji Die Co., Ltd. Heat sinks and process for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522346B (en) * 2006-10-31 2011-01-19 六号元素(产品)(控股)公司 Polycrystalline diamond abrasive compacts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293705A (en) * 1985-06-19 1986-12-24 Mitsubishi Metal Corp Combined cutting tip
JPS6324003A (en) * 1986-07-16 1988-02-01 Mitsubishi Metal Corp Composite cutting tip
JPS63111105A (en) * 1986-10-30 1988-05-16 Ishizuka Kenkyusho:Kk Composite sintered body and its production
JPS63111104A (en) * 1986-10-30 1988-05-16 Ishizuka Kenkyusho:Kk Composite sintered body and its production
EP0726330A1 (en) * 1995-02-10 1996-08-14 Fuji Die Co., Ltd. Heat sinks and process for producing the same

Also Published As

Publication number Publication date
JPS6350401B2 (en) 1988-10-07

Similar Documents

Publication Publication Date Title
US8597387B2 (en) Abrasive compact with improved machinability
US4403015A (en) Compound sintered compact for use in a tool and the method for producing the same
US4505746A (en) Diamond for a tool and a process for the production of the same
US4343651A (en) Sintered compact for use in a tool
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
JP2004505786A (en) Manufacturing method of polishing products containing diamond
JPH0218365A (en) Abrasion resistant polycrystalline diamond heat resistor
JPH06669B2 (en) High hardness sintered compact composite material with sandwich structure
JPS5935066A (en) Diamond sintered body for tool and manufacture
JPS6167740A (en) Diamond sintered body for tools and its manufacture
JPH0530897B2 (en)
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
CN111266573A (en) Preparation method of polycrystalline cubic boron nitride composite sheet
JPS6125761B2 (en)
JPS6049589B2 (en) Composite sintered body for tools and its manufacturing method
JPS6022680B2 (en) Composite sintered body for tools and its manufacturing method
JPS6319585B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS6311414B2 (en)
JPS6257681B2 (en)
JPH0368938B2 (en)
JPS6323155B2 (en)
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JPS6386804A (en) Production of composite diamond sintered body for tool
CN114014692B (en) High red hard cermet blade