JPS63111105A - Composite sintered body and its production - Google Patents

Composite sintered body and its production

Info

Publication number
JPS63111105A
JPS63111105A JP25947186A JP25947186A JPS63111105A JP S63111105 A JPS63111105 A JP S63111105A JP 25947186 A JP25947186 A JP 25947186A JP 25947186 A JP25947186 A JP 25947186A JP S63111105 A JPS63111105 A JP S63111105A
Authority
JP
Japan
Prior art keywords
layer
diamond
metal
sintered body
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25947186A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishizuka
博 石塚
Akira Hosomi
暁 細見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Research Institute Ltd
Original Assignee
Ishizuka Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Research Institute Ltd filed Critical Ishizuka Research Institute Ltd
Priority to JP25947186A priority Critical patent/JPS63111105A/en
Publication of JPS63111105A publication Critical patent/JPS63111105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a composite sintered body having high joint strength of a WC-Co sintered hard alloy supporting layer and diamond powder layer by interposing a sheet consisting of a core part of a high melting metal and outside surface part of the carbide, etc., thereof between the two layers. CONSTITUTION:Substantially WC and Co which is a binder are molded or sintered to obtain the sintered hard alloy supporting layer. The prescribed supporting layer and the diamond powder layer are disposed adjacently to each other via the sheet consisting of >=1 kinds among group 4a, 5a, 6a metals of the periodic table interposed therebetween. The sheet is formed to the sectional area of 70-95% of the opposed sectional area of the two layers and is further formed with a compd. layer of at least one kind among C, N and B on the surface to decrease the wettability with molten iron family metals. The entire part thereof is then sintered within the stable region of the diamond and under the pressure and temp. conditions of about >=1,300 deg.C. The composite sintered body which has the diamond layer exhibiting an excellent hardness characteristic and does not generate exfoliation at all between the diamond and sintered hard alloy layers at the time of the heating operation is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は切削工具部材等に有用な複肝焼結体、特に焼結
ダイヤモンド層と超硬合金層とが、両層間に中間層を介
在させて一体化された複合環、枯体の改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a compound sintered body useful for cutting tool members, etc., in particular a sintered diamond layer and a cemented carbide layer with an intermediate layer interposed between the two layers. The present invention relates to the improvement of integrated composite rings and dead bodies.

〔従来技術とその問題点〕[Prior art and its problems]

難削材υロエ用バイト素材の様な高硬度材として超硬合
金製の基体層上に厚さ1頭以下の焼結ダイヤモンド層を
接合した複合焼結体が多用されている。この様なダイヤ
モンド層の焼結と層相〃間の結合は単一の操作(いわゆ
る同時焼結)で行なうのが強度特性の面で好ましく、こ
れには次の様ないくつかの方法が提案されている。rl
)ダイヤモンド粒子層と超硬合金層とを直接接して配置
し、高温高圧下で処理することにより、この除土じた超
硬合金から供給される融液相を焼結助剤として利用して
ダイヤ層の焼結と両層間の結合を行なうもの(特公昭6
1−24360 ) 、(2)層間をダイヤモンドと超
硬合金との中間の熱膨張率をもつ物質で仕切り、焼結助
剤としては予めダイヤモンド層に混入した粉末状金属や
ダ・イヤモンド層に接して配置した鉄属金属を用いる方
法(特公昭60−22680.58−19428.特開
昭60−85940等)である。
A composite sintered body in which a sintered diamond layer with a thickness of one head or less is bonded to a cemented carbide base layer is often used as a high-hardness material such as a cutting tool material for difficult-to-cut materials υROE. From the viewpoint of strength properties, it is preferable to perform the sintering of the diamond layer and the bonding between the layer phases in a single operation (so-called simultaneous sintering), and the following methods have been proposed for this purpose: has been done. rl
) By placing the diamond particle layer and the cemented carbide layer in direct contact with each other and treating them under high temperature and high pressure, the melt phase supplied from the soil-removed cemented carbide is used as a sintering aid. A device that performs sintering of the diamond layer and bonding between the two layers (Tokukō 6
1-24360), (2) The layers are partitioned with a substance with a coefficient of thermal expansion between that of diamond and cemented carbide, and the sintering aid is a powdered metal mixed in the diamond layer in advance or a substance in contact with the diamond layer. This is a method using ferrous metals arranged in such a manner (Japanese Patent Publication No. 60-22680.58-19428, Japanese Patent Application Laid-Open No. 60-85940, etc.).

上記(1)の方法ではダイヤモンド層の焼結時に作用す
る焼結助剤OJfを(2)に比べて少く制御することが
可能で、その結果より高硬度のダイヤモンド焼結層が得
られる力、;反面、焼結ダイヤモンド・超硬合金両層間
には熱膨張率に大きな差が存在するのにこれを吸収すべ
き中間層が無いので、高温ろう付げによってこの焼結体
を支持金具に取付けたりする際に、両層境界げ近ic 
7JObる大きな歪みのために層間付近においてダイヤ
モンド層のばがれを生じやすく、この傾向はl゛イヤモ
ンド焼結体層の硬度が高い程大きい。一方米国特許明訓
書M 4440573号にはダイヤモンド−超硬両層間
に両層の対向断面積よりも幾分小さめの高融点金属の仕
切板を配置し、超硬からダイヤモンド層へ供給される結
合助剤の(Coを主成分とする)融液縫ヲ必曖最少限に
抑制することによって、ダイヤモンド−ダイヤモンド結
合密度の高い複合焼結体を得る方法が記載されている。
In method (1) above, it is possible to control the sintering aid OJf that acts during sintering of the diamond layer to a lesser extent than in method (2), and as a result, a harder diamond sintered layer can be obtained. On the other hand, although there is a large difference in coefficient of thermal expansion between the sintered diamond and cemented carbide layers, there is no intermediate layer to absorb this difference, so this sintered body is attached to the support metal by high-temperature brazing. When the IC is near the boundary between both layers,
Due to the large strain of 7JOb, the diamond layer tends to peel off near the interlayers, and this tendency increases as the hardness of the diamond sintered layer increases. On the other hand, in U.S. Patent No. M 4440573, a partition plate made of a high melting point metal is arranged between the diamond and carbide layers, the area of which is slightly smaller than the opposing cross-sectional area of both layers, and a bonding agent supplied from the carbide to the diamond layer is arranged. A method is described for obtaining a composite sintered body with a high diamond-diamond bond density by minimizing melt stitching of the agent (mainly composed of Co).

しかしこれらの各従来技術における中間層としてはTa
CやTiNのような予め形成された遷移金属の炭化物や
窒化物が用いられ、また金属状態で装填された中間層や
仕切板も、焼結操作時に全体が炭化物に変換される傾向
がある。従ってこれらの中間層はダイヤモンド−超硬複
合焼結体における熱膨張係数に関する遷移層としての効
果は示すが、両層の熱膨張率の差によって生じる歪を吸
収し、高温加熱時のはがれを完全になくすことはできな
い。
However, as the intermediate layer in each of these conventional techniques, Ta
Preformed transition metal carbides and nitrides such as C and TiN are used, and interlayers and dividers loaded in the metallic state also tend to convert entirely to carbide during the sintering operation. Therefore, although these intermediate layers act as transition layers regarding the coefficient of thermal expansion in the diamond-carbide composite sintered body, they absorb the strain caused by the difference in coefficient of thermal expansion between the two layers, and completely prevent peeling during high-temperature heating. You can't get rid of it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って本発明の主な目的の一つは複合焼結体の構成を適
正化することにより、加熱・操作時におけるダイヤモン
ド−超硬合金層間のはがれを完全になくシ、工具作成時
における歩留りを向上させることにある。
Therefore, one of the main objectives of the present invention is to completely eliminate peeling between the diamond and cemented carbide layers during heating and operation by optimizing the structure of the composite sintered body, thereby improving the yield when making tools. It's about letting people know.

本発明の別の目的は、このような層間剥離がなく、シか
も焼結ダイヤモンド層がすぐれた硬度特性を示す複合焼
結体の製造法を提供することにあるD 〔発明の構成〕 本発明者の知見によれば、中間層としてTiやTaの様
な高融点金属を用いる複合焼結体の製造工程において、
これらの金属が炭化物に変化する過程は、固体金属中へ
の炭素の拡散による同相反応よりも、まず金属と融液と
の反応で合金が形成され、次いでこの合金が炭化される
という、液相介在型の反応が支配的であろうそしてこの
反応を防ぐには高融点金属の表面に、融液との濡れが悪
くかつ緻密な化合物層を形成することが極めて有効であ
ることが判明した。
Another object of the present invention is to provide a method for manufacturing a composite sintered body that is free from such delamination and in which the sintered diamond layer exhibits excellent hardness characteristics. According to the knowledge of those who
The process by which these metals change into carbides is a liquid-phase process in which an alloy is first formed by a reaction between the metal and the melt, and then this alloy is carbonized, rather than an in-phase reaction due to the diffusion of carbon into the solid metal. It has been found that intercalated reactions are likely to be predominant, and that it is extremely effective to form a dense compound layer on the surface of the high melting point metal that is poorly wettable with the melt.

従って本発明の要旨とするところは第一に、焼結ダイヤ
モンド層と超硬合金層とが両層間に中間層を介在させて
一体化された複合焼結体であって、この中間層が本質的
に高融点金属を含む芯部とこの金属の炭化物、窒化吻、
炭窒化物又は硼化物を含む外表部とを有する板状体から
成り、かつこの板状体が上記両層の対向断面積の70〜
95%の断面積を有することを特徴とする複合焼結体に
あり、された支持層と、ダイヤモンド粉末層とを、周期
律表第4a、 5a、 6a族金属から選ばれた少くと
も1種の金属又はこれを主体とする合金から成る薄板を
介して互に隣接配置し、この薄板は両層の対向断面より
少し小ざい断面積を有し、この際この薄板にはか\る配
置に先立ち、或は配置後に表面に浴融鉄族金属に対して
濡れ性の小さいこれらの金属の炭素、望素、硼素の少く
とも1種との化合物層を形成し、次いで全体をダイヤモ
ンド安定領域内でかつ約1300℃以上の圧力温度条件
に供することを特徴とする、ダイヤモンド−超硬合金複
合焼結体の製造方法に存する。
Therefore, the gist of the present invention is, firstly, a composite sintered body in which a sintered diamond layer and a cemented carbide layer are integrated with an intermediate layer interposed between the two layers, and this intermediate layer is essentially A core containing a metal with a high melting point and a carbide or nitride of this metal,
It consists of a plate-like body having an outer surface containing carbonitride or boride, and this plate-like body has a cross-sectional area of 70 to 70% of the opposing cross-sectional area of both layers.
The composite sintered body is characterized by having a cross-sectional area of 95%, and the supporting layer and the diamond powder layer are made of at least one metal selected from Groups 4a, 5a, and 6a of the periodic table. These thin plates are arranged adjacent to each other through thin plates made of metal or an alloy mainly composed of metal, and these thin plates have a cross-sectional area slightly smaller than the opposing cross-sections of both layers. Before or after placement, a compound layer is formed on the surface of the metal with at least one of carbon, element, and boron, which have low wettability with respect to the bath-molten iron group metal, and then the whole is placed within the diamond stability region. The present invention provides a method for producing a diamond-cemented carbide composite sintered body, which is characterized by subjecting the diamond-cemented carbide composite sintered body to pressure and temperature conditions of approximately 1300°C or higher.

本発明の中間層を構成する高融点金属としては周期律表
第4a、 5a、 6a族の金属のうちから選ばれる。
The high melting point metal constituting the intermediate layer of the present invention is selected from metals in Groups 4a, 5a, and 6a of the periodic table.

この金属表面に形成すべき化合物は、基体超硬合金から
供給される鉄族金属、特にCOを主成分とする融液に対
する濡れ特性の小さい(′fXいし濡れ角を示す)もの
として、Ti、 Zr、 Hf、 Ta、 Nbの炭化
物、窒化物、炭望化物、硼化物、 Moの窒化物、硼化
物などが適しているコ一方WC,Mo2Cの様にCo 
K対して濡れ角0°を示す化合物を金桟表面に形成して
も、融液はこの化合物の粒界を経て容易だ金属の内部組
織に到達し、結局内部まで炭化物組織となるので、これ
らは除外されるりこの様な各種化合物の適・不適は例え
ばYu、 V、ナイデイチの[溶融金属の接触現象」 
(ソ連邦つクライナ科学アカデミー発行)から知ること
ができる。
The compounds to be formed on the metal surface are Ti, Ti, which have low wetting properties (indicating a wetting angle of f Carbides, nitrides, carbides, borides of Zr, Hf, Ta, Nb, nitrides and borides of Mo are suitable, while Co such as WC and Mo2C are suitable.
Even if a compound exhibiting a wetting angle of 0° with respect to K is formed on the surface of the metal bar, the melt easily passes through the grain boundaries of this compound and reaches the internal structure of the metal. The suitability and unsuitability of various compounds such as these are excluded from Yu, V., and Naideichi's [Contact Phenomena of Molten Metals].
(published by the Krajina Academy of Sciences of the Soviet Union).

表層または表面化合物の形成には次の様な方法が利用可
能である。
The following methods can be used to form the surface layer or surface compound.

炭化物:金属板を黒鉛板の間に挾んで加熱することによ
る固体浸炭法や、炭化水素を金属板表面で熱分解させる
ガス浸炭法が利用できるりまた金属板をダイヤモンド層
と超硬合金層との間に配置し、融液を生じる温度以下に
一定時間保持することによっても金属表面に炭化物層を
形成でき、こちらの方法を用いると金属板の取扱いがよ
り簡単になる。
Carbide: A solid carburizing method in which a metal plate is sandwiched between graphite plates and heated, a gas carburizing method in which hydrocarbons are thermally decomposed on the surface of the metal plate, or a metal plate between a diamond layer and a cemented carbide layer can be used. A carbide layer can also be formed on the metal surface by placing the metal plate at a temperature below the temperature at which it forms a melt for a certain period of time, and using this method makes it easier to handle the metal plate.

窒化物:N2ガス又はMfI5ガス中で金属板を赤熱ま
たはNH5の分解@度以上に加熱することによって、容
易に窒化物層を形成できる。
Nitride: A nitride layer can be easily formed by heating a metal plate in N2 gas or MfI5 gas to red heat or above the decomposition temperature of NH5.

硼化物:金属硼素粉末と高融点金属とを密接させ加熱し
て金属板表面に硼素を付着せしめ、さらにこれを加熱す
ることによって硼化物膜に変換するか、或は加熱した金
属板上に硼素を蒸着する方法が利用できる。
Boride: Metal boron powder and high melting point metal are brought into close contact with each other and heated to adhere boron to the surface of the metal plate, and this is further heated to convert it into a boride film, or boron is deposited on the heated metal plate. A method of vapor-depositing can be used.

炭窒化物: CH4とNH3との混合ガス中で金属をこ
れらの分解温度以上に加熱する゛ことにより得られる。
Carbonitride: Obtained by heating a metal in a mixed gas of CH4 and NH3 above their decomposition temperature.

上記の外、公知のCVDやPVD法によってこれらの化
合物を同種又は異種金属上に薄膜として形成することも
可能である。
In addition to the above, it is also possible to form these compounds as a thin film on the same or different metals by known CVD or PVD methods.

本発明で用いる中間層(金属+化合物層)の厚さは10
〜100μm程度で、そのうち化合物層の厚さは1〜1
0μmとするのが適切である0〔実施例〕 1、内径90喘のTa製カプセル中に直径90鳩厚す2
0藺のWC−13%CO合金基板を置き、その上に直径
8.4−厚さ50μmのTa板を、さらにその上に粒度
3〜8μmのダイヤモンド粉末0.15fを入れた。
The thickness of the intermediate layer (metal + compound layer) used in the present invention is 10
~100 μm, of which the compound layer has a thickness of 1 to 1
It is appropriate to set it to 0 μm.0 [Example] 1. A diameter of 90 mm thick in a Ta capsule with an inner diameter of 90 mm.2
A WC-13% CO alloy substrate of 0.0 mm was placed, a Ta plate with a diameter of 8.4 μm and a thickness of 50 μm was placed thereon, and 0.15 f of diamond powder with a particle size of 3 to 8 μm was placed thereon.

全体を高温高圧装置に装填し、約60Paの加圧下で約
1100℃に10分間保つことにより、ダイヤモンド並
びにWCO脱炭による炭素とTaとの反応を生せしめ、
 Taの表層に厚さ約6μmの微密な炭化物層を形成し
た0これをさらに昇温しで1450℃に5分間保持して
複合焼結体を得た。
The whole was loaded into a high-temperature, high-pressure device and kept at about 1100°C for 10 minutes under a pressure of about 60 Pa to cause a reaction between carbon and Ta by decarburizing diamond and WCO,
A fine carbide layer with a thickness of about 6 μm was formed on the Ta surface layer, and the temperature was further increased to 1450° C. for 5 minutes to obtain a composite sintered body.

ダイヤモンド層は平均6500にりf/−のヌープ硬さ
を示した。
The diamond layer exhibited an average Knoop hardness of 6500 f/-.

2外径9.0m+4 JL径2.2rm、 nさ7Qμ
mの孔あきTi薄板をN2気流中で80a0Cに加熱し
、表面に厚さ5μmの窒化チタン層を形成したつ内径9
謂のTa製カプセル内に上記1と同様に内径90鳩 厚
さ2.0閣のW C−Co超硬を入れ、この上にこの薄
板ヲ、すらにその上に5−12μmのダイヤモンド0.
155’を置き、全体を6GPa、 1450℃の条件
下に10分間供した。
2 Outer diameter 9.0m + 4 JL diameter 2.2rm, n 7Qμ
A titanium nitride layer with a thickness of 5 μm was formed on the surface by heating a perforated Ti thin plate with a diameter of 9 m in diameter to 80 °C in a N2 stream.
A WC-Co carbide with an inner diameter of 90mm and a thickness of 2.0mm is placed in the so-called Ta capsule in the same manner as in 1 above, and this thin plate is placed on top of it, and a diamond of 5-12μm in diameter is placed on top of it.
155' was placed, and the whole was subjected to conditions of 6 GPa and 1450°C for 10 minutes.

3、直径8.0+III+、厚さ100μmのMo薄板
を蒸着装置内で500℃に加熱してこの上に硼素を蒸着
し、これをさらに1000℃に加熱することによって厚
さ約2μmのMoB2膜を形成した。この薄膜を上記2
と同様にTaカプセルに入れ、同様の圧力・温度条件下
で処理し、複合焼結体とした。
3. A thin Mo plate with a diameter of 8.0+III+ and a thickness of 100 μm is heated to 500°C in a vapor deposition apparatus to deposit boron thereon, and then further heated to 1000°C to form a MoB2 film with a thickness of about 2 μm. Formed. This thin film is
It was placed in a Ta capsule and treated under the same pressure and temperature conditions to obtain a composite sintered body.

4、直径8.5−厚さ50μmのZr薄板を容器内で加
熱し、この上にCH4を20−贋の割合で導入すること
により、薄板の表層に厚さ10μmの炭化物を形成した
。この薄板を上記各側と同様に配置し、同様の条件下で
処理することにより、複合焼結体とした。
4. A Zr thin plate with a diameter of 8.5 μm and a thickness of 50 μm was heated in a container, and CH4 was introduced thereon at a ratio of 20 μm to form a carbide with a thickness of 10 μm on the surface layer of the thin plate. This thin plate was arranged in the same manner as on each side and treated under the same conditions to obtain a composite sintered body.

上記2〜4で得られた焼結体の硬さはどれも、、、60
00ちookpf/−の範囲内にあった。
The hardness of the sintered bodies obtained in steps 2 to 4 above is 60.
It was within the range of 00kookpf/-.

以上1〜4の方法を反復し、それぞれについて10個の
焼結体を得た。これらを加熱装置に入れ、Ar気流中で
300℃/fW)速度で1.000℃まで加熱しも昇温
中にも室温への冷却時にも、ダイヤモンド層の剥離は一
切認められなかった。
The above methods 1 to 4 were repeated to obtain 10 sintered bodies for each method. These were placed in a heating device and heated to 1.000° C. at a rate of 300° C./fW in an Ar flow, and no peeling of the diamond layer was observed either during heating or cooling to room temperature.

〔比較例〕[Comparative example]

比較のため、同様のTaカプセル内において5〜12μ
mのダイヤモンドo、isrを超硬合金基板上に直接液
して配置し、同様に6GPa、 1450℃の圧力・温
度条件に10分間供することにより、複合焼結体を作成
した。この操作の反復により得られた10個の焼結体に
ついて、焼結ダイヤモンド層は4500±500kff
7’−のヌープ硬さを示し、上記の加熱テストでは10
個のうち8個に剥離を生じた。
For comparison, 5-12μ in a similar Ta capsule.
A composite sintered body was prepared by directly disposing diamonds o and isr of m in liquid on a cemented carbide substrate and similarly subjecting it to pressure and temperature conditions of 6 GPa and 1450° C. for 10 minutes. For 10 sintered bodies obtained by repeating this operation, the sintered diamond layer was 4500±500kff.
It has a Knoop hardness of 7'-, and in the heating test described above it has a Knoop hardness of 10.
Peeling occurred in 8 of the pieces.

なお上記の実施例では簡略のため、超硬合金の材種(C
o濃度)、寸法、ダイヤモンドの粒度、量を同一にした
が本発明の方法には他のものも用いうろことは自明であ
る。
In the above example, for the sake of simplicity, the grade of cemented carbide (C
Although the scales were made the same (concentration), size, diamond particle size, and amount, it is obvious that other scales may be used in the method of the present invention.

Claims (1)

【特許請求の範囲】 1、焼結ダイヤモンド層と超硬合金層とが両層間に中間
層を介在させて一体化された複合焼結体であつて、この
中間層が本質的に高融点金属を含む芯部とこの金属の炭
化物、窒化物、炭窒化物又は硼化物を含む外表部とを有
する板状体から成り、かつこの板状体が上記両層の対向
断面積の70〜95%の断面積を有することを特徴とす
る複合焼結体。 2、上記高融点金属が周期律表第4a、5a、6a族金
属及びこれらを主体とする合金から選ばれる少くとも1
種である、特許請求の範囲第1項記載の焼結体。 3、本質的にWC及び結合材としてのCoから成る成形
又は焼結された支持層とダイヤモンド粉末層とを、周期
律表第4a、5a、6a族金属から選ばれた少くとも1
種の金属又はこれを主体とする合金から成る薄板を介し
て互に隣接配置し、この薄板は両層の対向断面より少し
小さい断面積を有し、この際この薄板にはかゝる配置に
先立ち、或は配置後に表面に溶融鉄族金属に対して濡れ
性の小さいこれらの金属の炭素、窒素、硼素の少くとも
1種との化合物層を形成し、次いで全体をダイヤモンド
安定領域内でかつ約1300℃以上の圧力温度条件に供
することを特徴とする、ダイヤモンド−超硬合金複合焼
結体の製造方法。
[Claims] 1. A composite sintered body in which a sintered diamond layer and a cemented carbide layer are integrated with an intermediate layer interposed between the two layers, and the intermediate layer is essentially a high-melting point metal. and an outer surface containing carbide, nitride, carbonitride, or boride of this metal, and this plate-like body accounts for 70 to 95% of the opposing cross-sectional area of both layers. A composite sintered body characterized by having a cross-sectional area of . 2. The high melting point metal is at least one metal selected from metals of groups 4a, 5a, and 6a of the periodic table and alloys mainly composed of these metals.
The sintered body according to claim 1, which is a seed. 3. A molded or sintered support layer consisting essentially of WC and Co as binder and a diamond powder layer are combined with at least one metal selected from Groups 4a, 5a and 6a of the Periodic Table of Metals.
They are arranged adjacent to each other through thin plates made of a metal or an alloy mainly composed of the metal, and the thin plates have a cross-sectional area slightly smaller than the opposing cross-sections of both layers. Prior to or after placement, a compound layer of these metals with at least one of carbon, nitrogen, and boron, which has low wettability to molten iron group metals, is formed on the surface, and then the whole is within the diamond stability region and A method for producing a diamond-cemented carbide composite sintered body, the method comprising subjecting it to pressure and temperature conditions of approximately 1300°C or higher.
JP25947186A 1986-10-30 1986-10-30 Composite sintered body and its production Pending JPS63111105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25947186A JPS63111105A (en) 1986-10-30 1986-10-30 Composite sintered body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25947186A JPS63111105A (en) 1986-10-30 1986-10-30 Composite sintered body and its production

Publications (1)

Publication Number Publication Date
JPS63111105A true JPS63111105A (en) 1988-05-16

Family

ID=17334535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25947186A Pending JPS63111105A (en) 1986-10-30 1986-10-30 Composite sintered body and its production

Country Status (1)

Country Link
JP (1) JPS63111105A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916942A (en) * 1982-07-19 1984-01-28 Sumitomo Electric Ind Ltd Composite diamond-sintered body useful as tool and its manufacture
JPS6134108A (en) * 1984-07-26 1986-02-18 Daijietsuto Kogyo Kk High-hardness composite sintered body for brazing tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916942A (en) * 1982-07-19 1984-01-28 Sumitomo Electric Ind Ltd Composite diamond-sintered body useful as tool and its manufacture
JPS6134108A (en) * 1984-07-26 1986-02-18 Daijietsuto Kogyo Kk High-hardness composite sintered body for brazing tool

Similar Documents

Publication Publication Date Title
JP5622731B2 (en) Method for producing a part comprising a block of cemented carbide type high density material having a characteristic gradient and the resulting part
US3841852A (en) Abraders, abrasive particles and methods for producing same
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
US3871840A (en) Abrasive particles encapsulated with a metal envelope of allotriomorphic dentrites
US4548786A (en) Coated carbide cutting tool insert
US4497874A (en) Coated carbide cutting tool insert
JP2684721B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool and its manufacturing method
EP0699642A2 (en) Whisker or fiber reinforced polycrystalline cubic boron nitride and diamond
JP4330859B2 (en) Coated cemented carbide and method for producing the same
Rabinkin et al. Brazing of diamonds and cubic boron nitride
JPS61264171A (en) Coated superalloy block having abrasion resistance and its production
JPS6210301B2 (en)
JP2003527293A (en) Adhesive composite coating for diamond and diamond-containing materials and method for producing said coating
EP0577375A1 (en) Abrasive compact
JPS63111105A (en) Composite sintered body and its production
JP2003095743A (en) Diamond sintered compact and method of manufacturing the same
JP2717541B2 (en) Method of forming ceramic layer on metal body
JPS61261480A (en) Diamond coated member
JPS6022680B2 (en) Composite sintered body for tools and its manufacturing method
JPS6311414B2 (en)
JPS6026624A (en) Manufacture of sintered diamond body
JP3519127B2 (en) High thermal conductive coated tool
JPH04280805A (en) Hard material of charcoal nitride of transition metal (m,m+ and m++) of 5th (m+) and 6th (m++) number duplicate family in element periodic table method for their production and use thereof
JP2000144298A (en) Diamond-containing hard member and its production
JP2852407B2 (en) High-strength diamond-metal composite sintered body and its manufacturing method