JPS5935066A - Diamond sintered body for tool and manufacture - Google Patents

Diamond sintered body for tool and manufacture

Info

Publication number
JPS5935066A
JPS5935066A JP57142791A JP14279182A JPS5935066A JP S5935066 A JPS5935066 A JP S5935066A JP 57142791 A JP57142791 A JP 57142791A JP 14279182 A JP14279182 A JP 14279182A JP S5935066 A JPS5935066 A JP S5935066A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
less
volume
iron group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57142791A
Other languages
Japanese (ja)
Other versions
JPH0333675B2 (en
Inventor
哲男 中井
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57142791A priority Critical patent/JPS5935066A/en
Publication of JPS5935066A publication Critical patent/JPS5935066A/en
Publication of JPH0333675B2 publication Critical patent/JPH0333675B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術の背景〕 現在、ダイヤモンドの含有h(が70容「11:%以」
−でダイヤモンド粒子が互いに接合した焼結体が販売さ
れ、非鉄金属、プラスチック、セラミックの切削、ドレ
ッサー、ドリルビット、伸線ダイスとして使用されてい
る。特に非鉄金属の切削や銅線などの比較的軟かい線利
を伸線するダイスとしてこれらのダイヤモンド焼結9体
を使用した場合、その性能は非常に優れている。通常こ
れらのダイヤモンド焼結体はダイヤモンド粒子をダイヤ
モンド合成時の触媒であるCo  等の鉄族金属を結合
利として用いるため、600°C以上の温度に加熱した
場合、ダイヤモンドがグラファイト化して、劣化する欠
点を有している。ダイヤモンド焼結体の耐熱性を向」ユ
させる方法としては、特開昭53−1145891号に
記載されている如く加熱時にダイヤモンドのグラファイ
ト化を促進するCo  等の鉄族金属を取り除けば良い
。しかしながらダイヤモンド焼結体からCo  等の鉄
族金属を溶出した場合、ダイヤモンド焼結体の強度は2
0〜30%低下する。特にダイヤモンド焼結体をビット
用途として使用した場合、強度と耐摩耗性と耐熱性が要
求され特開昭53−114589号に記載されているよ
うなダイヤモンド焼結体を用いたドリルビットではダイ
ヤモンド焼結体の強度不足のため、刃先が欠損し寿命が
短い。本発明者等は強度が高く、耐摩耗性が良好でさら
に耐熱性の優れたダイヤモンド焼結体を開発すべく鋭意
研究を重ねた。
[Detailed Description of the Invention] [Technical Background] Currently, the content of diamond (h) is 70% or more.
- Sintered bodies in which diamond particles are bonded to each other are sold and used for cutting nonferrous metals, plastics, and ceramics, dressers, drill bits, and wire drawing dies. In particular, when these nine diamond sintered bodies are used as dies for cutting nonferrous metals or drawing relatively soft wires such as copper wire, their performance is extremely excellent. Normally, these diamond sintered bodies use iron group metals such as Co, which are catalysts during diamond synthesis, to bind diamond particles, so if they are heated to a temperature of 600°C or higher, the diamonds will graphitize and deteriorate. It has its drawbacks. A method for improving the heat resistance of a diamond sintered body is to remove iron group metals such as Co, which promote graphitization of diamond during heating, as described in JP-A-53-1145891. However, if iron group metals such as Co are eluted from the diamond sintered body, the strength of the diamond sintered body will be 2.
It decreases by 0-30%. In particular, when a diamond sintered body is used as a bit, strength, wear resistance, and heat resistance are required. Due to the lack of strength of the body, the cutting edge will break and the life will be short. The inventors of the present invention have conducted extensive research in order to develop a diamond sintered body that has high strength, good wear resistance, and excellent heat resistance.

〔発明の開示〕[Disclosure of the invention]

研究の結果、粒度37771以上の粗粒ダイヤモンド粒
子が容4tで20〜85%を占め、残部が結合材10〜
79容量%と空孔1%以」15%未満より成り、結合材
の組成が粒度1μm以下の超微粒のダイヤモンド粒子を
容斂で60〜90%とl  Itnr以下の周期律表第
4a+5a+6a  族の炭化物85〜5容量%及びI
O容量%以下の鉄族金属から成るダイヤモンド焼結体は
靭性、耐摩耗性及び耐熱性を兼ねそなえたものであるこ
とが判明した。本発明の焼結体が靭性、耐摩耗性及び耐
熱性が良好であるのは次の如く推測できる。
As a result of research, coarse diamond particles with a particle size of 37,771 or more accounted for 20-85% in a 4-ton volume, and the remainder was a binder of 10-85%.
It consists of 79% by volume and 1% or more of voids, less than 15%, and the composition of the binder is 60 to 90% of ultrafine diamond particles with a particle size of 1 μm or less. Carbide 85-5% by volume and I
It has been found that a diamond sintered body made of an iron group metal with a volume percent of O or less has toughness, wear resistance, and heat resistance. The reason why the sintered body of the present invention has good toughness, wear resistance, and heat resistance can be inferred as follows.

ダイヤモンド焼結体の強度は第1図に示した如く粒度の
増大に伴ない低下する。微粒ダイヤモンド焼結体は抗折
力が高く、靭性に優れているため刃先は欠損しにくいも
のの、個々の粒子は小、さなダイヤモンドスケルトンに
より保持されているので、個々の粒子の結合力は弱い。
As shown in FIG. 1, the strength of the diamond sintered body decreases as the grain size increases. Fine-grained diamond sintered bodies have high transverse rupture strength and excellent toughness, so the cutting edge is less prone to breakage, but individual particles are held together by small diamond skeletons, so the bonding force between individual particles is weak. .

したがって切削中に個々の粒子が脱落しやすいため、耐
摩耗性が劣るものと考えられる。一方、粗粒ダイヤモン
ド焼結体は大きなスケルトンにより保持されており、個
々のダイヤモンド粒子の結合力は強いため、耐摩耗性は
優れているものの、スケル゛トン部が太きいので、一度
1、クラックが発生すると伝播しゃすく、刃先が欠損し
やすく靭性が劣る。
Therefore, individual particles tend to fall off during cutting, which is thought to result in poor wear resistance. On the other hand, coarse-grained diamond sintered bodies are held by a large skeleton, and the bonding force between individual diamond particles is strong, so they have excellent wear resistance. If this occurs, it will propagate and the cutting edge will easily break, resulting in poor toughness.

本発明焼結体は微粒ダイヤモンドを含む結合材を用いて
粗粒ダイヤモンドを焼結しているため、微粒ダイヤモン
ドの靭性の高さと粗粒ダイヤモンドの耐摩耗性の良さを
兼ね備えているものと考えられる。また本発明焼結体は
結合材の一部として周期律表4・a r 5a * 6
a 族の炭化物と鉄族金属を用いているが、酸処理によ
り、溶出されるのは主として鉄族金属であり、この含有
量が少ないため生じる空孔も少なく、鉄族金属溶出後の
強度低下は少ない。耐熱性の向上した原因としては、第
1に鉄族金属の溶出によりダイヤモンドのグラファイト
化が抑制されたことが挙げられる。
Since the sintered body of the present invention is made by sintering coarse-grained diamond using a binder containing fine-grained diamond, it is thought to have both the high toughness of fine-grained diamond and the good wear resistance of coarse-grained diamond. . In addition, the sintered body of the present invention can be used as part of the binding material according to periodic table 4, a r 5a * 6.
Although group a carbides and iron group metals are used, it is mainly the iron group metals that are eluted by acid treatment, and because the content is small, fewer vacancies are created, and the strength decreases after the iron group metals are eluted. There are few. The first reason for the improved heat resistance is that graphitization of diamond was suppressed due to the elution of iron group metals.

また鉄族金属を含んだダイヤモンド焼結体はダイヤモン
ドと鉄族金属の熱膨張差により、加熱時亀裂が発生する
が鉄族金属の溶出により、この亀裂の発生が抑制される
。炭化物たとえばwcの熱膨張係数は4〜5 X 10
−6  と低いため熱応力による亀裂は発生しにくい。
Further, in a diamond sintered body containing an iron group metal, cracks occur when heated due to the difference in thermal expansion between the diamond and the iron group metal, but the elution of the iron group metal suppresses the generation of these cracks. The thermal expansion coefficient of carbide, for example wc, is 4 to 5 x 10
-6, which makes it difficult for cracks to occur due to thermal stress.

本発明焼結体における粗粒のダイヤモンド粒度は3μm
以上が好ましい。粗粒のダイヤモンド粒度が8μtn 
未満であると耐摩耗性が低下する。特にlOμm〜]0
0μn+のダイヤモンド粒子を用いた場合が靭性、耐摩
耗性共、最も優れている。
The coarse diamond grain size in the sintered body of the present invention is 3 μm.
The above is preferable. Coarse diamond grain size is 8μtn
If it is less than that, the wear resistance will decrease. Especially lOμm~]0
The case where 0 μn+ diamond particles are used has the best toughness and wear resistance.

粗粒ダイヤモンドの含有量は20〜85%が好ましい。The content of coarse diamond is preferably 20 to 85%.

この含有量が20%未満であると耐摩耗性が低下し、8
5%を越えると靭性が落ちる。
When this content is less than 20%, wear resistance decreases, and 8
If it exceeds 5%, toughness decreases.

空孔は、焼結体の容量%で1%以上5%未満が良い。空
孔の含有量が5%以上であるとダイヤモンド焼結体の強
度は著しく低下する。またi96未満であると含有され
る鉄族金属の量が多く耐燃性は向」ニしない。
The number of pores is preferably 1% or more and less than 5% by volume of the sintered body. When the pore content is 5% or more, the strength of the diamond sintered body is significantly reduced. Moreover, if it is less than i96, the amount of iron group metals contained will be large and the flame resistance will not be good.

結合材として用いる超微粒のダイヤモンド粒子はl 1
ltn 以下、好ましくは0,511711以下が良い
。粒度が1μnZ を越えると焼結体の靭性が低下する
。超微粒のダイヤモンド粒子の含有量は結合材中の容量
で60〜90%が良い。含有量が60%未満であると結
合材の耐摩耗性が低下する。また90%を越えると結合
材の靭性が低下する。
The ultrafine diamond particles used as a binder are l 1
ltn or less, preferably 0,511711 or less. When the particle size exceeds 1 μnZ, the toughness of the sintered body decreases. The content of ultrafine diamond particles is preferably 60 to 90% by volume in the binder. When the content is less than 60%, the wear resistance of the binder decreases. Moreover, when it exceeds 90%, the toughness of the bonding material decreases.

周期律4・a + 5 a r 6 a  族の炭化物
の含有量は結合材中の容量で5〜35%が好ましい。こ
の含有量が5%未満であるとl 11m 以下のダイヤ
モンド粒子が粒成長するとともに実質的に鉄族金属の含
有量が増加し、耐熱性の低下や、溶出後の空一孔増加に
よる強度低下の要因となる。この含有量が35%を越え
ると超微粒のダイヤモンド粒子の含有量が減り結合材の
耐摩耗性が低下する。
The content of carbides of the periodic law 4.a + 5 a r 6 a group is preferably 5 to 35% by volume in the binder. If this content is less than 5%, diamond particles of 11m or less will grow and the iron group metal content will substantially increase, leading to a decrease in heat resistance and a decrease in strength due to an increase in pores after elution. becomes a factor. If this content exceeds 35%, the content of ultrafine diamond particles decreases and the wear resistance of the binder decreases.

鉄族金属の含有1社は結合材中の容量で10%以下が良
い。鉄族金属の含有量が10%を越えると耐熱性の向」
二は望めない。
One company containing iron group metals should preferably have a capacity of 10% or less in the binder. If the content of iron group metals exceeds 10%, the heat resistance will deteriorate.
I can't hope for a second one.

本発明の焼結体では特に炭化物がWCあるいはこれと同
一結晶構造を有した( Mo 、W ) Cである場合
、靭性、耐摩耗性、耐熱性が優れている。
The sintered body of the present invention has excellent toughness, wear resistance, and heat resistance, especially when the carbide is WC or (Mo, W)C having the same crystal structure.

また、本発明の焼結体に焼結体の重量で0.005〜0
.】5%の硼素または硼化物を含有させた場合、その性
能は一段と向」ニする。通常ダイヤモンド粒子は超高圧
高温下で鉄族金属等の触媒によるダイヤモンドの溶解、
析出現象により焼結される。硼素または硼素化合物を添
加した場合、鉄族金属の硼化物を生じ融点が低下するの
と、溶解析出速度が増すためダイヤモンド粒子同志の結
合部(ダイヤモンドスケルトン部)が成長し、ダイヤモ
ンド粒子の保持力が向上したものと推測できる。硼素あ
るいは硼化物の含有量が0.005%未満であるとダイ
ヤモンドスケルトン部の形成が遅い。一方硼素あるいは
硼化物の含有量が0.15%を越すと、ダイヤモンドス
ケルトン部に多量の硼素が侵入し、ダイヤモンドスケル
トン部の強度が低下する。
In addition, the sintered body of the present invention has a weight of 0.005 to 0 by weight of the sintered body.
.. ] When containing 5% boron or boride, its performance is further improved. Normally, diamond particles are produced by melting diamond using catalysts such as iron group metals under ultra-high pressure and high temperature.
Sintered by precipitation phenomenon. When boron or a boron compound is added, borides of iron group metals are produced, which lowers the melting point. At the same time, the melt deposition rate increases, which causes the bond between diamond particles (diamond skeleton) to grow, which reduces the holding power of the diamond particles. It can be assumed that this has improved. If the content of boron or boride is less than 0.005%, the formation of the diamond skeleton portion will be slow. On the other hand, if the boron or boride content exceeds 0.15%, a large amount of boron will enter the diamond skeleton, reducing the strength of the diamond skeleton.

本発明の焼結体に使用するダイヤモンド原料粉末は3μ
m以上のダイヤモンド粒子と1μ?n 以下1、j好ま
しくは0.5 ttm以下のミクロンパウダーである。
The diamond raw material powder used for the sintered body of the present invention is 3μ
Diamond particles larger than m and 1μ? It is micron powder of n less than 1, j preferably 0.5 ttm or less.

合成ダイヤモンド天然ダイヤモンドのいずれでも良い。Either synthetic diamond or natural diamond may be used.

このダイヤモンド粉末と周期律表4.a+5a+6a 
族の炭化物及びFe+Co+Ni  の鉄族金属粉末あ
るいはこれに硼素または硼化物を加えた粉末をボールミ
ル等の手段を用いて均一に混合する。この鉄族金属は予
め混合せずに焼結時に溶浸せしめても良い。
This diamond powder and the periodic table 4. a+5a+6a
The carbides of the Fe+Co+Ni group and the iron group metal powder of Fe+Co+Ni or a powder obtained by adding boron or boride thereto are uniformly mixed using a means such as a ball mill. This iron group metal may be infiltrated during sintering without being mixed in advance.

また本発明者等の先願(特願昭52−’−51381号
〕の如くボールミル時のポットとボールを混入する周期
律表4・a r 5a l fia  族の炭化物と鉄
族金属の焼結体で作成しておき、ダイヤモンド粉末をボ
ールミル粉砕すると同時にポットとボールから周期律表
4a+5a l 6a族の炭化物と鉄族金属の焼結体の
微細粉末を混入せしめる方法もある。
In addition, as in a previous application by the present inventors (Japanese Patent Application No. 52-51-51381), sintering of carbides of groups 4 and 5a of the periodic table and iron group metals by mixing pots and balls during ball milling has been proposed. There is also a method in which diamond powder is prepared in a ball mill and, at the same time, fine powders of carbides of groups 4a+5a l 6a of the periodic table and sintered bodies of iron group metals are mixed in from a pot and ball.

混合した粉末を超高圧装置に入れ、ダイヤモンドが安定
な条件下で焼結する。このとぎ使用した鉄族金属と炭化
物等の化合物間に生じる共晶液相の出現温度具」二で焼
結する必要がある。
The mixed powder is placed in an ultra-high-pressure device and sintered under conditions where the diamond is stable. The appearance of a eutectic liquid phase between the iron group metal used in this process and compounds such as carbides must be sintered using a temperature tool.

焼結体中のダイヤモンドの結合相となる炭化物等の化合
物と鉄族金属の割合は一義的には定められないが、少く
とも焼結時に化合物が固体として存在するだけの量は必
要であり、例えばWCを化合物として用いCo  を結
合金属とした場合はWCとCo  の量的割合はm1者
を重量で50%以上含む必要がある。
Although the ratio of compounds such as carbides and iron group metals that serve as the bonding phase of diamond in the sintered body cannot be unambiguously determined, it is necessary that the amount is at least sufficient for the compound to exist as a solid during sintering. For example, when WC is used as a compound and Co is used as a bonding metal, the quantitative ratio of WC and Co must include 50% or more by weight of m1.

このようにして製造されたダイヤモンド焼結体を、例え
ば王水の如く鉄族金属を腐食しうろことのできる酸中に
入れ鉄族金属を溶出して空孔を作る。
The diamond sintered body thus produced is placed in an acid, such as aqua regia, which corrodes iron group metals and forms scales, eluting iron group metals and creating pores.

本発明焼結体の用途としてはビットの他に伸線用ダイス
、セラミック、切削加工用バイトなどがある。
In addition to bits, the sintered body of the present invention can be used in wire drawing dies, ceramics, cutting tools, and the like.

以下実施例により具体的に説明する。This will be explained in detail below using examples.

実施例]。Example].

粒度0.5/l  の合成ダイヤモンド粉末とWC及び
Co  粉末を、WC−Co  超硬合金製のポットと
ボールを用いて粉砕混合した。得られた混合粉末の組成
は、平均粒度0.3μmの微粒ダイヤモンド80容鼠%
、WCl2容量%、Co 8容量%であった。この混合
粉末と粒度20〜30 l1m  のダイヤモンド粉末
を容積で75:25に混合した。この完成粉末をMo 
製の容器に詰め、超高圧装置を用いて先ず圧力を55 
r<b加え、引続いて14・50°Cに加熱して30分
間保持した。この焼結体を容器より取り出し、加熱し/
こ王水中に150時間入れ、co  を溶出させた。C
O溶゛出後のダイヤモンド焼結体の組成を分析したとこ
ろCo +WCは結合材中にそれぞれ1.2容量%と、
11.8容量%含有されていた。また空孔は焼結体中の
容積で1.7%であった。このダイヤモンド焼結体を真
空中で1000°Cに30分加熱し、抗折力試験により
強度をalll定した。その結果を表1に示す。なお比
較のため表1に示すダイヤモンド焼結体の強度も同時に
測定した。
Synthetic diamond powder with a particle size of 0.5/l and WC and Co powders were ground and mixed using a pot and ball made of WC-Co cemented carbide. The composition of the obtained mixed powder was 80% by volume of fine diamonds with an average particle size of 0.3 μm.
, WCl 2% by volume, and Co 8% by volume. This mixed powder and diamond powder having a particle size of 20 to 30 l1m were mixed in a volume ratio of 75:25. This finished powder is Mo
The pressure was first increased to 55% using an ultra-high pressure device.
r<b>, followed by heating to 14.50°C and holding for 30 minutes. This sintered body is taken out from the container and heated/
The sample was placed in aqua regia for 150 hours to elute co. C
Analysis of the composition of the diamond sintered body after O elution revealed that Co + WC was 1.2% by volume in the binder, and
It contained 11.8% by volume. The volume of pores in the sintered body was 1.7%. This diamond sintered body was heated in vacuum to 1000°C for 30 minutes, and the strength was determined by a transverse rupture test. The results are shown in Table 1. For comparison, the strength of the diamond sintered bodies shown in Table 1 was also measured at the same time.

表2に示す結合材粉末を作成した。微粒ダイヤモンドと
しては0.3μmのものを用いた。この結合材と粗粒の
ダイヤモンド粒子を表3に示す割合で混合し°C完成粉
末を作成した。
A binder powder shown in Table 2 was prepared. The fine diamond particles used were those with a diameter of 0.3 μm. This binder and coarse diamond particles were mixed in the proportions shown in Table 3 to prepare a finished powder at °C.

夷 3 これらの完成粉末を実施例1と同様にして焼結した後、
ダイヤモンド焼結体を取り出して加熱した王水中で10
(1時間処理した。鉄族金属溶出後の焼結体の空孔の含
有量も表3に示す。次にこれらの焼結体を用いて切削加
工用のバイトを作成し、花崗岩を50m/minの速度
で乾式で30分間切削した。その結果も合わせて表3に
記す。
3 After sintering these finished powders in the same manner as in Example 1,
The diamond sintered body was taken out and heated in aqua regia for 10 minutes.
(The treatment was carried out for 1 hour. The content of pores in the sintered bodies after iron group metal elution is also shown in Table 3.Next, these sintered bodies were used to create cutting tools for cutting, and granite was cut at 50 m/min. Dry cutting was performed for 30 minutes at a speed of min. The results are also shown in Table 3.

実施例3゜ 平均粒度0.511mのダイヤモンド粒子とWClCO
及び硼素粉末をWC−Co  超硬合金製のボットとボ
ールを用いて粉砕混合した。得られた混合粉末の組成は
平均粒度0.3μ の微粒ダイヤモンド81容量%、W
C10容量%、Co 9容量%、硼素1.0容置%であ
った。この混合粉末と粒度30〜4 Q /7nl の
ダイヤセン1:粒子を容量で2:8に混合して完成粉末
を作成した。硼素の含有量を測定したところ重量で0.
128%であった。・ 次のこのダイヤモンド焼結体を直径1.5 m、m−、
JIさ3航の円柱に加工した後、加熱した王水中で15
0時間処理した。
Example 3 Diamond particles with an average particle size of 0.511 m and WClCO
and boron powder were pulverized and mixed using a WC-Co cemented carbide bot and ball. The composition of the obtained mixed powder was 81% by volume of fine diamond with an average particle size of 0.3μ, W
The contents were 10% by volume of C, 9% by volume of Co, and 1.0% by volume of boron. This mixed powder and Diacene 1:particles having a particle size of 30 to 4 Q/7nl were mixed in a volume ratio of 2:8 to prepare a finished powder. When the boron content was measured, it was 0.
It was 128%.・This next diamond sintered body is 1.5 m in diameter, m-,
After processing it into a cylinder of JI SA3, it was heated for 15 minutes in aqua regia.
Treated for 0 hours.

処理後の空孔は1.5%であった。この焼結体を鋼製の
シャンクにWl wc、 Fe+ Cot Ni l 
Cuの混合粉末より成る高融点高硬度のマトリクスを1
000°Cで焼結して固定し、サーフェスセットのコア
ビットを作成した。比較のため市販の40〜60μのダ
イヤモンド粒子より成る焼結体で結合材であるC。
The porosity after treatment was 1.5%. This sintered body was attached to a steel shank.
A matrix of high melting point and high hardness made of mixed powder of Cu is
It was sintered and fixed at 000°C to create a surface set core bit. For comparison, C is a commercially available sintered body made of diamond particles of 40 to 60μ and is a binder.

を溶出したもののコアビットも同様にして作成した。こ
れらのビットを用いて、−軸圧縮強度1800 。
A core bit of the eluted material was also prepared in the same manner. With these bits - axial compressive strength 1800.

度10crn/分で50m掘削してもまだ掘削可能で七
あったのに対し、市販のダイヤモンド焼結体を用鉄いた
ビットは掘進速度8α/分で301n掘削した蚊時点で
寿命となった。
Although it was still possible to excavate 50 m at a speed of 10 crn/min, the bit using a commercially available diamond sintered body reached the end of its life after digging 301 m at a digging speed of 8 α/min.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ダイヤモンド焼結体における強度(抗折力)
とダイヤモンド粒度の関係を表わしたものである。 71図 、2( =1【 シ ダイヤモンド粒&  (、Llm)
Figure 1 shows the strength (transverse rupture strength) of a diamond sintered body.
This shows the relationship between diamond grain size and diamond particle size. Figure 71, 2 ( = 1 [ Diamond grain & (, Llm)

Claims (1)

【特許請求の範囲】 (1)粒度3μ771 以上の粗粒ダイヤモンド粒子が
容量で20〜85%を占め、残部が結合材10〜79容
量%と空孔1%以」15%未満より成り結合材の組成が
粒度1 /7F11 以下の超微粒のダイヤモンド粒子
を容量で60〜90%と、177m 以下の周期律表第
4、a + 5a l 6a 族の炭化物35〜5容量
%及び鉄族金属lO容量%以下である工具用ダイヤモン
ド焼結体。 (2)粒度311m 以」二の粗粒のダイヤモンド粒子
が客用て20〜85%を占め、残部が結合材10〜79
容計%と空孔1%以上5%未満より成り、該結合材が粒
度lμかl以下の超微粒のダイヤモンド粒子を客用で6
0〜90%と1μm以下の周期律表第4・a + 5a
 + +3a  族の炭化物35〜5容量、鉄族金属1
0容量%以下及び硼素および/または硼化物より成り、
硼素および/または硼化物の含有量が焼結体の重量で0
.005〜0.15% である工具用ダイヤモンド焼結
体。 (3)粗粒ダイヤモンド粒子の粒度が10μm以上10
0μII+ 以下である特許請求の範囲第(1)及び(
2)項記載の工具用ダイヤモンド焼結体。 (4)周期律表第4a+5a+6a  族の炭化物がW
CまたはWCと同一結晶構造を有す(Mo 、W ) 
Cである特許請求の範囲第(1)、(2)、(3)項記
載の工具用ダイヤモンド焼結体。 (5)3μm以上のダイヤモンド粉末、l/1m以下の
超微粒ダイヤモンド粉末、1μmn 以下の周期律表第
4・a、5a+6a 族の炭化物と鉄族金属の混合粉末
を作成し、超高圧高温装置を用いて、ダイヤモンドが安
定な高温高圧下でホットプレスして、焼結体を作成し、
該焼結体を酸処理することにより、鉄族金属の−・部を
溶出することを特徴とする3μI11以上の粗粒のダイ
ヤモンド粒子が容量で20〜85%を占め、残部が結合
@10〜79容量%と空孔1%以上5%未満より成り、
結合材の組成が粒度1μm以下の超微粒のダイヤモンド
粒子を容量で0 I) = 90%とl 7(Ill 
以下の周期律表第4a+5a+6a族の炭化物35〜5
容111%及び鉄族金属]0容欧%以下であるI:具用
ダイヤモンド焼結体の製造方法。 (fi) 3μ71+ 以」二のダイヤモンド粉末、l
 ltm 以下の超微粒ダイヤモンド粉末l /(++
1 以下の周期律表第4a ! 5a + (ia  
族の炭化物、鉄族金属と硼素および/または硼化物の混
合粉末を作成し、超高圧高温装置を用いてダイヤモンド
が安定な高温、高圧下でホットプレスして焼結体を作成
し、該焼結体を酸処理することにより鉄族金属の一部を
溶出することを特徴とする3 l1m 以上の粗粒のダ
イヤモンド粒子・が容叶で20〜85%を占め、残部が
結合4410−79容:11二%と空孔1%以上5%未
満より成り、該結合(Aが粒度1μm以[の超微粒のダ
イヤモンド粒子・を容1,1.で6(1〜90%とl 
1tm 以下の周期律表第4・a+5a+ria  族
の炭化物35〜5容!’4t%、鉄族金属JO容It%
以丁及び硼素および/−!:たけ硼化物より成り、硼素
および/または硼化物の含有:11:が焼結体の屯11
℃で(1,005〜0.15% である工具用ダイヤモ
ンド焼結体の製造方法。 (7)fl1粒ダイヤモンド粒子・の粒度が10μTn
 以上l Q Q /lnl 以上である特許請求の範
囲第(5)及び(6)項記載の114.用ダイヤモンド
焼結体の製造方法。 (8)周期(い友第4・a + 5a r 6a  族
の炭化物がWCまたはこれと同一結晶構造を有する( 
Mo 、W ) Cである特許請求の範囲第(5)、(
6)、(7)項記載の工具用ダイヤモンド焼結体の製造
方法。
[Scope of Claims] (1) Coarse diamond particles with a particle size of 3μ771 or more account for 20 to 85% by volume, and the remainder consists of a binder of 10 to 79% by volume and 1% or more of voids, less than 15% of the binder. The composition is 60-90% by volume of ultra-fine diamond particles with a particle size of 1/7F11 or less, 35-5% by volume of carbides of Group 4, A + 5A, L 6a of the Periodic Table of 177 m or less, and iron group metal IO. Diamond sintered body for tools with a capacity of % or less. (2) Coarse diamond particles with a particle size of 311 m or more account for 20 to 85% of the total, and the remainder is a binder of 10 to 79 m.
Ultra-fine diamond particles with a particle size of 1μ or less, consisting of 1% or more and less than 5% of voids, and the binder has a particle size of 1 μm or less
0 to 90% and 1 μm or less Periodic Table 4.a + 5a
+ +3a group carbide 35-5 capacity, iron group metal 1
0% by volume or less and consisting of boron and/or boride,
Boron and/or boride content is 0 by weight of sintered body
.. A diamond sintered body for tools having a content of 0.005 to 0.15%. (3) The particle size of coarse diamond particles is 10 μm or more10
0 μII+ Claims (1) and (
2) The diamond sintered body for tools described in item 2). (4) Carbide of groups 4a+5a+6a of the periodic table is W
Has the same crystal structure as C or WC (Mo, W)
A diamond sintered body for tools according to claims (1), (2), and (3), which is C. (5) Diamond powder of 3 μm or more, ultrafine diamond powder of 1/1 m or less, mixed powder of carbides of groups 4, a, 5a + 6a of the periodic table and iron group metals of 1 μm or less are prepared, and ultra-high pressure and high temperature equipment is used. A sintered body is created by hot pressing under high temperature and pressure at which the diamond is stable.
By acid-treating the sintered body, coarse diamond particles of 3μI11 or more, which are characterized by eluting - part of the iron group metal, account for 20 to 85% of the volume, and the remainder is bonded @10 to 85% by volume. Consisting of 79% by volume and 1% or more and less than 5% voids,
The composition of the binder is ultrafine diamond particles with a particle size of 1 μm or less, and the capacity is 0 I) = 90% and l 7 (Ill
Carbides 35 to 5 of Groups 4a+5a+6a of the periodic table below
[volume 111% and iron group metal] 0 volume % or less I: Method for manufacturing a diamond sintered body for tools. (fi) 3μ71+ diamond powder, l
Ultrafine diamond powder less than ltm l/(++
1 Periodic Table 4a below! 5a + (ia
A mixed powder of iron group carbides, iron group metals, boron and/or borides is prepared, and a sintered body is created by hot pressing under high temperature and pressure at which diamond is stable using an ultra-high pressure and high temperature equipment. It is characterized by eluting a part of the iron group metal by treating the aggregate with acid.3 Coarse diamond particles of 11m or more in size account for 20 to 85% of the body, and the remainder is bonded 4410-79 volume. : 112% and 1% to less than 5% voids, and the bond (A is ultrafine diamond particles with a particle size of 1 μm or more) is 6 (1 to 90% and l)
35 to 5 volumes of carbide of group 4, a+5a+ria of the periodic table below 1tm! '4t%, iron group metal JO capacity It%
Itin and boron and /-! : Made of bamboo boride, containing boron and/or boride: 11: is the sintered body 11
℃ (1,005~0.15%) Manufacturing method of diamond sintered body for tools.
114. of Claims (5) and (6), which is equal to or more than lQQ/lnl. A method for producing a diamond sintered body for use. (8) Periodic (Itomo No. 4, a + 5a r 6a group carbide has WC or the same crystal structure as this (
Claim No. (5) which is Mo, W) C, (
6), the method for producing a diamond sintered body for tools as described in (7).
JP57142791A 1982-08-18 1982-08-18 Diamond sintered body for tool and manufacture Granted JPS5935066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142791A JPS5935066A (en) 1982-08-18 1982-08-18 Diamond sintered body for tool and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142791A JPS5935066A (en) 1982-08-18 1982-08-18 Diamond sintered body for tool and manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3051977A Division JPH083131B2 (en) 1991-03-18 1991-03-18 Method for manufacturing diamond sintered body for tool

Publications (2)

Publication Number Publication Date
JPS5935066A true JPS5935066A (en) 1984-02-25
JPH0333675B2 JPH0333675B2 (en) 1991-05-17

Family

ID=15323689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142791A Granted JPS5935066A (en) 1982-08-18 1982-08-18 Diamond sintered body for tool and manufacture

Country Status (1)

Country Link
JP (1) JPS5935066A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167740A (en) * 1984-09-08 1986-04-07 Sumitomo Electric Ind Ltd Diamond sintered body for tools and its manufacture
JPS61104449U (en) * 1984-12-12 1986-07-03
US4636253A (en) * 1984-09-08 1987-01-13 Sumitomo Electric Industries, Ltd. Diamond sintered body for tools and method of manufacturing same
JPH03161272A (en) * 1989-07-19 1991-07-11 Asahi Daiyamondo Kogyo Kk Cleaning grindstone of bonding tool
JP2016501735A (en) * 2012-12-31 2016-01-21 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive article and grinding method
US9676077B2 (en) 2010-09-03 2017-06-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of forming
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9833877B2 (en) 2013-03-31 2017-12-05 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10105820B1 (en) 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
US10183867B1 (en) 2013-06-18 2019-01-22 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US10265673B1 (en) 2011-08-15 2019-04-23 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US10377016B2 (en) 2012-12-31 2019-08-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same
US11420304B2 (en) 2009-09-08 2022-08-23 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636253A (en) * 1984-09-08 1987-01-13 Sumitomo Electric Industries, Ltd. Diamond sintered body for tools and method of manufacturing same
JPS6167740A (en) * 1984-09-08 1986-04-07 Sumitomo Electric Ind Ltd Diamond sintered body for tools and its manufacture
JPS61104449U (en) * 1984-12-12 1986-07-03
JPH03161272A (en) * 1989-07-19 1991-07-11 Asahi Daiyamondo Kogyo Kk Cleaning grindstone of bonding tool
US10105820B1 (en) 2009-04-27 2018-10-23 Us Synthetic Corporation Superabrasive elements including coatings and methods for removing interstitial materials from superabrasive elements
US11420304B2 (en) 2009-09-08 2022-08-23 Us Synthetic Corporation Superabrasive elements and methods for processing and manufacturing the same using protective layers
US10377017B2 (en) 2010-09-03 2019-08-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of forming
US9676077B2 (en) 2010-09-03 2017-06-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of forming
US11383217B1 (en) 2011-08-15 2022-07-12 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
US10265673B1 (en) 2011-08-15 2019-04-23 Us Synthetic Corporation Protective leaching cups, leaching trays, and methods for processing superabrasive elements using protective leaching cups and leaching trays
JP2017124488A (en) * 2012-12-31 2017-07-20 サンーゴバン アブレイシブズ,インコーポレイティド Combined abrasive article and grinding method
JP2016501735A (en) * 2012-12-31 2016-01-21 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive article and grinding method
US10377016B2 (en) 2012-12-31 2019-08-13 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US9833877B2 (en) 2013-03-31 2017-12-05 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US10946499B2 (en) 2013-03-31 2021-03-16 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
US10183867B1 (en) 2013-06-18 2019-01-22 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US11370664B1 (en) 2013-06-18 2022-06-28 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US9789587B1 (en) 2013-12-16 2017-10-17 Us Synthetic Corporation Leaching assemblies, systems, and methods for processing superabrasive elements
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
US11618718B1 (en) 2014-02-11 2023-04-04 Us Synthetic Corporation Leached superabrasive elements and leaching systems, methods and assemblies for processing superabrasive elements
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11253971B1 (en) 2014-10-10 2022-02-22 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US11535520B1 (en) 2015-05-31 2022-12-27 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same

Also Published As

Publication number Publication date
JPH0333675B2 (en) 1991-05-17

Similar Documents

Publication Publication Date Title
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
JPS5935066A (en) Diamond sintered body for tool and manufacture
US4505746A (en) Diamond for a tool and a process for the production of the same
EP2101903B1 (en) Abrasive compacts with improved machinability
US8382868B2 (en) Cubic boron nitride compact
CA2124394C (en) Method of making an abrasive compact
CA2171210C (en) Improved metal bond and metal bonded abrasive articles
JP2004505786A (en) Manufacturing method of polishing products containing diamond
WO2010002832A2 (en) Abrasive slicing tool for electronics industry
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JPS6167740A (en) Diamond sintered body for tools and its manufacture
JPH0530897B2 (en)
JPH0762468A (en) Production of diamond sintered compact for tool
JPS6355161A (en) Manufacture of industrial diamond sintered body
JPS6319585B2 (en)
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
JPH0128094B2 (en)
TW403681B (en) This disclosure relates to a method of fabricating composite blocks
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
CN115255368A (en) Soft-hard composite metal bond diamond tool and preparation method thereof
JPS58213676A (en) Diamond sintered body for tool and manufacture
JPH0525935B2 (en)
TW388732B (en) 087111547
JPH0377151B2 (en)
JPS5896848A (en) High hardness sintered body for tool and its manufacture